
https://doi.org/10.1007/s11042-020-09604-z

Attacks on state-of-the-art face recognition using
attentional adversarial attack generative network

Lu Yang1 ·Qing Song1 ·Yingqi Wu1

Received: 10 February 2020 / Revised: 9 August 2020 / Accepted: 12 August 2020 /

© The Author(s) 2020

Abstract
With the broad use of face recognition, its weakness gradually emerges that it is able to
be attacked. Therefore, it is very important to study how face recognition networks are
subject to attacks. Generating adversarial examples is an effective attack method, which
misleads the face recognition system through obfuscation attack (rejecting a genuine sub-
ject) or impersonation attack (matching to an impostor). In this paper, we introduce a novel
GAN, Attentional Adversarial Attack Generative Network (A3GN ), to generate adversarial
examples that mislead the network to identify someone as the target person not misclassify
inconspicuously. For capturing the geometric and context information of the target per-
son, this work adds a conditional variational autoencoder and attention modules to learn
the instance-level correspondences between faces. Unlike traditional two-player GAN, this
work introduces a face recognition network as the third player to participate in the com-
petition between generator and discriminator which allows the attacker to impersonate the
target person better. The generated faces which are hard to arouse the notice of onlookers
can evade recognition by state-of-the-art networks and most of them are recognized as the
target person.

Keywords Face recognition · Generative adversarial networks · Adversarial attack

1 Introduction

Neural networks are widely used in different tasks in the society which is profoundly chang-
ing our life [15, 20, 61]. A good algorithm, adequate training data, and computing power

� Qing Song
priv@bupt.edu.cn

Lu Yang
soeaver@bupt.edu.cn

Yingqi Wu
wuyqq@bupt.edu.cn

1 Pattern Recognition and Intelligence Vision Lab, Beijing University of Posts
and Telecommunications, Beijing, China

55Multimedia Tools and Applications (2021) 80:8 –875

Published online: 2020September5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-09604-z&domain=pdf
mailto: priv@bupt.edu.cn
mailto: soeaver@bupt.edu.cn
mailto: wuyqq@bupt.edu.cn


make neural networks supersede humans in many tasks, especially face recognition tasks [9,
21, 61]. Face recognition can be used to determine which one the face images belong to
or whether the two face images belong to the same one. Applications based on this tech-
nology are gradually adopted in some important tasks, such as identity authentication in a
railway station and for payment. Unfortunately, it has been shown that face recognition net-
works can be deceived inconspicuously by mildly changing inputs maliciously. The changed
inputs are named adversarial examples that implement adversarial attack on networks [50,
51]. Szegedy et al. [57] present that adversarial attack can be implemented by applying an
imperceptible perturbation which is hard to be observed for human eyes for the first time.
Following the work of Szegedy, many works focus on how to craft adversarial examples
to attack neural networks [12, 29, 38, 53]. Neural networks are gradually under suspicion.
The works on adversarial attack can promote the development of neural networks. Akhtar
et al. [1] review these works’ contributions in the real-world scenarios. Illuminated by
predecessor’s works, we also do some research about the adversarial attacks (Fig. 1).

In this work, we explore the feature representation of different faces. Most of the
adversarial attacks aim at misleading classifier to a false label. Existing works produce per-
turbation on the images [16, 40, 57], do some makeup or add eyeglass / hat / occlusions [17,
50, 51] to faces. And their adversarial examples are fixed by the algorithms which are not
flexible for attacks. Most of the adversarial attacks can not accept any images as inputs.
The method manipulating the intensity of input images directly is intensity-based. Our work
uses the geometry-based method to generate adversarial examples that adjust a tiny part of
faces imperceptibly to do the attack. Our goal is to generate face images that are similar to
the original images but can be classified as the target person by imitating the feature repre-
sentation of the target person and which can accept any faces as inputs. In other words, we
want to generate face samples, which are similar to the x sample in image space, similar to
the y sample in feature space, and x and y can be arbitrarily specified. Due to the develop-
ment of intensity-based attacks, many works present their corresponding defense methods.
To promote the development of the adversarial attacks, we propose a more complex and
novel way to generate adversarial examples. For these purposes, we present A3GN to
produce the fake image whose appearance is similar to the origin but is able to be classified
as the target person.

Target A

Target 

Target B

Target C

Original Generated Original Generated

Fig. 1 Adversarial attack results in our work. The first column is the target face. The 2nd and 4th columns
are the original images and the rest are the generated images. Given target images, our work is to generate
images similar to the original faces but classified as the target person
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In the face verification domain, whether the two faces belong to one person is based on
the cosine distance between the feature map in the last layer not based on the probability for
each category. So A3GN pays more attention to the exploration of feature representation
for faces. To get the instance information, we introduce an attentional variational autoen-
coder to get the latent code from the target face, and meanwhile, attentional modules are
provided to capture more feature representation and facial dependencies of the target face.
For adversarial examples, A3GN adopts two discriminators – one for estimating whether
the generated faces are real called sample discriminator, another for estimating whether the
generated faces can be classified as the target person called identity discriminator. Mean-
while, cosine loss is introduced to promise that the fake images can be classified as the target
person by the target model. In the black-box scenario, we introduce a substitute network as
the identity discriminator to do the feature estimation of different target networks. Feature
estimation is a crucial part of the black-box attack which helps our substitute network to
learn the feature representation of multiple face recognition networks to do the black-box
attack. Our main contributions can be summarized into four-fold:

– We focus on a novel way of attacking against state-of-the-art face recognition net-
works. They will be misled to identify someone as the target person not misclassify
inconspicuously in face verification according to the feature map, not the probability.

– GAN is introduced to generate adversarial examples different from traditional intensity-
based attacks. Meanwhile, this work presents a new GAN named A3GN to generate
adversarial examples that are similar to the origins but have the same feature represen-
tation as to the target face.

– We introduce a substitute network to do the feature estimation of face recognition
networks which achieves the purpose of black-box attack in face verification.

– Good performance of A3GN can be shown by a set of evaluation metrics in physical
likeness, Similarity Score, and accuracy of recognition.

2 Related work

2.1 Face recognition

We witness the great development and success of convolutional neural networks in face
recognition so far. With the development of advanced architectures and discriminative
learning approaches, face recognition performance has been boosted to an unprecedented
level [9, 35, 55, 56, 58, 61]. Face recognition can be categorized as face verification and
face identification. In our work, we focus on face verification which determines whether a
pair of faces belong to the same person and the latter classifies a face to a specific identity.
To learn discriminative deep face representation, there are two major types of approaches
are widely studied: softmax-free methods and softmax-based methods.

The main purpose of softmax-free methods is to distinguish identities in the feature space
with the guidance of distances among samples. Siamese network [7] utilized the contrastive
loss to learn contrastive representations. In Siamese networks, two facial images are succes-
sively fed into two networks to obtain their respective embeddings, and the contrastive loss
penalizes the distance between two embeddings when the input images are paired. Florian
et al. proposed the FaceNet with Triplet loss [48], which explicitly maximizes the inter-class
distance and meanwhile minimizes the intra-class distance, where a margin term is used
to determine the decision boundaries between positive and negative pairs. These methods

Multimedia Tools and Applications (2021) 80:8 –8755 5 857



and their improved versions have achieved good results in face recognition, and have also
been applied to metric learning [26, 47, 67], fine-grained visual recognition [13, 32, 69] and
person re-identification [22, 33, 36].

Based on the principle of image classification, softmax-based methods directly use iden-
tity labels as category information to supervise the face recognition networks. To directly
enhance the feature discrimination, several softmax-based loss functions [9, 34, 35, 60, 63]
have been proposed in recent years. To reduce intra-class variations, Center Loss [63] was
proposed by Wen et al., which learns centers for each identity to emphasize the intra-class
compactness in the embedding manifold. SphereFace [35] proposed the angular margin
softmax loss (A-Softmax loss) which focuses on inter-class decision boundary to improve
softmax loss. A-Softmax loss introduces an angular margin between the ground truth class
and other classes and uses a multiplier to impose a multiplicative angular margin to the
original decision boundaries during the training stage. However, A-Softmax loss is usually
unstable and the optimal parameters are hard to determinate. To enhance the stability of
A-Softmax loss, Wang et al. design an additive margin softmax loss (AM-Softmax) [60]
which replaces angular margin by cosine margin to stabilize the optimization and have
achieved promising performance. Deng et al. develop an additive angular margin softmax
loss (Arc-Softmax) [63], which has a more clear geometric interpretation.

2.2 Generative adversarial networks

Generative Adversarial Networks (GANs), originally introduced by Goodfellow et al. [15],
is one of the most promising methods for unsupervised learning in the complex distribution
in recent years. GANs are a framework of artificial intelligence algorithms implemented
by a system of two neural networks contesting with each other in a zero-sum game frame-
work [2, 18]. This framework for estimating generative models via an adversarial process
corresponds to a minimax two-player game [15]. GANs have achieved great performance
and impressive results in image generation [10, 44], style transfer [14, 28, 59], image-
to-image translation [27, 70, 71] and representation learning [37, 44, 45]. Despite this
tremendous success, the training of GANs is known to be unstable and sensitive to the
choices of hyper-parameters. Several studies have attempted to stabilize the GAN train-
ing dynamics and increase the sample diversity by modifying the learning objectives and
dynamics [2, 46], designing new network architectures [30, 44], adding regularization meth-
ods [18, 39] and introducing heuristic tricks [43]. Some modified versions of GAN also
demonstrate performance advantages in many scenarios [6, 43, 70, 71]. Most works uti-
lize conditional variables such as attributes [6, 66]. CycleGAN [70] preserves key attributes
between the input and the translated images by a cycle consistency loss which has received
a good improvement in unpaired image-to-image translation. Conditional VAEs [52] have
shown good performance for image-to-image translation which learns a mapping from input
to output image. In [71], cVAE-GAN and cLR-GAN are used to learn a low-dimensional
latent code and then map from a high-dimensional input to a high-dimensional output.

In our work, we use conditional variational autoencoder GAN to learn the feature repre-
sentation of the target person for generating adversarial examples from any faces to attack
face recognition networks.

2.3 Adversarial attack

With remarkable accuracy, neural networks get access to many important domains in soci-
ety, the security problem of neural networks has become a critical problem. Szegedy et
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al. [57] reveal the perturbation which can fool DNN for the first time. Moosavi-Dezfooli
et al. [40] introduced the Deepfool and demonstrate that ‘universal perturbation’ can fool
the classifier by any image in most type of models, which could fool neural networks with
a universal perturbation on images with high probability. Goodfellow et al. [16] indicates
that the intrinsic reason for the adversarial attack is the linearity and high-dimensions of
inputs, and propose a more time-saving practical method (FGSM) to generate adversarial
examples by performing one-step gradient update along the direction of the sign of gradient
at each pixel. Su et al. [54] present a method to generate one-pixel adversarial perturba-
tions to attack models using differential evolution in an extremely specific scenario. Song
et al. [53] propose unrestricted adversarial examples, a threat model where the attackers are
not restricted to small norm bounded perturbations. Many works are proposed to explore
more imperceptible adversarial examples to attack neural networks efficiently [4, 12, 25,
29, 38, 41, 64].

In literature, studies on generating adversarial examples in the face recognition domain
are relatively limited. Bose et al. [3] craft adversarial examples by solving constrained opti-
mization so that face detector can not detect faces. Sharif et al. [50] propose a method
focusing on facial biometric systems which can be widely used in surveillance and access
control. However, these adversarial attack methods rely on white-box manipulations of face
recognition models, which is impractical in real-world scenarios. In [11], Dong et al. pro-
posed an evolutionary optimization method for generating adversarial faces in black-box
settings, which does not need to access the specific structure and parameters of the neural
network. However, they require at least 1,000 queries to the target face recognition sys-
tem before a realistic adversarial face can be synthesized. Whether a white-box attack or a
black-box attack on the face recognition network, existing methods have many limitations,
some of which need to change the appearance of the samples [50], and some of which can
not arbitrarily control the results of the attack [11, 65].

In this paper, we focus on generating quasi-imperceptible adversarial examples to do
white-box, black-box, and targeted attacks. In other words, we want to generate face sam-
ples, which are similar to the x sample in image space, similar to the y sample in feature
space, and x and y can be arbitrarily specified.

3 Attentional adversarial attack generative network

In this section, we present the Attentional Adversarial Attack Generative Network (A3GN ),
and introduce the overall structure (Section 3.1) and objective functions (Section 3.2). The
pipeline of theA3GN contains two different discriminators, sample discriminator and iden-
tity discriminator (Section 3.3) which help the A3GN to generate the adversarial examples.
In order to make the generated adversarial example similar to the target face in feature space
and the original face in image space, we need a stronger feature extractor. For variational
autoencoder, we hope to enhance its feature encoding ability for the target face and increase
the similarity between the generated face and the original face in feature space. For the
generator, we consider enhancing the quality of the generated images so that the generated
faces are closer to the original ones visually, that is, to increase the similarity between the
two in the image space. Based on the above considerations, we propose the Attentional VAE
and Attentional Generator in Section 3.4 respectively. Experiments (Table 5) shows that the
proposed blocks can significantly improve the quality of generated images, and can better
simulate the distribution of targets in both image space and feature space. Section 3.5 will
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introduce the operation, feature estimation, we used in the black-box attack to improve the
performance.

3.1 Overall

For exploring the feature distribution of different faces, we use VAE to capture the instance
information of different faces for the generator to produce the adversarial examples. Given
a target image y, using an encoding function E learns a latent code z of y, E(y) → z.
Generator G1 combines z and an input image x to synthesize the output x̂, G1(x, z) → x̂,
which is the adversarial example. x, y, x̂ are all 112×112 RGB images. Here, z is the latent
code of the target image y which contains the instance information of the target person and
helps the generator G1 to generate the adversarial example x̂, thus x̂ contains the instance
information of the target image y and the geometric information such as the appearance of
input image x. G2 aims at reconstructing the original image x which guarantees that x̂ has
the same geometric appearance of x.

Sample discriminator D1 determines whether x̂ is real or not. Identity discriminator D2
determines whether x̂ can be recognized as the target person or not. The overview of A3GN

is shown in Fig. 2. The backbone of A3GN is cVAE-GAN actually.

3.2 Objective functions

To make the generated images x̂, G1(x, z), indistinguishable from real images, we adopt an
adversarial loss [18]:

Ladv = Ex[logD1(x)] − Ex,z[D1(G1(x, z))]
−λgpEx′ [(∥∥∇x′D1(x

′)
∥
∥
2 − 1)2], (1)

where generated image G1(x, z) learns the latent code z from the target image y, while
sample discriminator D1 tries to distinguish G1(x, z) between real and fake image. Sample

Fig. 2 Overview of A3GN . Attentional AVE (AVAE) captures the latent code z from target face y. Attentional
Generator is a cycle generator consisting of G1 and G2. G1 is sent into sample discriminator to determine
whether it is a real image or not with x, and sent into identity discriminator to determine whether it can be
classified as the identity of target person or not with y. G2 aims at reconstructing the original image x which
guarantees that x̂ has the same geometric appearance of x
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discriminator D1 tries to maximize D1(x) which is opposite to the generator G1. And x′ is
sampled between a pair of a real and a generated images. λgp is set to 10.

Further, the latent code is encouraged to be close to a random Gaussian [71]:

LKL(E) = Ey[DKL(E(y)‖N (0, I ))], (2)

where DKL(p‖q) = − ∫

p(z)log
p(z)
q(z)

dz.
To preserve the content of the input images x, while changing instance-level information

and a part of feature representation of the inputs, we introduce a cycle-consistency loss [70]
to the generator as reconstruction loss:

Lrec = Ex,z[‖x − G2(G1(x, z))‖1], (3)

where G2 is used to take in the generated image G1(x, z) as input and reconstruct the
original image x. The reconstruct loss adopts the �1 norm. Here,G1 andG2 are two different
generators with inputs of different dimensions.

To guarantee that x̂ can be classified as y by D2, we adopt a cosine loss, defined as:

Lcos = 1 − SIM(y, G1(x, z)) = 1 − cos θ

= 1 − Ex,y,z[ D2(y) · D2(G1(x, z))

‖D2(y)‖ · ‖D2(G1(x, z))‖],
(4)

where D2 is the identity discriminator, and D2(y) and D2(G1(x, z)) mean the feature rep-
resentation of y and G1(x, z). Minimizing cosine loss can minimize the difference between
generated image G1(x, z) and target image y in space which brings benefit to generating
adversarial examples. The objective functions are defined as,

LD1 = −Ladv, (5)

LG = Ladv + λrecLrec + λcosLcos, (6)

where λrec and λcos are hyper-parameters that control the relative importance of reconstruc-
tion loss and cosine loss respectively compared to the adversarial loss. In our work, we use
λrec = 10 and λcos = 10.

3.3 Identity discriminator

In this work, we propose an identity discriminator D2 as third-player to participate in the
generative adversarial competition which brings about impersonating target faces better.
For generating images with similar feature representations to the target image, we adopt a
face recognition network as the identity discriminator directly. In the white-box scenario,
we adopt the target face recognition network as the identity discriminator. But in the black-
box scenario, we introduce a substitute network to imitate the feature representation of the
target face recognition networks so that it can attack multiple networks without any access
to these networks which will be elaborated in Section 4.3.

For a given input image x, and a latent code z from the target image y, E(y) → z, our
goal is to translate x into x̂, G1(x, z) → x̂, which can be classified as y by D2.

3.4 Attentional VAE and attentional generator

Our aim is to control the distribution of image space and feature space of generated faces,
so we need a stronger feature extractor. In the process of encoding the target face image,
in order to enhance feature encoding ability for the target face, and increase the similarity
between the generated face and the original face in feature space, we plug the geometric
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attentional block into VAE to constitute attentional variational autoencoder. In addition, in
order to enhance the generator, we adopt a channel-wise attentional block into the generator
to model interdependencies between the channel to capture feature representation of faces
named attentional generator.

The overview of Attentional VAE is shown in Fig. 3. VAE in our work is to learn the fea-
ture representation of the target person whose facial dependency is significant for capturing
the latent code. It is related to the self-attention method which computes the response at
one point in a sequence by attending to all points. For this purpose, we introduce non-local
block [62] to capture facial dependency. For instance-level learning, we combine basic vari-
ational autoencoder residual block and non-local to propose Attentional VAE (AVAE) in our
A3GN in Fig. 3. As shown in Fig. 2, AVAE can encode the geometric information of target
face and learn the facial dependency from different parts of the human face effectively.

We concatenate the original face x (3-dimension) with the latent code z as the input of
the attentional generator in Fig. 4. After two subsampling convolution layers in the genera-
tor, we introduce squeeze-and-excitation operations [23] to emphasize informative features
and suppress less useful ones in the channel. SE operations propose to squeeze global spatial
information into a channel descriptor by using global average pooling to generate channel-
wise statistics. In excitation operation, a gating mechanism with a sigmoid activation is
employed to capture channel-wise dependencies. Finally, we employ scaling to rescale the
transformation output. Owing to squeeze-and-excitation, we can maintain informative fea-
tures from the latent code more and suppress the useless information in channels which
contribute to capturing feature representation of the target person.

3.5 Feature estimation for black-box attack

Feature estimation is a crucial thought in black-box attack. The generalization of the gen-
erator trained in the white-box scenario can not satisfy the performance of the black-box
attack. It can not attack networks in black-box well shown in Table 7. Thus we present
feature estimation in the black-box scenario which can estimate the feature representation
of black-box networks. For feature estimation, we adopt a substitute model to estimate the
feature representation of target networks. The substitute model is used to fit the black-box
face recognition networks. It does not provide the probability of the input face but provides
the feature representation. The substitute model S is a pre-trained simple face recognition

Fig. 3 Overview of the geometric attentional block in AVAE. Basic block is a basic residual block, which is
introduced in [20]. ⊕ means element-wise sum and ⊗ means matrix multiplication
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... ...

Fig. 4 Overview of a channel-wise attentional block in the Attentional Generator. “sq&ex” is the squeeze
operation (global average pooling) and the excitation operation (gating mechanismwith a sigmoid activation).
“scale” is the operation to rescale the transformation output with activations after squeeze and excitation to
get the channels with different weights of importance

network that can imitate the feature in the training phase. And it will be the identity dis-
criminator D2 in the black-box scenario to replace the target face recognition network in the
white-box scenario which will be updated during the training phase to imitate the feature
representation.

The substitute model S takes x̂ as input. To estimate the feature representation of target
networks TN (N means the number of target networks which will be 3 in our following
experiments), we introduce estimation loss to promise that the substitute model can get the
similar feature representation of target networks:

Lest = Lest target + Lest f ake, (7)

where

Lest target = Ex[
∥
∥
∥

∑N
i=1‖Ti(x)‖2

N
− ‖S(x)‖2

∥
∥
∥1], (8)

Lest f ake = Ex,z[
∥
∥
∥

∑N
i=1‖Ti(G1(x, z))‖2

N
− ‖S(G1(x, z))‖2

∥
∥
∥1], (9)

where N means the total amount of target networks.
Considering that different face recognition networks obtain various feature representa-

tion, we first normalize the features of different networks, and then average the normalized
feature for estimation loss. The substitute model aims at obtaining a similar normalized
feature representation for the same input. The substitute model will output the feature of
adversarial examples to fit the feature of the target image. Meanwhile, D2(G1(x, z)) used
in Lcos will be replaced by S(G1(x, z)) in the black-box scenario.

4 Experiments

4.1 Evaluationmetrics

In our work, we define a set of specific evaluation metrics to measure the effectiveness of
the attacks:

– Real Accuracy & Fake Accuracy & mAP. When cosine distance between examples
and target faces is more than 0.45, we consider examples as target faces with a true
predicting label. Real accuracy shows the percentage of original images that can be
classified as the target person, which is usually 0%, while fake accuracy shows the
percentage of generated images that can be classified as the target person. mAP is the
mean average precision with different thresholds in a range from 0 to 1 whose step is
0.01.
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– Similarity Score. Cosine distance between original faces/generated faces and target
face faces is seen as a Similarity Score. Cosine distance is a significant metric in
face recognition for verifying whether the two images belong to one person. In our
results, we show the Similarity Scores before / after the attack and the improvement
(�) to exhibit the effectiveness of A3GN for attacks. Meanwhile, the Similarity Scores
between the real image and the fake image (denotes as R - F) exhibit the ability that
the generated images can be recognized as their real identities by face recognition net-
works. The Similarity Scores between the real image and the fake image are less, the
attack is more successful.

– SSIM. SSIMmeans the percentage of structural similarity index between original faces
and generating faces higher than a threshold. SSIM is a quantization metric to determine
whether generating faces are perturbed slightly compared with original faces. In our
work, we set 0.9 as the threshold to evaluate the quality of generated images compared
to original images.

4.2 Datasets

The state-of-the-art face recognition networks are trained in CASIA-WebFace dataset [68]
and refined MS-Celeb-1M [9, 19]. Meanwhile, our A3GN is also trained on CASIA-
WebFace. And in the inference time, we perform A3GN on LFW [24], CFP-FP [49]
and AgeDB-30 [42] by generating adversarial examples paired with target faces to verify
whether they belong to one person.

CASIA-WebFace CASIA-WebFace dataset [68] is a web-collected dataset which has
494,414 face images belonging to 10,575 different individuals. In our experiments, we use
aligned CASIA-WebFace which has images with size of 112×112 after alignment.

MS-Celeb-1M The original MS-Celeb-1M dataset [19] contains about 100k identities with
10 million images. In [9], the noise of MS-Celeb-1M is decreased, and finally, refined
MS-Celeb-1M contains 3.8M images of 85k unique identities.

LFW Labelled Faces in the Wild (LFW) dataset [24] contains 13,233 web-collected images
from 5,749 different identities, with large variations in pose, expression and illuminations.
In face verification, the verification accuracy is usually measured on 6,000 face pairs. But
in our work, we pair all the images in LFW with target face image.

CFP-FP Celebrities in Frontal Profile (CFP-FP) dataset [49] contains about 7,000 multi-
angle images from 500 different identities. For each identity, it has 10 frontal images and 4
lateral images, which are very suitable for evaluating side face recognition algorithms.

AgeDB-30 Age Database (AgeDB-30) [42] contains 16,488 images of celebrities belonging
to 568 identities, such as actors, writers, scientists and politicians, each with identity, age
and gender attributes. The minimum and maximum ages are 1 and 101, respectively. The
average age range for each subject is 50.3 years.

4.3 Implementation of A3GN

In this section, we do some experiments to verify the feasibility and effectiveness of atten-
tional blocks. We train A3GN on CASIA-WebFace and utilize it to generate adversarial
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examples on LFW to attack the target model in the inference time. We employ ArcFace
which has an accuracy of 99.53% [9] on LFW as the target model in these experiments about
the architecture of A3GN . In the white-box scenario, the target face recognition network
will be ResNet50 with softmax, SphereFace and ArcFace successively. In the black-box
scenario, we use a pre-trained model ResNet50 as the substitute network to do the feature
estimation of different target networks.

Network Architecture We design A3GN based on cVAE-GAN. For the encoder, we use a
classifier with 4 residual basic blocks for the latent code. Adapted from [6] [70], the genera-
tor in our work is composed of two convolution layers for downsampling, 6 residual blocks,
and two convolution layers for upsampling. In the generator, we use instance normalization
which is not used in discriminator. In our work, we have two discriminators. One is the tar-
get face recognition network for classifying whether the image patches belong to the target
person or not called identity discriminator and another is PatchGAN discriminator [27] for
classifying whether the image patched are real or not called sample discriminator.

Training Details In the training process, the target person contains 7 different face images
for capturing the latent code. All the input images are resized and cropped to 112×112.
Because our goal is to generate images for fooling the face recognition network, all the
images should do the alignment similar to the operation in face verification. We update
generator once by LG after five sample discriminator updates and one generator update by
Lcos while the identity discriminator is fixed all the time in the white-box scenario. And
in the black-box scenario, the substitute model is updated by Lest in each iteration. All the
models are trained for 200,000 iterations and use Adam [31] with β1 = 0.5 and β2 = 0.999.
The batch size is set to 32 in all experiments. We set the learning rate to 0.0001 for the first
100,000 iterations and linearly decay the learning rate to 0 over the next 100,000 iterations.

4.4 Quantitative evaluation

In this section, we do some ablation experiments in the white-box scenario to optimize
A3GN . The effectiveness of geometric attention and channel-wise attention will be shown
by quantitative evaluation as follows. The target network used in this section is ArcFace.

Baseline We perform a quantitative analysis of the mAP, the difference of Similarity Score
and SSIM on our baseline. All the results are calculated on average among 5 target faces
to eliminate the occasionality. The performance of baseline is shown in Table 1. We design
two groups of experiments with different conditions to verify the effectiveness of A3GN .
One is to encode image A to attack the same image A. Another is to encode image A to
attack image A′, A and A′ belong to the same identity. Neither A and A′ is in target image
datasets for the latent code in the training process. In the experiment of baseline, we choose
one target person randomly to test the performance. The threshold of cosine distance for
fake accuracy is set to 0.45. The experiment in A → A can get higher accuracy than the
experiment in A → A′ because it can learn the feature representation of A in the encoder

Table 1 Performance of baseline
with two conditions. A and A′
are different samples, but belong
to the same identity

Fake Acc.(%) mAP(%) Similarity Score(�) SSIM(%)

A → A 97.52 53.74 0.506 3.47

A → A′ 93.82 51.72 0.490 3.57
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for attacking A. As shown in the Table 1, our baseline can fool the target model generally.
Most of them can be classified as the target person at a threshold of 0.45. SSIM is a metric
to evaluate the quality of generated images in some similar works. But we think it does not
an objective metric to evaluate the similarity between the generated images and the original
images for human eyes.

Attentional VAE In Section 3.4, we propose AVAE to obtain global geometric information
of the target face image, but there are many types of pairwise functions in non-local mod-
ule [62], such as Embedded Gaussian and Dot Product. In Table 2, we analyze the impact of
different pairwise functions on A3GN. Obviously, each metric gets improvement compared
with the baseline (without non-local module), which indicates that It is effective to capture
the facial dependencies for encoding the latent code. In addition, we can also see that the
AVAE module with Embedded Gaussian is better than that with Dot Product. However, no
similar results have been observed in [62]. We infer that this is because compared with
Dot Product, Embedded Gaussian pairwise function has the characteristics of self-attention
mechanism, which makes AVAE module pay more attention to important areas of face. This
improves the quality of generated face, especially the SSIM metric.

Attentional Generator The geometric attention in encoder can capture the global geo-
metric information effectively. We conjecture that introducing attentional blocks in the
generator may also get better performance. During the process of generating images, the
generator forces the fake images more similar to the original images which result in the
loss of feature representation of the target person due to Lrec. Thus, we consider introduc-
ing a channel-wise attentional block into the generator to focus on the information of the
latent code. As explained in [23], we can control the reduction ratio r of SE module to get a
geometric attentional block with different capacities, the performance at different reduction
ratios is shown in Table 3. Attentional generators with different reduction ratios have similar
performance and far exceed the baseline (without SE module). This indicates that channel
attention mechanism can retain more information features from potential code and suppress
useless information in channels. Channel attention mechanisms introduce additional param-
eters, which are inversely proportional to the reduction ratio. However, the experiment in
Table 3 shows that the performance of attentional generator is almost independent of the
parameters of SE module, which further proves that the effectiveness of our method comes
from the screening and enhancement of effective information of the latent code, not only
the increase of model capacity.

Dimensions of the Latent Code For the dimension of the latent code z, we also do an
experiment to find the best dimension for encoding the target image. Considering the com-
putation cost, we set the dimension of 3, 5, 7, and 10. Different dimensions of the latent code
mean different amounts of instance information of the target person. In our work, we need
to explore the most suitable dimension of the latent code to represent the target person best

Table 2 Ablation study on geometric attentional block with different pairwise functions when A → A

Pairwise Function Fake Acc.(%) mAP(%) Similarity Score(�) SSIM(%)

A → A Baseline 97.52 53.74 0.532 3.47

Embedded Gaussian 98.12 54.62 0.543 3.59

Dot Product 97.92 54.04 0.539 3.39
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Table 3 Ablation study on channel-wise attentional block with different reduction ratios when A → A

Ratio r MParams (�) Fake Acc.(%) mAP(%) Similarity Score(�) SSIM(%)

A → A Baseline 0.0 97.52 53.74 0.532 3.47

2 12.6 99.61 54.98 0.552 4.59

4 6.1 99.67 56.34 0.557 4.70

8 2.4 99.68 56.27 0.561 4.63

16 (ours) 0.8 99.66 56.27 0.558 4.61

for the input of our generator. From Table 4, we can see that the experiments with different
dimensions will get similar results with a little difference. So, we can draw a conclusion that
the fake accuracy and the Similarity Score can benefit from the latent codes with different
dimensions preliminarily in quantitative evaluation. These four dimensions can complete
our attack task. By synthesizing previous research work [71] and our experimental results,
the dimensions of the latent code in above experiments are all set to 7.

Following the three aforementioned ablation studies, we combine geometric attention
and channel-wise attention to improve the performance. The results are shown in Table 5.
And the curves of accuracies in A → A are shown in Fig. 5. As we can see, most of the
generated images can get more than 0.4 of cosine distance which far surpasses the result
between real images and the target image. A3GN can fool the face recognition network
successfully.

4.5 Qualitative evaluation

In addition to the quantitative evaluation, we exhibit the effectiveness of 4 different models
by showing the qualitative comparison results in Fig. 6. All the generated images in Fig. 6
can be classified as the target person in the threshold of 0.45 and they are similar to the
original images just with quasi-imperceptible perturbation. We observe that our model can
provide a higher visual quality of attack results on LFW even in baseline. However, the
generated images are similar to the target image in physical likeness slightly such as the nose
and eyes. We conjecture that it is because that the generator hammers at making the cosine
distance between generated images and target image higher. It shows that face recognition
network recognizes people by focusing on their noses and eyes more, and the contours of
their faces and mouths less.

About the dimension experiments, we also generate adversarial examples to estimate the
visual effects. In quantitative evaluation, we observe that the experiments with different
dimensions can get similar results. But in qualitative evaluation, we observe that there are

Table 4 Ablation study on AVAE with different dimensions of the latent code when A → A

Dim. Fake Acc.(%) mAP(%) Similarity Score(�) SSIM(%)

A → A 3 99.36 55.54 0.512 5.05

5 99.64 55.87 0.519 5.19

7 (ours) 99.59 56.28 0.533 5.19

10 99.71 56.29 0.543 5.13
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Table 5 Ablation study on A3GN . Baseline: Conditional GAN baseline

Attack Acc. on LFW(%) Similarity Score SSIM(%)

Real Acc. Fake Acc. mAP Before After R - F

A → A Baseline 0.0 97.52 53.74 0.026 0.532(0.506) 0.163 3.47

Geometric Att. 0.0 98.12 54.62 0.026 0.543(0.517) 0.161 3.59

Channel-wise Att. 0.0 99.66 56.27 0.026 0.558(0.532) 0.146 4.61

Both 0.0 99.59 56.28 0.026 0.559(0.533) 0.161 5.19

A → A′ Baseline 0.0 93.82 51.72 0.022 0.512(0.490) 0.163 3.57

Geometric Att. 0.0 95.08 52.53 0.022 0.523(0.500) 0.162 3.69

Channel-wise Att. 0.0 98.96 54.99 0.022 0.545(0.523) 0.146 4.48

Both 0.0 98.92 55.14 0.022 0.546(0.525) 0.160 5.16

Geometric Att.: Conditional GAN with geometric attentional block. Channel-wise Att.: Conditional GAN
with channel-wise attentional block. Both: Conditional GAN with geometric attentional and channel-wise
attentional blocks. The threshold of cosine distance is set to 0.45

some differences among the images generated from the different experiments. The inappar-
ent outline of the target person emerges on the images generated from the experiment with
low-dim shown in Fig. 7. But in the experiment with high-dim, the generated images are
clearer. So, we can draw a conclusion that though the experiments with different dimensions
can get similar results in quantitative evaluation their performances on the visual effects are
different. A3GN focuses on the geometric information more in low-dim experiment due to
the less information of the latent code sent into the generator. Meanwhile, it focuses on the
semantic information more in high-dim experiment. But considering the training speed, too

Fig. 5 Accuracy curve in different thresholds. The horizontal axis represents the different thresholds and
the vertical axis represents the accuracy in different thresholds. GA means geometric attention. CWA means
channel-wise attention

868 Multimedia Tools and Applications (2021) 80:8 –8755 5



Baseline

Geometric
attention

Channel-wise
attention

Both

Original
images

Fig. 6 Generated images by A3GN with 4 different models. The first row is the original images and the rest
is the generated images by A3GN with 4 different models. The target person is Target A in Fig. 8

high-dim is not suitable. So in the following experiments, we choose 7-dim as the dimension
of the latent code.

Furthermore, we choose 5 different target face images to exhibit the results of attacks in
Fig. 8. Most of the generated images are prone to the target face image slightly. It would
seem that most face recognition network focuses on recognizing people by their facial
feature and a slight change on the facial feature can fool the face recognition network to rec-
ognize as another person which is imperceptible for observers. Meanwhile, a mask learned
from the target person can also fool the network.

3-dim

5-dim

7-dim

10-dim

Fig. 7 Generated images by A3GN in the experiments with 3-dim, 5-dim, 7-dim and 10-dim of the latent
codes. The left is original image and the right is generated image. All the generated images can be classified
as target person by ArcFace in the threshold of 0.45. The target person is Target A in Fig. 8
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 Target A

Target B

Target C

Target D

Target E

Fig. 8 Generated images by A3GN for 5 target faces. The left is original image and the right is generated
image

4.6 White-box and black-box

In this section, we do some experiments to verify the performance of A3GN in the white-
box scenario and the black-box scenario with different target models.

White-box Attack In the white-box scenario, we choose 4 different state-of-the-art face
recognition networks to verify the feasibility of our model A3GN and the generated images
are evaluated on LFW, CFP-FP and AgeDB-30 datasets, respectively. The performance on
different target models in the white-box scenario is shown in Table 6. In the white-box
scenario, the parameters, architectures and the feature space of target models are obtained
in the training process. Thus, the generator can generate images directionally. The metrics
of evaluation in this section are mAP, the difference of Similarity Score, the Similarity
Score between real images and fake images and SSIM. And in Table 6, we also show the
accuracy of the target network on three datasets in face verification. mAP and the difference
of Similarity Score indicate the ability to fool the networks to recognize as the target person
and the Similarity Score between real images and fake images can indicate the ability to fool
the networks to be mistaken. All of them can prove that our model A3GN can be applied to
fool different state-of-the-art networks.

In the experiment on attacking ResNet with softmax, Center Loss and SphereFace and
evaluating on LFW dataset, mAPs are lower than that in the experiment on attacking Arc-
Face. But the attack on Center Loss and SphereFace are more effective in reducing the
Similarity Score between real images and fake images. And we conjecture that different
training data and different accuracy on LFW result in the different performances on gen-
erated images. For ResNet with softmax, Center Loss and SphereFace, the training data is
CASIA-WebFace. But for ArcFace, the training data is MS-Celeb-1M. Different training
data bring about different feature representations.

To evaluate the effectiveness of generated adversarial samples in pose and age varia-
tions, we also test the results of white-box attacks on CFP-FP and AgeDB-30 datasets. For
CFP-FP, we can see that the Similarity Score of the generated images has been signifi-
cantly improved, which shows that A3GN can effectively attack CFP-FP dataset. However,
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Table 6 A3GN performance on different target models and evaluation datasets in the white-box scenario

Target Model Verification Acc.(%) mAP(%) Similarity Score SSIM(%)

� R - F

LFW Softmax 97.02 45.32 0.421 0.232 5.52

Center Loss [63] 99.28 51.03 0.491 0.107 6.08

SphereFace [60] 99.20 49.04 0.478 0.090 6.44

ArcFace [9] 99.53 56.28 0.533 0.161 5.19

CFP-FP Softmax 92.17 40.28 0.390 0.301 8.03

SphereFace [60] 94.38 43.74 0.449 0.195 8.71

ArcFace [9] 95.56 50.11 0.501 0.226 6.75

AgeDB-30 Softmax 90.85 39.72 0.400 0.250 6.37

SphereFace [60] 91.70 42.37 0.481 0.089 6.11

ArcFace [9] 95.15 50.09 0.509 0.186 5.69

according to the SSIM metric, we can observe that the generated images are quite different
from the original images in the image space, which implies that the diversity of face angles
poses a greater challenge to reconstructing face samples. For AgeDB-30, A3GN can still
effectively deceive it, and the effect of attack is better than CFP-FP, slightly less than LFW.
Although the accuracy of ResNet with softmax, Center Loss and SphereFace in face verifi-
cation on AgeDB-30 is lower than that of LFW and CFP-FP , the attack effect is not affected
much, which indicates that A3GN has better generalization ability for age variation. Espe-
cially, the SSIM metric is obviously improved compared with CFP-FP, which shows that
the generated adversarial samples are closer to the original image in image space.

Black-box Attack In this section, we explore whether fooling one face recognition network
leads to successful fooling other networks. In the black-box scenario, the parameters, archi-
tectures and the feature space of target models are not obtained in the training process. The
identity discriminator in the black-box scenario is only ArcFace [9] in Table 7. And we
have no access of target networks, ResNet [20] with softmax, SphereFace [35] and Mobile-
FaceNet [5] in the training process. In the inference time, we just obtain the feature map
of images from the last layers to test the performance. The performance on different target
networks in the black-box scenario is shown in Table 7. Obviously, each result in Table 7
is lower than that in Table 6. But we also observe that the generated images can disturb the
target networks slightly.

Table 7 A3GN performance on different target models in the black-box scenario. All the metrics are
evaluated on LFW dataset

Target Model Verification Acc.(%) mAP(%) Similarity Score

� R - F

Softmax 97.02 17.70 0.082 0.581

SphereFace [60] 99.20 12.32 0.110 0.593

MobileFaceNet [5] 99.18 9.07 0.297 0.407
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Table 8 A3GN performance on different target models in the black-box scenario with feature estimation

Target Model Verification Acc.(%) mAP(%) Similarity Score

� R - F

Softmax 97.02 29.05 0.517 0.277

SphereFace [60] 99.20 28.86 0.523 0.265

MobileFaceNet [5] 99.18 27.96 0.477 0.278

To improve the performance of the black-box attack, we introduce a substitute model to
imitate the feature representation of the target models which is named feature estimation
in our work. Certainly, we do an experiment to verify the effectiveness of feature estima-
tion in the black-box scenario. Table 8 shows the performance of feature estimation. In this
experiment, we adopt a pre-trained ResNet50 with softmax loss as the substitute model and
ArcFace, SphereFace, and MobileFaceNet as the target models. We only get the outputs of
the target models for feature estimation in the black-box scenario without the parameters
and the gradients. Results in Table 8 are obtained by training one substitute model which
means that A3GN can attack several black-box models once. As we can see, compared to
Table 7, the fake accuracy and the Similarity Score are improved a lot after feature estima-
tion operation which can verify the effectiveness of feature estimation. Though it can not
exceed the performance of the white-box attack, it can attack the target models roughly. The
generated images with better visual effects and better attack effects are shown in Fig. 9. Due
to the attack on multiple models, the generated images have a more serious outline of target
person and some masks. To eliminate the outline for the generated images will be our future
work.

Comparison with PreviousWorks We compare our A3GN with previous attack models in
face recognition on CASIA-WebFace dataset. Because they focus on fool the classifier to
a false label, we compare our performance on this way in Table 9. If the cosine distance
between the original image and the generated image is lower than 0.45, it is seen as a success
for an attack. As we can see, the success rate of fool the face recognition network to a false
label for A3GN is 99.94%. It almost fools the network totally. Though it is 0.02% lower
than GFLM, A3GN can force the target model to recognize as the target person well.

Fig. 9 Generated images by A3GN in the experiment in the black-box scenario with feature estimation.
The left is original image and the right is generated image. All of them can attack 3 target models with the
threshold of 0.45. The substitute model is ResNet50 and the target person is Target A in Fig. 8

872 Multimedia Tools and Applications (2021) 80:8 –8755 5



Table 9 Comparison with other
attack models in face recognition.
‘SR’ means the success rate of
fooling the network to a false
label. ‘Attack acc. on CASIA’
means the accuracy of fooling
the network to a target label

SR(%) Attack Acc. on CASIA(%)

stAdv [65] 99.18 –

GFLM [8] 99.96 –

A3GN (ours) 99.98 98.23

5 Conclusion

Face recognition is a compelling task in deep learning. It is necessary to learn how face
recognition networks are subject to attacks. In this paper, we focus on a novel way of attack-
ing target models by fooling them to a specific label. For this purpose, we present A3GN

to generate adversarial examples similar to the original images but which can be classified
as the target person. To learn the feature representation of target images, we introduce geo-
metric attention and channel-wise attention into A3GN to get good performance. Finally,
we show the results of experiments on different target faces, white-box attack, and black-
box attack. However, our model is limited to attacking one target person. It will be a future
work that one model can attack different target faces.

In addition, we believe that the value of A3GN is not limited to attack face recognition.
Arbitrary manipulating the image space and feature space distributions of generated images
has great research value. It can be used to study the interpretability of convolutional neural
networks, universal representations and domain adaptation, etc. We have reason to believe
that more work will pay attention to this issue in the future.
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