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Abstract
People generally perceive other people’s emotions based on speech and facial expres-
sions, so it can be helpful to use speech signals and facial images simultaneously.
However, because the characteristics of speech and image data are different, combining
the two inputs is still a challenging issue in the area of emotion-recognition research. In
this paper, we propose a method to recognize emotions by synchronizing speech signals
and image sequences. We design three deep networks. One of the networks is trained
using image sequences, which focus on facial expression changes. Facial landmarks are
also input to another network to reflect facial motion. The speech signals are first
converted to acoustic features, which are used for the input of the other network,
synchronizing the image sequence. These three networks are combined using a novel
integration method to boost the performance of emotion recognition. A test comparing
accuracy is conducted to verify the proposed method. The results demonstrated that the
proposed method exhibits more accurate performance than previous studies.

Keywords Emotion recognition . Acoustic feature . Facial expression .Model integration

1 Introduction

Recently, high-performance personal computers have been rapidly popularized with the
technological development of information society. Accordingly, the interaction between
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humans and computers is actively changing into a bidirectional interface, and a better
understanding of human emotions is needed, which could improve human–machine interac-
tion systems [4]. In signal processing, emotion recognition has become an attractive research
topic [45]. Therefore, the goal of this human interface is to extract and recognize the emotional
state of individuals accurately and to provide personalized media according to a user’s
emotional state.

Emotion refers to a conscious mental reaction subjectively experienced as strong feeling
typically accompanied by physiological and behavioral changes in the body [3]. To recognize
a user’s emotional state, several studies have applied different forms of input, such as speech,
facial expression, video, text, and others [11, 13, 15, 25, 39, 42, 47]. Among the
methods using these inputs, facial emotion recognition (FER) has been gaining
substantial attention over the past decades. Conventional FER approaches generally
have three main steps: 1) detecting a facial region from an input image, 2) extracting
facial features, and 3) recognizing emotions. In conventional methods, it is most
important to extract appropriate emotional features from the face image. The facial action
coding system encodes the movements of specific facial muscles called action units, which
reflect distinct momentary changes in facial appearance [8].

In contrast, deep-learning-based FER approaches reduce the dependence between recogni-
tion models and preprocessing techniques, such as feature extraction methods, by enabling
“end-to-end” learning from outputs to input images. The convolutional neural network (CNN)
is the most popular model among several deep-learning models. It convolves input images
through many filters and automatically produces a feature map. The feature map is combined
with fully connected layers, and the emotional expression is recognized as belonging to a
particular class-based output [21]. Recently, various studies have combined facial
features and the deep-learning-based model to boost the performance of facial expres-
sion recognition [24, 38, 46].

The speech signal is one of the most natural media of human communication. It
contains implicit paralinguistic information and linguistic content, including emotion,
about the speaker. Several studies have reported that prosodic features, acoustic features,
and voice-quality features imply comparatively abundant emotional significance [28].
The most important issue in the speech-emotion recognition system is the effective
parallel use of the extraction of proper speech-signal features and an appropriate
classification engine. These features include pitch, formant, and energy features [23,
33, 41]. In addition, the mel-frequency cepstrum coefficients (MFCC) feature is
representatively used in many studies for speech-emotion recognition [26, 37, 39].
However, because explicit and deterministic mapping between the emotional state and
audio features does not exist, speech-based emotion recognition still has a lower rate
of recognition than other emotion-recognition methods, such as facial recognition.
Therefore, combining appropriate audio features in speech-emotion recognition is
critical.

Generally, people recognize the emotions of other people using speech and facial expres-
sions, such as happiness, sadness, anger, and neutrality. According to previous studies, verbal
components convey one-third of human communication, and nonverbal components convey
two-thirds [19, 29]. Facial expressions represent an example of nonverbal components. In
terms of perceptual and cognitive sciences, when a computer infers human emotions, it is
natural that using speech signals and the facial images simultaneously can be helpful for
accurate and natural recognition. However, because the characteristics of the methods to
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recognize emotions from speech signals and image sequences are different, combining the two
inputs is still a challenging issue in the area of emotion-recognition research.

In this paper, we propose a method to recognize emotions by synchronizing speech signals and
image sequences. To do this, we design three deep networks. One of the networks is trained using
image sequences, which focuses on facial expression changes.Moreover, facial landmarks are input
into another network to reflect facial motion. The speech signals are first converted to
acoustic features, which are used for the input of the other network, synchronizing the
image sequence. Furthermore, we present a novel method to integrate the models,
which performs better than other integrated methods. A test comparing accuracy is
conducted to verify the proposed method. The results demonstrated that the proposed
method shows better performance than previous studies. Therefore, our main contri-
butions in this paper are summarized as follows:

& Two deep network models recognize emotions from images, and one deep network model
recognizes emotions from speech to reflect temporal representations from two kinds of
sequential data.

& A method is proposed to learn and classify two different types of data, images and speech,
from video data by synchronizing them.

& We present a weighted integration method for these three networks with different charac-
teristics, and performance improvement is achieved in terms of accuracy.

This paper is organized as follows. Section 2 introduces researches on existing
emotion recognition. Section 3 explains the proposed emotion recognition method.
Section 4 presents the experiment description and results, and then concludes with
Section 5.

2 Related work

2.1 Facial emotion recognition

Research on FER has been gaining much attention over the past decades with the
rapid development of artificial intelligence techniques. For FER systems, several
feature-based methods have been studied. These approaches detect a facial region
from an image and extract geometric or appearance features from the region. The
geometric features generally include the relationship between facial components.
Facial landmark points are representative examples of geometric features [2, 30, 31].
The global facial region features or different types of information on facial regions are
extracted as appearance features [20, 36]. The global futures generally include prin-
cipal component analysis, a local binary pattern histogram, and others. Several of the
studies divided the facial region into specific local regions and extracted region
specific appearance features [6, 9]. Among these local regions, the important regions
are first determined, which results in an improvement in recognition accuracy. In
recent decades, with the extensive development of deep-learning algorithms, the CNN
and recurrent neural network (RNN) have been applied to the various fields of
computer vision. Particularly, the CNN has achieved great results in various studies,
such as face recognition, object recognition, and FER [10, 16, 44]. Although the
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deep-learning-based methods have achieved better results than conventional methods,
micro-expressions, temporal variations of expressions, and other issues remain chal-
lenging [21].

2.2 Audio emotion recognition

Speech signals are some of the most natural media of human communication, and they have
the merit of real-time simple measurement. Speech signals contain linguistic content
and implicit paralinguistic information, including emotion, about speakers. In contrast
to FER, most speech-emotion recognition methods extract acoustic features because
end-to-end learning (i.e., one-dimensional CNNs) cannot extract effective features
automatically compared to acoustic features. Therefore, combining appropriate audio
features is key. Many studies have demonstrated the correlation between emotional
voices and acoustic features [1, 5, 14, 18, 27, 32, 34]. However, because explicit and
deterministic mapping between the emotional state and audio features does not exist,
speech-based emotion recognition has a lower rate of recognition than other emotion-
recognition methods, such as facial recognition. For this reason, finding the optimal feature
set is a critical task in speech-emotion recognition.

2.3 Multimodal emotion recognition

Using speech signals and facial images can be helpful for accurate and natural recognition
when a computer infers human emotions. To do this, the emotion information must be
combined appropriately to various degrees. Most multimodal studies focus on three strategies:
feature combination, decision fusion, and model concatenation. To combine multiple inputs,
deep-learning technology, which is applied to various fields, can play a key role [7, 22]. To
combine the models with different inputs, model concatenation is simple to use. Models
inputting different types of data output each encoded tensor. The tensors of each model can
be connected using the concatenate function. Yaxiong et al. converted speech signals into mel-
spectrogram images for a 2D CNN to accept the image as input. In addition, they input the
facial expression image into a 3D CNN. After concatenating the two networks, they employed
a deep belief network for the highly nonlinear fusion of multimodal emotion features [28].
Decision fusion aims to process the category yielded by each model and leverage the specific
criteria to re-distinguish. To do this, the softmax functions of the different types of
networks are fused by calculating the dot product using weights where the summation
of the weights is 1. Xusheng et al. proposed a bimodal fusion algorithm to realize
speech-emotion recognition, where both facial expressions and speech information are
optimally fused. They leveraged the MFCC to convert speech signals into features and
combined the CNN and RNN models. They used the weighted-decision fusion method
to fuse facial expressions and speech signals [40]. Jung et al. used two types of deep
networks—the deep temporal appearance network and the deep temporal geometry
network—to reflect not only temporal facial features but also temporal geometry
features [17]. To improve the performance of their model, they presented the joint
fine-tuning method integrating these two networks with different characteristics by
adding the last layers of the fully connected layer of the networks after pre-training
the networks. Because these methods mostly use shallow fusion, a more complete
fusion model must be designed [28].
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3 Proposed method

3.1 Preprocessing

When constructing a video emotion database, the actors start and finish expressing emotions
according to the instructions of the experimenter. Therefore, as shown in Fig. 1, the database
was often divided into three sections—the section for the actor to express emotions, the section
to prepare the emotional state, and the section finishing expressing emotions. For this reason,
the need to determine whether a given speech signal and image sequence should be classified
as the acting section or the silence section arises in many emotion-recognition systems. When
nonspeech sections are included in the learning or testing process, they can provide unneces-
sary information and become an obstacle. For more accurate processes, this section describes
removing these nonspeech sections. Because the signal energy value of the speech-signal
segment is larger than that of the nonspeech-signal segment, an absolute integral value (IAV)
reflecting the energy value was used. The IAV value was computed using Eq. (1):

X ¼ ∑
N

i¼1
X iΔtð Þj j ð1Þ

where X is the recorded signal,Δtis the time interval, N is the number of samples, and i is the
sample index.

Fig. 1 Audio signal and image sequence from a video; shaded areas indicate when the actor prepares or finishes
expressing the emotional state
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First, the IAV feature vector must be extracted from the interval of the signal. Then, it is
imperative to calculate the maximum and minimum values and determine the threshold value
with a 10% difference between these two values. An example of determining the threshold is
shown in Fig. 2.

The process of selecting the start point for a speech interval includes a point at which the
window is larger than the IAV value. If the extracted IAV value was smaller than the IAV
threshold, the endpoint was determined. The points were quantized using Eqs. (2) and (3) so
that the speech signals and image sequences were synchronized.

Quantization value ¼ Sampling rate=10 ð2Þ
if p ¼ start point; p ¼ Rounddown p=Quantization valueð Þ � Quantization value
if p ¼ end point; p ¼ Roundup p=Quantization valueð Þ � Quantization value

�
ð3Þ

To map 30 Hz (33.33 ms) of the sampling rate of the image sequence, the window size of the
speech signals was 1600 (33.33 ms). Accordingly, the input of an image sequence and speech
signal at a point used one image and 1600 speech-signal data, respectively.

3.2 Image-based model

To recognize emotions from a facial image sequence, we used two deep-learning networks.
The first network captures temporal changes in appearance by combining the CNN and LSTM
models. The proposed CNN and LSTM models are illustrated in Fig. 3.

In general, the length of image sequences varies in every video, but the input length of a
deep network is usually fixed. Therefore, the length of the image sequence must be fixed. In
this study, we set a time step of the image sequence to ten. The network infers an emotion
every 0.3 s. Before inputting an image sequence to the network, all images were converted to
grayscale. Then, the faces in the input images were detected, cropped, and rescaled to 64 × 64.
The common 2D-CNN layer used still images as input. We combined CNN layers and LSTM
layers to deal with image sequences.

The CNN layers of this network used the image sequences as input without sharing weights
along the time axis. Thus, the filters played different roles depending on the time. Each image

Fig. 2 An example of determining the threshold
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along the time axis was converted to feature maps through each convolutional and pooling
layer. After convolving the images, all output passed through rectified linear unit
activation functions. The feature maps were stacked in time order so that they were
input into the LSTM layers. The output of the LSTM layer was connected with the
fully connected layers, and the last layer inferred the probability of each emotion
through the softmax function. To train the whole network, the AdaDelta optimizer
method was used, and the weight-decay and dropout methods were used for
regularization.

The network that input the landmarks was derived from a previous study. Because
landmarks generally reflect facial motion, they complement another model to infer facial
expression. First, landmarks can be considered to be a 1D vector as follows:

X tð Þ ¼ x tð Þ
1 ; y tð Þ

1 ; x tð Þ
2 ; y tð Þ

2 ; ⋯; x tð Þ
n ; y tð Þ

n

h i
ð4Þ

Where n is the total number of landmark points at frame t, andX(t)is a2 × ndimensional vector at

t. In addition,x tð Þ
k andy tð Þ

k are coordinates of the kth facial landmark points at frame t. The
normalization of the landmark vector was required because each landmark point is a pixel
value of the image. The landmark points were normalized based on thexycoordinates of the
noise point. The equation is as follows:

ex tð Þ
i ¼ x tð Þ

i −x tð Þ
o

σ tð Þ
x

ð5Þ

wherex tð Þ
i is an x-coordinate of the ith facial landmark point at frame t,x tð Þ

o is the x-coordinate of

the nose landmark coordinate at frame t, andσ tð Þ
i is the standard deviation of the x-coordinates at

frame t. This process is also applied toy tð Þ
i . We concatenated the normalized vector along the

time step. The vector is used as input to the network, as shown in Fig. 4.
The network receives the normalized vector as input, and the last layer infers the probability

of each emotion through the softmax function. The dropout methods are used between each
fully connected layer for regularization.

Fig. 3 Structure of the two-dimensional convolutional neural network and long short-term memory (LSTM)
model for a facial image sequence
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3.3 Speech-based model

Because verbal components convey one-third of human communication, it is natural that using
speech signals and a facial image simultaneously can be helpful for accurate and natural
recognition. Therefore, we propose a reasonable feature combination that can improve
emotion-recognition performance using an RNN, complementing the FER. In previous
emotion-recognition combining speech signals and image sequences, many studies used only
the MFCC feature or images converted from a mel-spectrogram [12, 28, 40]. We surveyed
acoustic features used for many speech-emotion recognition studies and composed an optimal
feature set by analyzing and combining the interconnectivity of each feature. Harmonic
features reflecting the harmony of speech are used, which were less used for previous studies.
First, we selected specialized features for emotion recognition through individual analysis and
found the optimal feature set by recombining features.

In total, 43 features were extracted and are used in this paper:

& 13 MFCCs;
11 spectral-domain: spectral centroid, spectral bandwidth, 7 spectral contrasts, spectral
flatness, and spectral roll-off;

& 12 chroma: 12 dimensional chroma vectors; and.
7 harmonic features: inharmonicity, 3 tristimuli, harmonic energy, noise energy, and
noisiness.

Fig. 4 Structure of the deep neural network for the landmark vector
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If the range of each attribute value of the learning data is greatly different, the learning will not
work efficiently. For example, if the range of a feature vector A is 1 to 1000, the range of
another feature vector B is 1 to 10, and the value of A is larger, it seems as if it has a significant
effect on the neural network while B seems as if it does not relatively affect the network. Thus,
transforming each property value into the same range is necessary before the learning process,
and this process is referred to as “feature scaling.” In this study, we normalized the features
using the standard-score method, which considers the range and variation of the values. The
equation of this scaling method is as follows (2).

x0 ¼ x−x
σ

ð6Þ

where x’ is a normalized vector, x is an input vector,xis the average of x, andσis the standard
deviation of x.

After windowing the speech signals, the signals are converted to acoustic features, and the
features are input into the LSTM layers. The output of the LSTM layer is connected with the
fully connected layers, and the last layer infers the probability of each emotion through the
softmax function. The whole speech-based model is illustrated in Fig. 5. The weight-decay and
dropout methods are used for regularization.

3.4 Weighted joint fine-tuning

The previous study [17] proposed a joint fine-tuning method that integrates two networks.
After pretraining the networks, the networks were reused. They integrated the two networks by
adding the last layers of the fully connected layer of the networks. Then, the linear fully
connected networks were retrained, which achieved better results. In this paper, we designed
an integration method that weighted each model in the integration process. The last layers were
integrated using Eq. (7):

W1OI þW2OL þW3OS ð7Þ

Fig. 5 Structure of the model with acoustic features from speech data
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whereW1, W2, and W3 are the variables to prioritize the output of each model, and OI, OL, and
OS are the output values of the image, landmark, and speech-based model, respectively. Based
on the preliminary experiments, we setW1, W2, andW3 to 0.2, 0.2, and 0.6, respectively. Each
model was trained using softmax, and pretrained models were integrated using Eq. (7). Finally,
the integrated model calculates the probabilities for emotions using another softmax function.

4 Experiment and results

4.1 Ryerson audio-visual database of emotional speech and song dataset

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) is a
video database of emotional speech and songs in North American English, classified
into eight emotions as shown in Fig. 6, including neutral, calm, happy, sad, angry,
fearful, disgusted, and surprised. The database comprises information from 24 profes-
sional actors, and each actor has 60 audio-visual (AV) items and 44 song items, for a
total of 104 data points. Each recorded production of an actor was available in three
modality formats: AV, video only, and audio only. Among these, we used 24 × 60 ×
3 = 4320 AV data.

For validation of this database, 247 raters each rated a subset of the 7356 files. For
reliability, a further 72 raters provided intra-rater test-retest data. Validation was achieved by
asking the raters to label the expressed emotion. In RAVDESS, contrary to traditional
validation methods, for facial recognition databases, accuracy, intensity, and genuineness must
be verified for emotion measurement of all presented stimuli because orofacial movement,
where movements are tied to the lexical content, interacts with movements related to
emotional expression. To select the appropriate stimuli, the “goodness” score was
imposed. The goodness scores ranged between 0 and 10 and are a weighted sum of
the mean accuracy, intensity, and genuineness measures. The equation was defined
such that stimuli receiving higher measures of accuracy, intensity, and genuineness
were assigned higher goodness scores.

Fig. 6 Examples from the Ryerson Audio-Visual Database of Emotional Speech and Song dataset
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4.2 Baselines

This section describes the baseline algorithms for model integration.

4.2.1 Multi-input model

When using different input types for classification, the models should be designed so that each
model reflects the characteristics of the data. To combine the models with different inputs, a
layer that can connect tensors was used. Models inputting different types of data output each
encoded tensor. The tensors of each model can be connected using the concatenate function.
Then, the final outputs of each model were integrated by adding the softmax function. Fig. 7
describes the example of the multi-input model.

4.2.2 Feature concatenation

To recognize human emotions by learning both facial and speech data, facial data were
converted to a feature map by inputting the data into the CNN. Then, we merged the feature
map with features from the speech data, as shown in Eq. (8).

x ¼ f 1; f 2;… f m;…; s1; s2…; snf g ð8Þ
Where f is the feature map from the facial data, and s is the feature of the speech data. Lastly,
emotions were classified using the feature vector x as the input of the LSTM model in a time-
ordered sequence.

4.2.3 Joint fine-tuning

To incorporate models with different data, first, each model with different data was trained.
Only fully connected layers in the pre-softmax classification stage from already trained models
were used as new integrated models. The weight values from the already trained models were
frozen, and the fully connected layers from each model were retrained. Then, the integrated

Fig. 7 Examples of the multi-input model
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model classified emotions using another softmax. The softmax function for training in each
model was used when calculating the loss function, and only the softmax function of the
integrated model was used when predicting.

5 Results

As mentioned in Section 4.1, this study used the AV data in the RAVDESS dataset to test
performance. The dataset comprised eight emotions, and we used only emotional speech,
except the emotional song data. In the RAVDESS, all sequences start and end with a silence
section, which was removed through preprocessing (Section 3.1). In addition, image and
speech data were separated by synchronizing with each other. The data of a training set were
as follows: image data (10, 64, 64), landmark data (980), and speech data (10, 43). To verify
the performance of the proposed method, ten-fold cross-validation was performed (Table 1).

When learning the model proposed in this paper using image and speech data with the joint
fine-tuning method, the accuracy was 86.06%. When learning the model using the multi-input
model and feature combination, the accuracy was 81.93% and 78%, respectively. The model
learned using weighted joint fine-tuning demonstrated the greatest result at 87.11%. This also
increased the accuracy by about 2.5% compared to the model using only image data (84.69%).

Jung et al. proposed the model recognizing facial expressions using image data, construct-
ing two small deep networks that complement each other [17]. The model proposed by Jung
et al. exhibited an accuracy of 85.72% in the RAVDESS dataset. Wang et al. [40], Ma
et al.[28], and Hossain et al. [12] proposed models integrating a CNN model input with image
data with a 2D CNN model input with speech data by converting the speech signals to mel-
spectrogram or spectrogram images. The studies, which converted the speech data to a
spectrogram to integrate the image and speech, demonstrated an accuracy of about 75% to
77%. The proposed model integrating image and speech data using acoustic features produced
a greater result by about 10% than the other integration methods. The multiple-input
model integrating each model using the concatenate function is simple to use, but it
may not maximize the ability of the networks. We fine-tuned the softmax functions of
the pre-trained networks, considering the characteristic of each input, to maximize the ability of
the networks. For this reason, the proposed method can produce more accurate results than the
multiple-input model.

Table 1 Comparison results for each study

Model Integration Method Input Accuracy

1 Proposed Joint fine-tuning Image, Speech 86.06%
2 Proposed Multi-input model Image, Speech 81.93%
3 Proposed Feature combination Image, Speech 78%
4 Proposed Weighted joint fine-tuning Image, Speech 87.11%
5 Proposed Weighted joint fine-tuning Image 84.69%
6 [17] Joint fine-tuning Image 82.81%
7 [40] Multi-input model Image, Speech 77.66%
8 [28] Multi-input model Image, Speech 77.31%
9 [12] Multi-input model Image, Speech 75.62%
10 [43] – Speech 67.14%
11 [35] – Speech 74%
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Lastly, most of the previous studies using the RAVDESS dataset used only speech data by
converting the speech data to an acoustic feature. They exhibited an accuracy of 64.17% and
74%, respectively. Thus, the proposed model dramatically increased the accuracy (87.11%) by
integrating the image and speech data.

6 Conclusions

We presented three networks to reflect the characteristics of each input data. One of the
networks was trained using image sequences, which focus on facial expression changes. In
addition, facial landmarks were input into another network to reflect facial motion. The other
network used acoustic features from speech data as input. These three networks were com-
bined using a novel integration method to boost the performance of emotion recognition. To
investigate the performance of our model, we tested the recognition accuracy with previous
studies on the RAVDESS dataset. According to the results, our model achieved the best
recognition rate against facial and speech-based studies. Furthermore, we demonstrated that
our weighted joint fine-tuning method exhibited better performance than other methods.
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