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Abstract
In many real-world classification problems there exist multiple subclasses (or clusters)
within a class; in other words, the underlying data distribution is within-class multimodal.
One example is face recognition where a face (i.e. a class) may be presented in frontal view
or side view, corresponding to different modalities. This issue has been largely ignored in
the literature or at least under studied. How to address the within-class multimodality issue
is still an unsolved problem. In this paper, we present an extensive study of within-class
multimodality classification. This study is guided by a number of research questions, and
conducted through experimentation on artificial data and real data. In addition, we estab-
lish a case for within-class multimodal classification that is characterised by the concurrent
maximisation of between-class separation, between-subclass separation and within-class
compactness. Extensive experimental results show that within-class multimodal classifica-
tion consistently leads to significant performance gains when within-class multimodality
is present in data. Furthermore, it has been found that within-class multimodal classifica-
tion offers a competitive solution to face recognition under different lighting and face pose
conditions. It is our opinion that the case for within-class multimodal classification is estab-
lished, therefore there is a milestone to be achieved in some machine learning algorithms
(e.g. Gaussian mixture model) when within-class multimodal classification, or part of it, is
pursued.

Keywords Within-class multimodality · Linear discriminant analysis ·
Subclass discriminant analysis · Separability-oriented subclass discriminant analysis

1 Introduction

Understanding the underlying data distribution before applying a machine learning process
is an important step in the analysis of data, as otherwise, wrong choices may be made in the
different stages of the machine learning process. Every single algorithm used in machine
learning has, either explicitly or implicitly, some assumptions about the data for it to work
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effectively. For linear regression, the typical assumptions include linearity (there is linear
relationship between the independent and dependent variables), exogeneity (the errors
between observed and predicted values should have conditional mean zero), multicollinear-
ity (the independent variables must all be linearly independent), homoscedasticity (the
errors have the same variance in each observation) and normality (the errors have normal
distribution) [7, 23]. For random forests [2], one assumption is that changes in the depen-
dent variable are best described by hyper-rectangles in the independent variables (because
they are based on trees). Another assumption is that no future value of the dependent vari-
able will be outside of the range of values already in the training data. If the distribution
of data can be described as the canonical statistical distributions it is possible to gain much
inferential and predictive power [15]. The key to any successful use of data in an analy-
sis or in making a decision is applying the correct machine learning/statistical modelling
technique to the data at hand.

In this paper we consider a particular type of data distribution where there are multiple
modalities (concentrations/clusters of data) within each class, within-class multimodality,
and study how to choose the right feature extraction methods to model such data more effec-
tively. Fig. 1(a) illustrates within-class multimodality at a conceptual level, where there are
two and three modalities respectively in Class One and Class Two. Within-class multimodal-
ity is prevalent in the real world. For example, we can recognise people under different
illuminations, and also in different poses. If we represent face images of the same person
under different illuminations, it is likely that different images with different illuminations
will be in different clusters (see Fig. 1(b) for an illustration). Actually, face recognition
under varying illuminations is a challenging problem[25, 31]. The same can be said of face
recognition in different head poses (see Fig. 1(c) for an illustration). Another potential appli-
cation is energy disaggregation of appliances by non-intrusive load monitoring (NILM) [8,
11, 12, 19], namely disaggregating the total consumption readings into the consumption
patterns of each individual appliance, where the total consumption reading of a house rep-
resents a class and the appliances in a house are the modalities within this class. Therefore,
dividing a class into multiple modalities is similar to disaggregating the total consumption
of all appliance into the consumption of each appliance.

Fig. 1 (a) There are two modalities in Class One, and three modalities in Class Two, where different modal-
ities are marked by different colours. (b) Each person has three different illumination modalities: two face
images in the green dotted circle are taken under normal lighting; one face image in the cyan dotted circle
is taken under normal lighting and right light on; one face image in the orange dotted circle is taken under
normal lighting and left light on. (c) Each person has two different head pose modalities: two face images in
the green dotted circle are taken with frontal head pose, and one face image in the cyan dotted circle is taken
with rightwards head pose
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Within-class multimodality has been largely ignored in the literature, or at least under
studied. The closest studies are linear discriminant analysis (LDA) [5, 22], subclass
discriminant analysis (SDA) [32], Mixture subclass discriminant analysis (MSDA) [6], and
separability-oriented subclass discriminant analysis (SSDA) [26]. Unlike LDA which sep-
arates different classes under the assumption that each class is unimodal, SDA, MSDA and
SSDA recognize that a class may be multimodal and seek to find LDA dimensions based
on multimodality descriptors through the notion of subclass. SDA, MSDA and SSDA have
better classification performance than LDA, which indicates the importance of within-class
multimodality for classification. LDA is a classical approach to discriminant dimension-
ality reduction. It transforms data from the original data space into a lower dimensional
space (LDA space) so that the within-class compactness is maximised whilst the between-
class separation is maximised. This is achieved through maximising the well-known Fisher
objective, which is composed by the within-class scatter matrix and between-class scatter
matrix [5, 22]. In the presence of within-class multimodality, LDA reduces dimensional-
ity by merging multiple modalities in each class into a single modality. SDA extends LDA
in order to separate classes at a subclass level rather than at a class level. It transforms
data into a lower dimensional LDA space so that the between-subclass separation is max-
imised, and within-class compactness is maximised. The SDA subclasses are discovered
using the leave-one-out-test (LOOT) criterion proposed in [32] or the stability criterion
[18]. MSDA extends SDA by replacing SDA’s within-class scatter matrix with a new within-
subclass scatter matrix. SSDA further extends SDA to minimise the level of overlap between
subclasses within every class; thus the between-class separation is maximised, between-
subclass separation is maximised and within-class compactness is maximised. The SSDA
subclasses are discovered by the agglomerative hierarchical clustering algorithm using a
new criterion called the separability criterion [26], which aims to divide each class into
several non-overlapping clusters.

A lot is known about within-class unimodality classification,1 whose aim is to build
a model assuming there is one modality per class. It is well-known that simultaneously
minimising intra-class variance and maximising inter-class variance will increase learning
performance [4, 28, 29]. However, not enough is known about within-class multimodal-
ity classification, when data distribution is within-class multimodal. Existing studies (e.g.
SDA and SSDA) only scratch the surface in multimodality, and many questions remain
unanswered. In this paper, we present an extensive study of within-class multimodality
classification as guided by the following five key questions about within-class multimodal-
ity that are important for the understanding of multimodality, the design of new learning
algorithms and the improvement of existing learning algorithms.

– Question 1: Why do we consider multimodality?
– Question 2: How many clusters should we use?
– Question 3: How should we utilise the clusters?
– Question 4: Do we have real benefits?
– Question 5: If we keep increasing modalities, what will happen?

1Unimodality is when data distribution has one centre of concentration, whereas multimodality is when data
distribution has multiple centres of concentration.
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The study of these questions is important for a number of reasons. Firstly, it will reveal a
relationship between the modality of the data distribution and the comparative performance
of the classification, so it is possible to gain an insight into the data through the comparative
model performance using different data dimensionality reduction techniques. Secondly, it
will establish the fact that different dimensionality reduction techniques are suitable for
different data distributions. Thirdly, it will provide a direction for improving other machine
learning algorithms such as neural networks by designing new loss functions.

We create artificial data sets having a range of modalities and conduct extensive experi-
ments in order to answer Questions 1-3 (and possibly Question 5). We also select real world
data sets that clearly have multiple modalities and conduct extensive experiments to answer
Question 4. The contributions of this paper are highlighted as follows:

– We answered the abovementioned five key questions.
– We obtained the following useful findings: 1) when within-class multimodality is

present, the concurrent maximisation of between-class separation, within-class com-
pactness and between-subclass separation can lead to significant performance gains; 2)
within-class multimodal classification offers a competitive solution to face recognition
under different lighting and face pose conditions, where each lighting/pose condition
corresponds to a separate modality in the data space; 3) There is correlation between
multimodality and performance gain in within-class multimodality classification. Opti-
mal performance can be expected if the number of modalities in the within-class
multimodality classification algorithm is the same as the true number of within-class
modalities

The rest of the paper is organised as follows. Section 2 presents relevant work including
linear discriminant analysis (LDA), subclass discriminant analysis (SDA) and separability-
oriented subclass discriminant analysis (SSDA). Section 3 focuses on artificial data sets and
their rationale. Section 4 attempts to answer various questions about multimodality using
artificial data sets, and Section 5 attempts to answer other questions using real data sets.
Section 6 concludes the paper with a summary.

In the rest of the paper we use cluster, subclass and modality in different contexts but
these terms are interchangeable in this paper.

2 Related work

In this section, we present an overview of related work, including the LDA, SDA and SSDA
to provide the context for this work and introduce the necessary technical notations.

2.1 Linear discriminant analysis

Linear discriminant analysis (LDA) is a classical method for discriminant analysis. It has
been widely used in many areas, such as pattern recognition [13, 14] and machine learn-
ing [10, 27]. LDA seeks to find a linear combination of features that separates two or
more classes of objects. The resulting combination may be used as a linear classifier, or
more commonly, for dimensionality reduction before later classification [30]. LDA uses a
between-class scatter matrix Sb to measure the separability of classes, and uses a within-
class scatter matrix Sw to measure the compactness of each class. Then LDA attempts to
find a linear projective matrix W that projects data into a new space, LDA space, that is
spanned by LDA features (or LDA dimensions), such that a measure of the between-class
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scatter matrix Sb in the new space is maximised and simultaneously the same measure of
the within-class scatter matrix Sw in the new space is minimised. Sb and Sw are defined,
respectively, as follows:

Sb = 1

N

C∑

i=1

Ni(μi − μ)(μi − μ)T , (1)

Sw = 1

N

C∑

i=1

Ni∑

j=1

(xij − μi)(xij − μi)
T , (2)

where N is the number of samples, Ni is the number of samples in class i, C is the number
of classes, μi is the mean of class i, μ is global mean of all samples, and xij denotes the j th

sample in class i.
LDA is an optimisation process, with the following Fisher objective:

JLDA(W) = tr(WT SbW)

tr(WT SwW)
, (3)

where W is a projective matrix that projects data from the data space to the LDA space. In
order to find an LDA space that can separate different classes well, LDA needs to find the
matrix W∗ = arg max

W
JLDA(W). It turns out that the sought-after projective matrix W ∗ is

composed of the eigenvectors corresponding to the largest eigenvalues of S−1
w Sb [26], under

the assumption that every class is Gaussian distributed and has the same covariance.

2.2 Subclass discriminant analysis

Subclass discriminant analysis (SDA) [32] is a variant of LDA that separates classes at a
subclass level rather than at a class level, based on the observation that the data distribution
in a class may be multimodal (i.e., forming clusters). This is achieved by dividing each class
into a set of subclasses and then running an LDA-like optimisation process to maximise
between-subclass separation and within-class compactness.

The between-class scatter matrix Sb of LDA is replaced by the between-subclass scatter
matrix, which is defined below (4):

SSDA
b =

C−1∑

i=1

Ki∑

j=1

C∑

l=i+1

Kl∑

n=1

pijpln(μij − μln)(μij − μln)
T , (4)

where C denotes the number of classes, Ki (Kl)denotes the number of subclasses in class i

(l), μij (μln) denotes the mean of the j th (nth) subclass in class i (l), pij = Nij

N
(pln = Nln

N
)

denotes the prior of the j th (nth) subclass of class i (l), and Nij (Nln) is the number of
samples in j th (nth) subclass of class i (l).

The within-class scatter matrix of SDA is re-defined as the sample covariance matrix as
below (5):

SSDA
w = 1

N

N∑

j=1

(xj − μ)(xj − μ)T , (5)

where N , xj , and μ are the number of instances, the j th instance and the mean of all
instances, respectively.
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The Fisher objective is re-defined as follows (6):

J SDA(W) = tr(WT SSDA
b W)

tr(WT SSDA
w W)

. (6)

In order to divide each class into the same number of subclasses, a leave-one-out-test
(LOOT) criterion [32] or a faster stability criterion [18] is used together with a nearest
neighbour based clustering algorithm [32]. Firstly, the clustering algorithm is used to sort
the samples of each class so that samples with smaller Euclidean distance stay closer. To
achieve this, two samples A and B are found in each class that have the largest Euclidean
distance between each other, and are taken as the 1st and nth samples in the sorted data.
After that, the samples ranked from 1st to (n/2)th are near A, and the samples ranked from
(n/2 + 1)th to nth are near B. Then, based on the number of subclasses set by the user, the
sorted samples are divided into the specified number of subclasses for each class. Finally,
the LOOT criterion or stability criterion is used to find the optimal number of subclass for
each class.

2.3 Separability-oriented subclass discriminant analysis

Separability-oriented subclass discriminant analysis (SSDA) [26] is an extension of SDA,
which also separates classes at subclass level. It aims to (1) maximise the between-subclass
separation within every class; (2) maximise the within-class compactness; and (3) maximise
the overall between-class separation. This is achieved through an LDA-like optimisation
process operating at subclass level and with a different Fisher objective.

The way to find optimal subclasses for each class is very different from SDA. SSDA aims
to find subclasses with no or little overlap through agglomerative hierarchical clustering
guided by a separability criterion [26]. The resulting clustering is one that maximises the
average euclidean distance (AED) between the mean of a class and the means of subclasses
in the class.

Three versions of SSDA exist [26], each having different combination of between-class
scatter matrix and within-class scatter matrix. One version is reviewed here. The between-
class scatter matrix in SSDA, SSSDA

b , is defined in terms of the subclasses:

SSSDA
b =

C∑

i=1

Ni

N

Ki∑

j=1

(μij − μ)(μij − μ)T , (7)

where N is the number of samples in the data set, Ni is the number of samples in class i

(i = 1, 2, . . . , C, C is the number of class) such that
∑C

i=1 Ni = N , Ki is the number of
subclasses in class i, μ is the mean of the whole data set and μij is the mean of subclass j

of class i.
The within-class scatter matrix is the standard LDA within-class matrix, SSSDA

w = Sw .
Therefore, the Fisher objective of SSDA J SSDA(W) is below, replacing Sb by SSSDA

b . More-
over, we summarise the idea of SSDA in the Algorithm 1 and show the main steps of SSDA
algorithm using a flowchart, see Fig. 2. Here, the notations used in the flowchart have same
meaning as those used in the Algorithm 1.

J SSDA(W) = tr(WT SSSDA
b W)

tr(WT SSSDA
w W)

= tr(WT SSSDA
b W)

tr(WT SwW)
. (8)
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Fig. 2 The flowchart of SSDA algorithm

Multimedia Tools and Applications (2020) 79: –2935229327 29333



3 Artificial data

In order to answer the research questions mentioned above, we generate four types of
artificial data.

– Type 1, consists of two different classes and samples in each class are from a single
multivariate normal distribution. This type is denoted by C2M1.

– Type 2, consists of two different classes and every class has two subclasses of samples
generated from two multivariate normal distributions. This type is denoted by C2M2.

– Type 3, consists of two different classes and every class has three subclasses of samples
generated from three multivariate normal distributions. This type is denoted by C2M3.

– Type 4, consists of three different classes, and every class has three subclasses of sam-
ples generated from three multivariate normal distributions. This type is denoted by C3M3.

The number of variables is one parameter in a multivariate normal distribution, which is
set to 30 for all types of artificial data in our studies. Two other important parameters are: the
mean μ and covariance σ , which are needed to generate artificial data from a multivariate
normal distribution. In our studies, the mean μ is a 1-by-30 vector and the values of the
mean vector are integers chosen randomly from the range [1, 10]. Covariance σ is a 30-by-
30 diagonal matrix. There are two covariance matrixes for C2M1, one for each class. The
values of one covariance matrices for C2M1 are integers chosen randomly from the range
[10, 21], and the values of the other covariance matrix are integers chosen randomly from
the range [20, 41].

There are four covariance matrices for C2M2, one for each subclasses and two for each
class (there are two subclasses in each class). For class one, the values of the covariance
matrices for the two subclasses are integers chosen randomly from the range [10, 21], and
the values of the covariance matrices for the two subclasses of class two are integers chosen
randomly from the range [20, 41].

There are six covariance matrices for C2M3, one for each subclass and three for each
class. For class one, the values of the covariance matrices for the three subclasses are inte-
gers chosen from the ranges [10, 21] randomly. For class two, the values of the covariance
matrices for the three subclasses are integers chosen randomly from the range [20, 41].

There are nine covariance matrices for C3M3, one for each subclass and three for each
class. For class one, the values of the covariance matrices for the three subclasses are inte-
gers chosen from the ranges [1, 10] randomly. For class two and class three, the values of the
covariance matrices for the three subclasses are integers chosen randomly from the ranges
[10, 21] and [20, 41], respectively.

In total 10 data sets are generated for each type, and every class of every artificial data set
(any type) has 1000 samples. Therefore C2M1, C2M2 and C2M3 each has a total of 2000
samples with 1000 per class. For C2M2 and C2M3, the samples in each class are randomly
placed into two and three subclasses respectively according to a probability distribution
which varies from data set 1 to 10. C3M3 has a total of 3000 samples with 1000 per class. The
samples in each class are randomly placed into three subclasses in the same way as for C2M2
and C2M3. The actual number of samples per subclass are shown in Tables 2, 3 and 4.

4 Multimodality in artificial data

Multiple modalities exist in data. In order to have full insights about the issue of within-
class multimodality, various questions can be asked and answered. In the Introduction, some
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questions are posed explicitly, and the rest of this paper is to seek answers to these questions.
Some questions will be answered using artificial data in this section. Other questions will
be answered using real-world data in the next section.

4.1 Q1: Is it necessary to address within-class multimodality?

To answer this question we consider and compare experimentally three approaches in the
presence of within-class multimodality:

– separating within-class modalities for every class through the extraction of features by
dimensionality reduction methods such as SDA and SSDA;

– merging within-class modalities as a uni-modality for every class in the process of
feature extraction using a dimensionality reduction method such as LDA; and

– doing nothing about within-class multimodality and using the original data for classifi-
cation.

In order to evaluate these three approaches, we conduct experiments using k-nearest
neighbour (kNN, k=1) as the classifier on all of the artificial data sets. We consider four
cases: (1) Original: the original artificial data sets without any processing for dimensionality
reduction (2) LDA processed (3) SDA processed (4) SSDA processed. In addition, we use
one half of each data set for training and the other half for testing.

Tables 1, 2, 3 and 4 show the experimental results in the four cases on all of the artificial
data sets. From these results, we can observe the following:

– It is apparent that SSDA outperforms Original and LDA on all artificial data sets. In
particular, SSDA improves classification accuracy over Original by at least 9% on all
of the C2M1, C2M2 and C2M3 data sets, and by at least 14% on the C3M3 data sets.

– LDA, SDA and SSDA outperform Original consistently, so dimensionality reduction in
the style of LDA can indeed improve classification performance significantly. Whilst
this is not new, it indicates that doing nothing about multimodality is suboptimal.

– When there is only one modality per class: it is clear from Table 1 that the differences
between LDA, SDA and SSDA do not appear to be significant. This suggests that when

Table 1 Classification accuracy with kNN (k=1) of Original, LDA, SDA and SSDA on ten C2M1 data sets

Data sets

Methods Original LDA SDA SSDA

C2M1-1 0.8700 0.9700 0.9750 0.9700

C2M1-2 0.8590 0.9540 0.9640 0.9540

C2M1-3 0.8430 0.9500 0.9580 0.9660

C2M1-4 0.8180 0.9490 0.9610 0.9540

C2M1-5 0.8540 0.9540 0.9540 0.9540

C2M1-6 0.8730 0.9620 0.9650 0.9660

C2M1-7 0.8730 0.9670 0.9750 0.9690

C2M1-8 0.8630 0.9660 0.9660 0.9700

C2M1-9 0.8170 0.9320 0.9380 0.9320

C2M1-10 0.8590 0.9620 0.9620 0.9620
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Table 2 Classification accuracy with kNN (k=1) of Original, LDA, SDA and SSDA on ten C2M2 data sets,
along with the ratio between the numbers of samples from different subclasses in each class

Data sets

Methods & ratio Original LDA SDA SSDA ratio

Class One Class Two

0919.00938.00587.01-2M2C 0.9370 684:316 701:299

0149.00709.00348.02-2M2C 0.9600 676:324 693:307

0969.00059.00368.03-2M2C 0.9750 521:479 508:492

0349.00098.00797.04-2M2C 0.9610 479:521 499:501

0778.00778.00818.05-2M2C 0.9300 491:509 497:503

0349.00229.00358.06-2M2C 0.9520 486:514 512:488

0659.00919.00468.07-2M2C 0.9590 289:711 305:695

0529.00209.00008.08-2M2C 0.9300 274:726 294:706

0809.00688.00067.09-2M2C 0.9100 186:814 208:792

0729.00329.00328.001-2M2C 0.9450 793:207 796:204

there is only one modality per class, doing dimensionality reduction using SDA or
SSDA makes little difference from using LDA.

– As for LDA and its variants, we can rank order them in terms of their performance:
LDA≤SDA≤SSDA on the artificial data sets with within-class multimodality, namely
C2M2, C2M3 and C3M3. This suggests that dealing with within-class multimodality
the SSDA way is better.

– When there are multiple modalities per class: from Tables 2, 3 and 4, it is clear that
doing dimensionality reduction at the subclass level as in SDA or SSDA is better than at
the class level as in LDA. Furthermore, SSDA clearly outperforms SDA in these exper-
iments. This suggests that separating subclasses (in other words, reducing the overlap
of different subclasses) within every class and at the same time separating all classes is

Table 3 Classification accuracy with kNN (k=1) of Original, LDA, SDA and SSDA on ten C2M3 data sets,
along with the ratio between the numbers of samples from different subclasses in each class

Data sets

Methods & ratio Original LDA SDA SSDA ratio

Class One Class Two

0478.00738.00277.01-3M2C 0.9250 208:531:261 189:535:276

0188.00578.00838.02-3M2C 0.9490 359:187:454 362:216:422

0498.00997.00547.03-3M2C 0.9220 358:360:282 327:380:293

0819.00398.00908.04-3M2C 0.9490 141:354:505 130:398:472

0349.00868.00387.05-3M2C 0.9490 11:347:642 7:351:642

0048.00048.00587.06-3M2C 0.9190 8:347:645 2:343:655

0748.00748.00697.07-3M2C 0.9290 188:652:160 194:612:194

0248.00248.00387.08-3M2C 0.9330 437:394:169 438:403:159

0938.00938.00487.09-3M2C 0.9200 431:142:427 413:150:437

C2M3-10 0.7710 0.8460 0.8460 0.9060 426:161:413 452:147:401
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Table 4 Classification accuracy with kNN (k=1) of Original, LDA, SDA and SSDA on ten C3M3 data sets,
along with the ratio between the numbers of samples from different subclasses in each class

Data sets

Methods & ratio Original LDA SDA SSDA ratio

Class One Class Two Class Three

C3M3-1 0.7593 0.8480 0.8947 0.9433 659:127:214 654:155:191 666:131:203

C3M3-2 0.7740 0.8287 0.9053 0.9413 559:114:327 569:115:316 562:107:331

C3M3-3 0.7773 0.8587 0.9080 0.9400 776:147:77 785:152:63 736:174:90

C3M3-4 0.7120 0.7267 0.7267 0.9220 313:278:409 326:237:437 321:246:433

C3M3-5 0.7767 0.8067 0.8067 0.9393 330:262:408 265:287:448 317:284:399

C3M3-6 0.7273 0.7647 0.8800 0.9253 425:243:332 449:242:309 400:260:340

C3M3-7 0.7847 0.8180 0.8920 0.9280 168:435:397 195:425:380 176:441:383

C3M3-8 0.7720 0.8560 0.8560 0.9413 165:405:430 183:412:405 163:450:387

C3M3-9 0.7840 0.8680 0.8893 0.9433 36:613:351 46:622:332 47:601:352

C3M3-10 0.7987 0.8787 0.8787 0.9520 16:500:484 23:462:515 20:487:493

a better approach than simply pulling subclasses in a class from the subclasses of other
classes.

– When the number of modalities per class increases: according to Tables 1, 2 and 3, in
general the classification accuracy drops in all methods, suggesting that the complexity
of the problem increases. This can be seen more clearly in Fig. 3. Interestingly, the
margin of performance drop is the smallest with SSDA, suggesting that SSDA is more
robust than Original, LDA and SDA when the number of modalities per class changes.

From these observations we can draw the conclusion that it is indeed necessary to deal with
the issue of within-class multimodality. Furthermore, this conclusion will be confirmed by
using the real data sets in Section 5.

4.2 Q2: Howmany within-class modalities should we use?

There is a clear difference between SDA and SSDA in terms of classification accuracy as
shown in Tables 1, 2, 3 and 4. SDA and SSDA are both trying to separate classes at subclass
level but they are different in two ways: (1) how to find the within-class multimodalities;
(2) once found, how to make use of these modalities. We examine the first issue in this
subsection and discuss the second issue in Subsection 4.3.

SDA uses a stability criterion to find class modalities, whereas SSDA uses a separability
criterion. Tables 5, 6, 7 and 8 show the numbers of class modalities found by SDA and

Fig. 3 The classification performance of Original, LDA, SDA and SSDA on ten C2M1 data sets, ten C2M2
data sets and ten C2M3 data sets: In the line charts, the horizontal axis shows the ten data sets from C2M1,
C2M2 and C2M3, and the vertical axis shows the classification accuracy
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Table 5 The number of subclasses found by SDA and SSDA for each class in the C2M1 data sets

Data sets

Methods SDA SSDA

Class One Class Two Class One Class Two

C2M1-1 3 3 1 1

C2M1-2 3 3 1 1

C2M1-3 3 3 2 2

C2M1-4 4 4 2 2

C2M1-5 1 1 1 1

C2M1-6 3 3 2 2

C2M1-7 2 2 4 4

C2M1-8 1 1 2 2

C2M1-9 2 2 1 1

C2M1-10 1 1 1 1

SSDA for the 10 data sets, of type C2M1, C2M2, C2M3 and C3M3, respectively. It is clear
that the numbers are quite different for SDA and SSDA. The numbers found by SSDA in
general are quite close to the true numbers of within-class modalities, and identical in most
of the data sets. Apart from in a few cases, the numbers found by SDA are quite different to
the true numbers.

Furthermore, SSDA can even find true within-class modalities for classes with imbal-
anced proportions of data between subclasses. For instance, SSDA separates each of Class
One, Class Two and Class Three of C3M3-10 into three modalities, when their subclass
ratios are 16 : 500 : 484, 23 : 462 : 515 and 20 : 487 : 493 respectively.

All of these observations suggest that (1) the steadily good classification performance
is guaranteed by the correct the number of modalities found; and (2) SSDA can find the
number of within-class modalities more correctly than SDA, which will be verified on the
two face databases in Section 5.2.

Table 6 The number of subclasses found by SDA and SSDA for each class in the C2M2 data sets

Data sets

Methods SDA SSDA

Class One Class Two Class One Class Two

C2M2-1 5 5 4 2

C2M2-2 6 6 2 2

C2M2-3 4 4 2 2

C2M2-4 6 6 2 2

C2M2-5 1 1 3 3

C2M2-6 4 4 2 2

C2M2-7 4 4 3 2

C2M2-8 6 6 2 2

C2M2-9 3 3 2 2

C2M2-10 2 2 4 2
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Table 7 The number of subclasses found by SDA and SSDA for each class in the C2M3 data sets

Data sets

Methods SDA SSDA

Class One Class Two Class One Class Two

C2M3-1 8 8 3 3

C2M3-2 10 10 3 3

C2M3-3 3 3 3 3

C2M3-4 6 6 2 3

C2M3-5 3 3 3 3

C2M3-6 15 15 3 3

C2M3-7 1 1 3 3

C2M3-8 1 1 3 3

C2M3-9 1 1 3 3

C2M3-10 1 1 4 4

4.3 Q3: How should we utilise themodalities?

After the multiple within-class modalities are found, we need to utilise them in order to
reduce dimensionality for the purpose of effective classification. SDA and SSDA provide
different solutions, all based on the LDA optimisation process but with different Fisher
objectives. To compare these two solutions, we apply the SDA and SSDA optimisation
processes on the artificial data sets consist of within-class modalities (i.e., C2M2, C2M3
and C3M3). In addition, the true number of within-class modalities (True-MN) is used in
the both SDA and SSDA. The experimental results are presented in Tables 9, 10 and 11.

From Tables 9, 10 and 11, it is clear that the performance of SSDA with True-MN is con-
sistently higher than SDA with True-MN. Therefore, it suggests that the SSDA optimisation
process can better utilise the modalities than the SDA optimisation process. Furthermore, it

Table 8 The number of subclasses found by SDA and SSDA for each class in the C3M3 data sets

Data sets

Methods SDA SSDA

Class One Class Two Class Three Class One Class Two Class Three

C3M3-1 4 4 4 3 3 3

C3M3-2 5 5 5 3 3 3

C3M3-3 3 3 3 3 3 3

C3M3-4 1 1 1 3 4 3

C3M3-5 1 1 1 3 3 3

C3M3-6 2 2 2 3 3 3

C3M3-7 5 5 5 3 3 3

C3M3-8 1 1 1 3 3 3

C3M3-9 6 6 6 3 3 3

C3M3-10 1 1 1 3 3 3
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Table 9 The classification accuracy with kNN (k=1) of SDA and SSDA using the true number of within-class
modalities on the C2M2 data sets

Data sets

Methods
NM-eurThtiwADSSNM-eurThtiwADS

0809.01-2M2C 0.9260

0539.02-2M2C 0.9600

0769.03-2M2C 0.9750

0649.04-2M2C 0.9610

C2M2-5 0329.00329.0

0849.06-2M2C 0.9520

0839.07-2M2C 0.9570

C2M2-8 0039.00039.0

0798.09-2M2C 0.9100

0729.001-2M2C 0.9380

shows that maximising inter-subclass and inter-class separation at the same time is a worth-
while goal of LDA-like dimensionality reduction when the true modalities are found in
data.

5 Multimodality in real data

Separating within-class multimodalities results in good performance on artificial data, when
the modality of the data is known. For real-world data, the modality of the data is unknown
even if we believe that there should be multimodality, e.g., as in the problem of face
recognition discussed in Section 1. Can we obtain real benefits by addressing within-class
multimodality in real-world data in the same way as for artificial data? This is the question
we want to answer in this section. We consider two types of data. One is general data from

Table 10 The classification accuracy with kNN (k=1) of SDA and SSDA using the true number of within-
class modalities on the C2M3 data sets

Data sets

Methods
NM-eurThtiwADSSNM-eurThtiwADS

0219.01-3M2C 0.9250

0219.02-3M2C 0.9490

0498.03-3M2C 0.9220

0239.04-3M2C 0.9490

0349.05-3M2C 0.9490

0298.06-3M2C 0.9190

0698.07-3M2C 0.9290

0798.08-3M2C 0.9330

0009.09-3M2C 0.9200

0378.001-3M2C 0.8980
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Table 11 The classification accuracy with kNN (k=1) of SDA and SSDA using the true number of within-
class modalities on the C3M3 data sets

Data sets

Methods
NM-eurThtiwADSSNM-eurThtiwADS

3909.01-3M3C 0.9433

3519.02-3M3C 0.9413

0809.03-3M3C 0.9400

0858.04-3M3C 0.9167

3129.05-3M3C 0.9393

3398.06-3M3C 0.9253

7409.07-3M3C 0.9280

3529.08-3M3C 0.9413

0229.09-3M3C 0.9433

0849.001-3M3C 0.9520

the UCI data repository [3]; the other is face image data, as it is intuitively plausible that
there is within-class multimodality associated with lighting conditions and head pose.

In our experiments, we consider k-nearest neighbor (kNN, k=1) as the classifier. We
conduct a study on the within-class classification problem by focusing on extracting dis-
criminant features in this paper. Some commonly used classifiers have built-in feature
selection/extraction functions. For example, Support Vector Machine (SVM) and Decision
Tree (DT) select features as part of the learning process. KNN classifier does not have any
built-in feature selection/extraction function, so it is selected and used in our experiments.
Additionally, we use ten-fold cross-validation as the evaluation framework, and Estimated
Mean Accuracy (EMA) and Standard Error of the Mean (SEM) [9] as the evaluation met-

rics: EMA =
∑10

i=1 pi

10 , where pi denotes the percentage of correct classification in the ith

fold validation; SEM = δ√
10

, where δ =
√∑10

i=1(pi−EMA)2

9 . So, the higher EMA and lower

SEM are, the better classification performance is. Moreover, to make the evaluation results
more reliable, we ran each experiment 10 times using ten-fold cross-validation, and reported
the average EMA (AEMA) and average SEM (ASEM).

5.1 General data

We select eleven UCI data sets using two criteria: (1) all attributes must be numerical;
(2) there must be many attributes so that dimensionality reduction is meaningful. General
information about the eleven UCI data sets is shown in Table 12.

Furthermore, we compare SSDA and SDA against adaptive local linear discriminant
analysis (ALLDA) [20]. To compare ALLDA as fairly as possible, we follow the experi-
mental settings used in the [20] since we do not have the source code of ALLDA. In [20],
four UCI data sets are used to test the performance of ALLDA. They are Australian, Heart,
Pima and Diabetes, respectively. We can not find the Diabetes data set corresponding to the
description in the [20], so we compare SDA and SSDA with ALLDA on the remaining three
data sets. The experimental settings used in the [20] are: (1)several samples are randomly
selected from every class with same proportion as training data and the rest of samples as
testing data. The splits of Australian, Heart and Pima data sets are described in the Table 13;
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Table 12 General information about the ten UCI data sets used, where #I denotes the number of instances,
#C denotes the number of classes and #A denotes the number of attributes

Name of data set (Acronym) #I #C #A

QSAR Biolodegradation (QSAR-B) 1055 2 41

Climate Model Simulation Crashes (CMSC) 540 2 18

Diabetic Retinopathy (DR) 1151 2 19

Multiple Feature-fou (MF-fou) 2000 10 76

Musk(Version 1)-Clearn1 (M1-C1) 476 2 166

Parkinsons 195 2 22

Statlog Project (SP) 846 4 18

White Wine Quality (WWQ) 4898 7 11

Yeast 1484 10 8

Isolet 7797 26 617

Vertebral 310 2 6

(2)1-nearest neighbor is used as the classifier and each experiment is conducted using 20
random splits; (3)the mean accuracy (Macc) and standard deviation (Std) are the evaluation
of classification performance.

Experimental results are presented in Tables 14 and 15. The experimental results of
ALLDA in the Table 15 are cited from [20]. From these results we note the following
observations:

– LDA, SDA and SSDA achieve better performance than Original on the majority of the
UCI data sets. This furtherly verifies the conclusion drawn by using artificial data sets
that it is necessary to deal with the issue of within-class multimodality.

– SSDA achieves better performance than the other three methods on the majority of data
sets. In particular, SSDA outperforms LDA on all UCI data sets.

– Compared with Original and LDA, both SDA and SSDA have superior performance on
CMSC, DR, MF-fou, Parkinsons, Yeast and Isolet. This suggests that these data sets
are likely to have salient within-class multimodalities. Fig. 4 is a visualisation of these
data sets in a two-dimensional space by t-SNE [16], where different colours represent
different classes. t-SNE is a technique for visualising high-dimensional data sets by
giving each sample a location in a two- or three-dimensional space. It can be observed
that these data sets comprise different class and some class clusters consist of several
clusters, which correspond to within-class modalities. In particular, the presence of
multimodality is clear in Parkinsons, where class one consists of several red clusters
and class two consists of several cyan clusters.

Table 13 General information and the split about Australian, Heart and Pima data set, where #C denotes the
number of classes, #Training denotes the number of training data, #Testing denotes the number of testing
data and #A denotes the number of attributes

Name of data set #C #Training #Testing #A

Australian 2 207 483 14

Heart 2 54 216 13

Pima 2 149 619 8
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Table 14 AEMA±ASEM values with kNN (k=1) of Original, LDA, SDA and SSDA on Eleven UCI data
sets

5.2 Face image data

We conduct face recognition experiments on two widely used face databases: AR face
database [17] and FERET face database [21]. Face Recognition is a multi-class classifi-
cation problem, where each person is regarded as a class. Face recognition attempts to
determine whether a face image is from someone in the database when we have a collection
of images for each person in the database. A person’s set of face images may contain mul-
tiple modalities when they are captured in different illumination conditions or head poses.
So, the purpose of this study is to test whether the within-class multimodality methods
discussed in this paper can bring benefit to this problem.

In our experiments, the images are represented using their pixel values, resulting in large
numbers of features. Therefore, our face recognition task becomes a small sample size (SSS)
problem [24]. To deal with this problem, a two stage PCA + LDA method [1] is used. We use
PCA to reduce data dimensionality, retaining principal components that can explain 90% of
the variance, before LDA, SDA and SSDA are used. Details of the two face databases used
in our experiments are the given below:

– AR face database: The AR face database contains frontal-view face images of 126
different persons (70 males and 56 females). Each person was photographed under
different lighting conditions (normal lighting, normal lighting and left light on, normal

Table 15 Macc±Std values with kNN (k=1) of Original, LDA, SDA, SSDA and ALLDA on Australian,
Heart and Pima data set, where the results of ALLDA are cited from the paper [20]
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Fig. 4 The data visualisation of QSAR-B, CMSC, DR, MF-fou, M1-C1, Parkinsons, WWQ, SP, Yeast, Isolet
and Verbebral in a two-dimensional space

lighting and right light on, normal lighting and both left and right lights on) and distinct
facial expressions (neutral expression, smile, anger, and scream), and some images have
partial occlusions (sunglasses or scarf). For each person, a total of 13 images were taken
in each session for a total of two sessions, which were separated by an interval of two
weeks. Hence, there are 26 frontal face images per person. In our experiments, we use a
subset of the AR face data set, which comprises 700 face images from 100 persons. We
use 7 non-occluded face images of each person taken under different lighting conditions

Fig. 5 Sample images from the face databases
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Table 16 EMA±SEM values with kNN (k=1) of Original, LDA, SDA and SSDA on the AR face database

and different facial expressions from the first session. Also, Besides, we crop the face
part of the image and then resize all images to a standard image size of 80 x 100 pixels
(see Fig. 5(a) for some examples). Thus, every face image in the AR database has 8000
features.

– FERET face database: The FERET face database includes over 10,000 face images,
which have different head poses, lighting conditions and expressions. In our experi-
ments, we use a subset of the FERET face database that consists of 700 images from
100 people, with 7 images per person. Again the face portion of each image is cropped
out and normalised to a standard image size of 100 x 100 pixels (see Fig. 5(b) for some
examples). We have 10000 features for each image of FERET.

Table 17 EMA±SEM values with kNN (k=1) of Original, LDA, SDA and SSDA on the FERET face
database
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Fig. 6 Examples of modality distributions found by SDA and SSDA on the AR face database, where dotted
circles with different colours represent different modalities found by SDA and SSDA. In the (b), the green
dotted circle represents the illumination modality with normal lighting; the cyan dotted cilcle represents
the illumination modality with normal lighting and right light on; the orange dotted circle represents the
illumination modality with normal lighting and left light on; the red dotted circle represents the illumination
modality with normal lighting and both left and right light on

We run experiments with Original, LDA, SDA and SSDA on the AR and FERET
face databases 10 times using ten-fold cross-validation. Experimental results are shown in
Tables 16 and 17. It is clear that SSDA achieves higher face recognition accuracy than the
other three methods on both face image databases; SDA also outperform Original and LDA
on both face databases. These results suggest that within-class multimodality does exist in
these image databases, and tackling within-class multimodality in the manner of SDA and
SSDA does bring benefits.

Furthermore, we want to see what within-class modalities SDA and SSDA can find for
AR and FERET, and if the modalities found are consistent with reality. To achieve this,
we apply SDA and SSDA on all images of AR and FERET, respectively. Therefore, the
maximum number of modalities for each class is set as 7 for both methods since every
person only has 7 images in AR and FERET databases. According to the within-modalities
found by SDA and SSDA shown in the Figs. 6 and 7, we obtain the following observations:

– From Fig. 6, it readily see that the four modalities found by SSDA correspond to four
different illumination conditions existing in the AR database: normal lighting, nor-
mal lighting and left light on, normal lighting and right light on, normal lighting and
both left and right light on. Although SDA successfully finds two types of illumination
modalities: normal lighting and left light on, normal lighting and both left and right
light on, it mixes up the images with normal lighting and left light on.

– For FERET database, both SDA and SSDA find different types of within-class modil-
ities for different classes as shown in the Fig. 7. Again, SSDA identifies two types of
illumination modalities for each class: normal lighting and low lighting. But SDA fails
to find the modality with low lighting for some classes, such as Fig. 7(a)(2).

Fig. 7 Examples of modality distributions found by SDA and SSDA on the FERET face database, where
dotted circles with different colours represent different modalities found by SDA and SSDA
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Table 18 Running time, in seconds, of Original, LDA, SDA and SSDA on eleven UCI data sets and two face
databases 10 times using ten-fold cross-validation

Data sets

Methods
Original LDA SDA SSDA

QSAR-B 1.7328 2.6739 20.6197 9.7620

CMSC 0.6416 1.0664 6.7935 2.4880

DR 0.7180 1.2667 17.6121 12.0517

MF-fou 1.7049 3.4528 42.9585 10.1369

M1-C1 0.8752 4.4181 17.4592 12.0827

Parkinsons 0.6188 0.9393 8.4054 1.8269

4825.42936.712262.11516.0PS

WWQ 1.9772 2.8096 87.9767 117.6188

Yeast 0.9834 1.6027 16.4443 9.5505

Isolet 134.1505 1057.5846 1951.6677 1140.4812

Verbebral 0.6817 1.0112 3.8639 3.7453

AR 34.3839 19.2355 63.6227 42.9422

FERET 43.3403 21.9655 306.4279 65.8793

– Apart from identifying the illumination modalities in the FERET database, SSDA can
find all correct head pose modalities for some classes (see Fig. 7(b)(3)): frontal modal-
ity, leftwards modalities with two different angles and rightwards modalities with two
different angles. In addition, SDA also can find some correct head pose modalities for
some classes, for example, the modalities represented by the cyan and purple dotted
cilcles shown in the Fig. 7(a)(3).

Therefore, all results from these experiments on two real face databases are consistent with
the results on the artificial data sets. When there is within-class multimodality in the data,
dealing with the multimodality problem in the manner of either SDA or SSDA is beneficial
and, furthermore, the SSDA approach is better than the SDA approach. Interestingly, we
have shown that SDA and SSDA offer potential solutions to a challenging problem – face
recognition under different lighting and head pose conditions.

5.3 The results: runtime performance

Running results of Original, LDA, SDA and SSDA are shown in Table 18. It is clear that
SSDA are slower than Original and LDA but fast than SDA in the most of data sets.

6 Conclusion

Within-class multimodality exists in real-world data and is first studied by [32] and more
recently by [26], but many questions are unanswered about within-class multimodality, and
its true value is not uncovered fully. This paper presents an extensive study of the within-
class multimodality problem through experiments on both artificial data and real data in
order to establish a strong case for within-class multi-modal classification.
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It has been shown using both artificial data and real data that when within-class multi-
modality is present, maximising between-subclass separation, between-class separation and
within-class compactness at the same time in the manner of SDA or SSDA will increase
classification performance, with SSDA being the better approach. It is also shown that
addressing within-class multimodality this way is optimal if the true number of modali-
ties is known. Interestingly, the experiment on face image databases suggests that SDA and
SSDA offer an alternative approach to addressing face recognition under different lighting
and head pose conditions.

We believe that a strong case for within-class multimodal classification can be estab-
lished. We also believe that this classification approach offers a new perspective on
improving existing classification algorithms such as Gaussian mixture model and convolu-
tional neural networks, and even devising new classification algorithms. These will be our
future research directions.

Acknowledgments The work is partially funded by EU Horizon 2020 project “Analysis System for Gath-
ered Raw Data” (Project Acronym: ASGARD, Project ID: 700381, Project Call: H2020-EU.3.7. - Secure
societies - Protecting freedom and security of Europe and its citizens)

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: Recognition using class
specific linear projection. IEEE Transactions on pattern analysis and machine intelligence 19(7):711–720

2. Breiman L (2001) Random forests. Machine learning 45(1):5–32
3. Dheeru D, Karra Taniskidou E (2017) UCI machine learning repository http://archive.ics.uci.edu/ml
4. Em Y, Gag F, Lou Y, Wang S, Huang T, Duan LY (2017) Incorporating intra-class variance to fine-

grained visual recognition. In: 2017 IEEE International Conference on Multimedia and Expo (ICME),
pp 1452–1457 https://doi.org/10.1109/ICME.2017.8019371

5. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Annals of eugenics
7(2):179–188

6. Gkalelis N, Mezaris V, Kompatsiaris I (2011) Mixture subclass discriminant analysis. IEEE Signal
Processing Letters 18(5):319–322

7. Hayashi F (2000) Econometrics. Princeton University Press
8. He K, Stankovic L, Liao J, Stankovic V (2016) Non-intrusive load disaggregation using graph signal

processing. IEEE Transactions on Smart Grid 9(3):1739–1747
9. Huang GB, Mattar M, Berg T, Learned-Miller E (2008) Labeled faces in the wild: A database forstudying

face recognition in unconstrained environments
10. Jia W, Deng Y, Xin C, Liu X, Pedrycz W (2019) A classification algorithm with linear discriminant

analysis and axiomatic fuzzy sets. Mathematical Foundations of Computing 2(1):73–81
11. Kaselimi M, Doulamis N, Doulamis A, Voulodimos A, Protopapadakis E (2019) Bayesian-optimized

bidirectional lstm regression model for non-intrusive load monitoring. In: ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE, pp 2747–2751

12. Kaselimi M, Doulamis N, Voulodimos A (2020) Context aware energy disaggregation using adaptive
bidirectional lstm models. IEEE Transactions on Smart Grid

13. Li CN, Shao YH (2019) Robust and sparse linear discriminant analysis via an alternating direction
method of multipliers. IEEE transactions on neural networks and learning systems

14. Li H, Zhang L, Huang B, Zhou X (2020) Cost-sensitive dual-bidirectional linear discriminant analysis.
Information Sciences 510:283–303

29348 Multimedia Tools and Applications (2020) 79: –2935229327

http://creativecommonshorg/licenses/by/4.0/
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/ICME.2017.8019371


15. Louppe G (2014) Understanding random forests: From theory to practice. arXiv preprint arXiv:14077502
16. Lvd M, Hinton G (2008) Visualizing data using t-SNE. Journal of machine learning research 9:2579–

2605
17. Martı́nez AM, Kak AC (2001) Pca versus lda. IEEE transactions on pattern analysis and machine

intelligence 23(2):228–233
18. Martinez AM, Zhu M (2005) Where are linear feature extraction methods applicable? IEEE Transactions

on Pattern Analysis and Machine Intelligence 27(12):1934–1944
19. Murray D, Stankovic L, Stankovic V, Lulic S, Sladojevic S (2019) Transferability of neural network

approaches for low-rate energy disaggregation. In: ICASSP 2019–2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 8330–8334

20. Nie F, Wang Z, Wang R, Wang Z, Li X (2020) Adaptive local linear discriminant analysis. ACM
Transactions on Knowledge Discovery from Data (TKDD) 14(1):1–19

21. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret evaluation methodology for face-recognition
algorithms. IEEE Transactions on pattern analysis and machine intelligence 22(10):1090–1104

22. Rao CR (1948) The utilization of multiple measurements in problems of biological classification. Journal
of the Royal Statistical Society Series B (Methodological) 10(2):159–203

23. Seber GA, Lee AJ (2012) Linear regression analysis vol 329. John Wiley & Sons
24. Sharma A, Paliwal KK (2015) Linear discriminant analysis for the small sample size problem: an

overview. International Journal of Machine Learning and Cybernetics 6(3):443–454
25. Vishwakarma VP, Dalal S (2020) A novel non-linear modifier for adaptive illumination normalization

for robust face recognition Multimedia. Tools and Applications pp 1–27
26. Wan H, Wang H, Guo G, Wei X (2018) Separability-oriented subclass discriminant analysis. IEEE

transactions on pattern analysis and machine intelligence 40(2):409–422
27. Wang F, Wang Q, Nie F, Li Z, Yu w, Wang R (2019) Unsupervised linear discriminant analysis for

jointly clustering and subspace learning. IEEE Transactions on Knowledge and Data Engineering
28. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face

recognition. In: European conference on computer vision, Springer, pp 499–515
29. Wen Y, Zhang K, Li Z, Qiao Y (2019) A comprehensive study on center loss for deep face recognition.

Int J Comput Vis 127(6-7):668–683
30. Ye J, Ji S (2010) Discriminant analysis for dimensionality reduction: An overview of recent develop-

ments biometrics: Theory Methods, and Applications Wiley-IEEE Press New York
31. Zhang W, Zhao X, Morvan JM, Chen L (2018) Improving shadow suppression for illumination

robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 99:1–1.
https://doi.org/10.1109/TPAMI.2018.2803179

32. Zhu M, Martinez AM (2006) Subclass discriminant analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence 28(8):1274–1286

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Huan Wan received the master degree in computer application and technology from the School of Mathe-
matics and Computer Science, Fujian Normal University, China. She is currently pursuing the PhD degree in
the School of Computing, Ulster University, UK. Her current research interests are feature extraction, face
verification and pattern recognition.

Multimedia Tools and Applications (2020) 79: –2935229327 29349

http://arxiv.org/abs/14077502
https://doi.org/10.1109/TPAMI.2018.2803179


HuiWang is Professor of Computer Science at Ulster University. His research interests are machine learning,
logics and reasoning, combinatorial data analytics, and their applications in image, video, spectra and text
analysis. He has over 240 publications in these areas. He played an important role in the development of an
algebraic framework for machine learning, Lattice Machine; the original concept of contextual probability,
which can be used for uncertainty reasoning/quantification, probability estimation and machine learning; a
generic similarity measure, neighbourhood counting, and its specialisations on multivariate data, sequences,
tree and graph structures.He is an associate editor of IEEE Transactions on Cybernetics, and an associate edi-
tor of International Journal of Machine Learning and Cybernetics. He is the Chair of IEEE SMCS Northern
Ireland Chapter, and a member of IEEE SMCS Board of Governors (2010-2013). He is principal investigator
of a number of regional, national and international projects in the areas of image/video analytics (Horizon
2020 funded DESIREE and ASGARD, FP7 funded SAVASA, Royal Society funded VIAD), text analyt-
ics (INI funded DEEPFLOW, Royal Society funded BEACON), and intelligent content management (FP5
funded ICONS); and is co-investigator of several other EU funded projects.

Bryan Scotney received the B.Sc. degree in mathematics from Durham University, UK in 1980 and the Ph.D
degree in mathematics from the University of Reading, UK in 1985. He has over 300 publications , span-
ning a range of research interests in mathematical computation, especially in digital image processing and
computer vision, pattern recognition and classification, statistical databases, reasoning under uncertainly,
and applications to healthcare informatics, official statistics, biomedical and vision sciences, and telecom-
munications network management. He has collaborated widely with academic, government and commercial
partners, and much of his work has been supported by funding from the European Union Framework Pro-
grammes and the UK Research Councils. Prof. Scotney was President of the Irish Pattern Recognition and
Classification Society 2007-2014, and a member of the Governing Board of the International Association for
Pattern Recognition (IAPR), 2007-2014. He is currently Guest Professor at Keio University, Tokyo.

29350 Multimedia Tools and Applications (2020) 79: –2935229327



Jun Liu received the BSc and MSc degrees in applied mathematics, and the PhD degree in information engi-
neering from Southwest Jiaotong University, Chengdu, China, in 1993, 1996, and 1999, respectively. He is
currently a Senior Lecturer in Computer Science at Ulster University, Northern Ireland, United Kingdom. He
has been working in the field of AI for many years. His current research interests include logic and reason-
ing methods for intelligent systems and formal verification; intelligent DSSs and information management,
with applications in health care, engineering, and industry field, etc. (e.g., safety and risk analysis; situation
awareness and emergency systems; scenario/activity recognition); information fusion and data combinations;
data mining and KBS; applied computational intelligence for uncertainty analysis and optimisation. He is a
member of the IEEE.

Wing W. Y. Ng received the B.Sc. and Ph.D. degrees from Hong Kong Polytechnic University, Hong Kong,
in 2001 and 2006, respectively. He is currently a Professor with the School of Computer Science and Engi-
neering, South China University of Technology, Guangzhou, China. Prof. Ng is the Deputy Director of
Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information. His current
research interests include neural networks, deep learning, generalization error model, and their applications
in image and video analysis, smart grid, and smart manufacturing. Prof. Ng is currently an Associate Editor
of the International Journal of Machine Learning and Cybernetics. He is the Principle Investigator of three
China National Nature Science Foundation Projects and a Program for New Century Excellent Talents in
University from the China Ministry of Education. He served as the Board of Governor of the IEEE Systems,
Man and Cybernetics Society from 2011 to 2013.

Multimedia Tools and Applications (2020) 79: –2935229327 29351



Affiliations

HuanWan1 ·Hui Wang1 ·Bryan Scotney2 · Jun Liu1 ·WingW. Y. Ng3

Hui Wang
h.wang@ulster.ac.uk

Bryan Scotney
bw.scotney@ulster.ac.uk

Jun Liu
j.liu@ulster.ac.uk

Wing W. Y. Ng
wingng@ieee.org

1 The School of Computing, Ulster University, Jordanstown, UK
2 The School of Computing, Ulster University, Coleraine, UK
3 The School of Computer Science and Engineering, South China University of Technology,

Guangzhou, China

29352 Multimedia Tools and Applications (2020) 79: –2935229327

http://orcid.org/0000-0002-8722-663X
mailto: h.wang@ulster.ac.uk
mailto: bw.scotney@ulster.ac.uk
mailto: j.liu@ulster.ac.uk
mailto: wingng@ieee.org

	Within-class multimodal classification
	Abstract
	Introduction
	Related work
	Linear discriminant analysis
	Subclass discriminant analysis
	Separability-oriented subclass discriminant analysis

	Artificial data
	Multimodality in artificial data
	Q1: Is it necessary to address within-class multimodality?
	Q2: How many within-class modalities should we use?
	Q3: How should we utilise the modalities?

	Multimodality in real data
	General data
	Face image data
	The results: runtime performance

	Conclusion
	References
	Affiliations




