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Abstract
Due to the popularity of Dynamic Adaptive Streaming Over HTTP (DASH), broadband and
Internet service providers’ links transmit mainly multimedia content. As the most popular
providers encrypt their video services, the attempts to identify their traffic through Deep
Packet Inspection (DPI) encounter difficulties. Therefore, encrypted DASH traffic requires
new classification methods. In this work, we propose to identify DASH traffic taking into
account statistical dependencies among video flows. For this purpose, we employ cluster
analysis which can identify groups of traffic flows that show similarity using only the appli-
cation level information. In our work, we applied three unsupervised clustering algorithms,
namely MinMax K-Means, OPTICS and AutoClass, to classify video traces obtained from
an emulated environment. The experimental results show that the employed algorithms
are able to effectively distinguish video flows generated by different play-out strategies.
The classification performance depends on the network conditions and parameters of the
learning process.

Keywords Network traffic · Adaptive video · Multimedia communication ·
Video streaming

1 Introduction

The growing popularity of DASH service floods broadband and Internet service providers’
links with multimedia content. Identification and categorization of this type of traffic is
an important part of network management tasks which include flow prioritization, traffic
shaping, policing, and diagnostic monitoring. Similar to network management tasks, many
network engineering problems such as workload characterization and modelling, capacity
planning, and route provisioning also benefit from accurate identification of network traffic.
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For example, a network operator may want to identify and throttle DASH services to manage
its bandwidth budget and to ensure good performance of business-critical applications.

The classical approach to traffic classification relies on mapping applications to well-
known port numbers and has been very successful in the past. However, DASH uses popular
80 and 443 TCP ports and its data is multiplexed with other HTTP based traffic, thus, port-
based identification for these services are not appropriate. Another popular approach relies
on DPI, however its effectiveness for encrypted traffic is limited [13, 45].

DASH players implement stream-switching (or multi-bit-rate): the content, which is
stored on a web server, is encoded at different bit-rate levels, then an adaptation algorithm
selects the video level, which is to be streamed. The algorithm takes into account a state
of a video player, for example, a level of player’s buffer, or a state of the network environ-
ment, for example, amount of available bandwidth [41]. In the current approaches, usually
the video player alone chooses suitable video quality and is responsible for an adaptation
to the network environment. This allows the player to independently select its playback
quality without the support of any additional control protocols and communication with a
server.

However, the above client-driven approach has some drawbacks. As each player strives
to optimise its individual quality, they implement competing play-out algorithms which try
to outsmart one another. Thus, when data streams, which are downloaded simultaneously by
several players, traverse the same path in the network, the players compete for the available
bandwidth. Such scenario quite often takes place when there are several concurrent sessions
initiated by video players located within an Internet Service Provider (ISP) network, as
presented in Fig. 1. As it was shown in [9], when the same play-out strategies are shared
among the video players, the traffic generated by these strategies tends to be positively
correlated what leads to an increase in variability of whole aggregated traffic transmitted
through a given network path. This correlation may be used to classify different play-out
strategies what is the main contribution of our work.

In order to classify DASH traffic, we employed three clustering algorithms: MinMax
K-Means [7], OPTICS [4] and popular AutoClass. Although, these algorithms use an unsu-
pervised learning mechanism, each of them is based on different clustering principles. The
unsupervised learning aims at discovering unknown relationships and patterns in video
streams. Compared to the supervised learning, this approach does not require labelled
training data.

We conduct the performance study using an emulation model what allows us to method-
ologically explore the behaviour of the examined system over a wide range of parameter
settings, which would be a challenging task to conduct such experiments only on a

Fig. 1 HTTP streaming scenario. Video traffic is multiplexed on the ISP access link
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real-network. Simultaneously, as the emulation is performed in a laboratory environment,
we are able to preserve much of the network realism because we conduct experiments using
real hardware and software, what permits us to maintain a decent level of accuracy for the
obtained results. The players implement four different play-out algorithms which mimic the
behaviour of real commercial video players.

We compare the performance of traffic classification manipulating with parameters of
clustering algorithms and changing the configuration of the network environment. As we
will show, the proposed approach achieves decent accuracy and precision and may be used
as a supporting method for other hybrid classification techniques.

2 Application level flow control

In most modern video systems based on HTTP, the video file is divided into chunks of fixed
length and the server pushes them sequentially to the client with a frequency which allows
obtaining a data transmission rate little higher than the video-bit rate of the transmitted con-
tent. As a result, the transmitted traffic creates an ON-OFF pattern, where the ON and OFF
periods may have a variable length [1]. The extension of this idea is an adaptive stream-
ing, which offers more flexibility when a network environment is less stable, for instance
in wireless mobile networks. With this approach, it is possible to switch the media bit rate
(and hence the quality) after each chunk is downloaded and adapt it to the current network
conditions [42]. In this approach, a video stream is also divided into segments, but this time,
they are encoded in multiple quality levels, called representations. Based on an estimation
of the available throughput, the client may request subsequent segments at different qual-
ity levels which depend on network conditions between the client and server, as drafted
in Fig. 2. The algorithm deciding which segment should be requested in order to optimize
the viewing experience is the main component and a major challenge in adaptive streaming
systems because the client has to properly estimate, and sometimes even predict, network
conditions, for example, the dynamics of the available throughput. Furthermore, the client
has also to control a filling level of its local buffer in order to avoid underflows resulting in
playback interruptions.

The commercial video systems usually do not share many details about the employed
algorithms, thus, in our experiments, we use the template of an adaptive streaming algorithm
based on a bandwidth estimation which is a part of the open-source software described in
[36]. Using this template, we implemented four open-source adaptive algorithms which are
employed in popular software [22] or, at least, gained a fair amount of publicity [28, 33, 35].

Fig. 2 Architecture of a video adaptive system based on HTTP
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2.1 Play-out algorithms

The first implementation uses the Microsoft Smooth Streaming (MMS) algorithm, which is
based on the open source version of the algorithm of the MSS video player and is extensively
described in [22]. The algorithm evaluates the status of the play-out buffer and its decision
based on the results of measurement of network throughput and comparison of the buffer
state. The buffer is divided into three thresholds denoted by the authors as: a lower, an upper
threshold and a panic threshold.

The second approach, Festive [28], similarly to the mentioned MSS approach, takes into
account an estimation of network capacity on which future bit-rate update decisions can be
made. The algorithm also uses a gradual switching strategy; i.e., each switch is only to the
next higher or lower level. Unlike MMS, Festive uses randomised scheduling and takes into
account also fairness among video players.

The third heuristic relies on the PANDA (Probe AND Adapt) algorithm proposed in [33].
The algorithm takes TCP download throughput as an input to the adaptive algorithm only if
the measurement is an accurate indicator of the fair-share bandwidth. The video quality is
not directly related to network throughput but to its average, which in turn determines the
selected video bit-rate and the request time between video chunks.

The last proposition employs so-called LOLYPOP (Adaptation Algorithm for Low-Delay
Live Streaming) [35]. The aim of LOLYPOP is to operate with a transport latency of a few
seconds. To reach this goal, LOLYPOP tries to predict TCP throughput on multiple time
scales: from 1 to 10 seconds. In addition to the imposed latency constraint, the algorithm
heuristically improves the quality of experience by maximising the average video quality as
a function of the number of skipped segments and quality transitions.

The list of the algorithms with their corresponding symbols used in the further experi-
ments is presented in Table 1.

3 Related works

The problem of network traffic classification can be perceived as a never-ending race
between application developers, on the one side, and the ISPs supported by the research
community, on the other.

Several techniques have been popularly employed for traffic classification over the years.
The simplest approach is based on TCP port classification. This technique was to some
extent quite successful because many applications used fixed port numbers assigned by
Internet Assigned Numbers Authority (IANA). However, over time this approach has shown
to have more and more limitations. A growing number of applications had been not attached
to fixed port numbers, instead using dynamically assigned port numbers assigned by
negotiation mechanisms, e.g. to hide from firewalls or network security tools. To address the

Table 1 Play-out algorithms
used in the experiments Sym. Algorithm

A MMS

B Festive

C PANDA

D LOLY
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aforementioned drawbacks of port-based classification, several DPI techniques have been
proposed [11, 23]. In this approach, packet payloads are inspected to determine whether
they contain characteristic signatures or patterns of known applications. As the search for
patterns, based often on regular expressions, inside a data may seem to be technically not
complicated, there are important limitations of this idea. Firstly, it works in a sequential way:
a packet after a packet needs to be analysed what requires time and a fair amount of mem-
ory. Secondly, this idea is very difficult or even impossible when dealing with encrypted
traffic which volume has been increasing. In this case, DPI is concentrated mainly on rec-
ognizing TLS/SSL handshake parameters that help recognize the application content types
(video, VoIP, etc.) or the application name [13, 45].

Thus, researchers have been proposing new methods of traffic classification which have
been capable of inferring application-level usage patterns without relying exclusively on
the TCP ports matching or on DPI. Some of the proposed approaches classify traffic by
recognising statistical patterns in externally observable attributes of the traffic, e.g. packet
lengths or inter-packet arrival times. Their aim is either clustering traffic flows into groups
that have similar traffic patterns, or classifying applications generating the flows. For this
purpose, many works apply so-called machine learning (ML) techniques. The ML classifier
is trained to associate sets of attributes with known traffic classes, thus creating rules, which
are applied to classify unknown traffic. Every ML algorithm has a different approach to
sorting and prioritising sets of features, which leads to different dynamic behaviours during
training and classification. A comprehensive review of ML methods can be found, e.g. in
[37, 38].

Traffic classification can be achieved using either supervised or unsupervised learning.
In the former case, there is a need to acquire labelled training data-sets, something that can
be challenging in computer networks due to the difficulty in obtaining accurately anno-
tated network flow samples across a broad range of applications and the rate at which new
applications can appear. As a result, many of this approaches are limited to coarse-grained
classifications of traffic originated from, e.g. web browsing, P2P or VoIP [3, 30]. An alter-
native is an employment of unsupervised ML which processes unlabelled data. The goal is
to find unknown relationships in the data, finding similarity patterns among several obser-
vations. Unsupervised ML is usually applied for clustering tasks, where it is required to
divide the data into different groups according to similarities in their features. In particu-
lar, this form of ML learning can be applied to discover traffic from previously unknown
applications [19].

There is a number of algorithms that can be used in unsupervised ML and there is abun-
dant literature on their application for traffic classification. A popular approach based on
the K-Means algorithm is presented in [7]. In [43] the authors created a methodology and
a framework called AppScanner for automatic fingerprinting and real-time identification
of Android application in encrypted network traffic. They compared Random Forest and
SVC approaches because both of them were found to be particularly suited for network
flow classification. The authors of [15] focused on identification of traffic generated by
Google Hangout, Google Plus and Gmail. Three algorithms were compared: Naive Bayes,
AdaBoost and j48 decision tree.

However, the clustering methods suffer from a problem of mapping from a large number
of clusters to real applications. This problem is very difficult to solve without knowing any
information about real applications. Therefore, in many cases, a combination of unsuper-
vised and supervised methods, refereed as semi-supervised learning, can also be used with
both labelled and unlabelled data [47]. It can work with a data-set where the majority of the
instances are unlabelled if a small number of labelled data instances exists that permits the
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mapping from the identified clusters in the overall data-set into the different classes, trying
to overcome the difficulties in obtaining labelled data.

It was shown in [2] that statistical identification approaches deployed for unencrypted
traffic are not always valid for the encrypted cases as the new encryption methods and
protocols differ in behaviour from one application to another. Thus, encrypted traffic,
which is growing rapidly in the Internet, needs often separate approach. In [45] the authors
present a broad comparison of different approaches for encrypted traffic classification.
The K-Means approach proved to have good average accuracy for quality classification
of encrypted adaptive video in [17]. In [18] the above problem with video quality clas-
sification was approached using ML methods. The dataset in these works was obtained
with different bit rates, in order to examine the classifier performance in various circum-
stances. K-Means is also used in [16] for P2P traffic identification. Several comparisons
among unsupervised algorithm applied to encrypted traffic classification can be found also
in [6, 40].

The above literature shows that there is a broad spectrum of techniques for classifica-
tion of encrypted network traffic. Hence, the amount of attributes which can be taken into
account is relatively limited. The main contribution of our work is the employment of cor-
relation among flows as an attribute which can support the identification of adaptive video
streams. Thus, in our work, we discover correlation in the traffic flows and we apply it into
the classification process. Contrary to conventional classification methods, which treat the
traffic flows as the individual and independent instances, we demonstrate that the correla-
tion information can significantly improve the classification performance, especially when
the network conditions are variable.

The correlation-based classification is popularly used in some domains, especially in
physics [31] or econometrics [39]. When it comes to network traffic this technique was used
in [48] for classification of general Internet traffic. The closest work is [9] where the author
tried to reduce correlation among video flows in order to increase the performance of video
system.

In our work, we use for the classification three tested and evaluated algorithms, namely
MinMax K-Means, OPTICS and AutoClass, applied in a number of works. The usage
of well-know clustering algorithms increases the chances of reproducibility of our exper-
iments. Furthermore, the produced patterns more likely reflect the internal structure and
properties of gathered data independently of a clustering approach than are a result of tweak-
ing and optimisation of a complex algorithm. Simultaneously, these algorithms were not
broadly used for network traffic clustering and no performance comparison among them
has been made in this field.

4 Traffic clustering

The cluster analysis is a popular method for identifying classes among a group of objects
and has been used as a tool in many fields such as biology, finance, and computer science.
In contrast to the classification techniques using pre-defined classes of training objects,
clustering methods are not supported by this information. Instead, they discover natural
patterns in the data using internalised heuristics. Clustering splits objects into groups taking
into account distance among the objects calculated by a specific metric, e.g. the Euclidean
metric.

The clustering of video quality traces is a special type of multidimensional time series
clustering. A network trace is essentially classified as time series because its feature
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values change as a function of time, which means that the value of each point of time series
is a chronologically made observation. Video quality traces generated by many connections
are a type of temporal data which is naturally high dimensional and large in data size. For-
mally, given a dataset of n video quality traces data Q = {Q1, Q2, . . . , Qn}, the process
of unsupervised partitioning of Q into C = {C1, C2, . . . , Ck} in such a way that homoge-
neous quality traces are grouped together based on a certain similarity measure, is called
the clustering of the quality traces. Then, Ci is called a cluster, where Q = ⋃k

i=1 Ci and
Qi ∩ Qj = ∅ for i �= j .

The groups identified in such manner may be exclusive or they may be overlapping. They
may also be hierarchical, where there is a division of instances into groups at the top level,
and then each of these groups is refined further. In our work, we use two popular clustering
methods: hierarchical and centroid-based clustering.

The hierarchical clustering generates a hierarchical grouping of instances. Using an
agglomerative algorithm, which considers each item as a cluster, one incrementally merges
the clusters using so-called bottom-up approach producing a dendrogram. The algorithm
begins by assigning each object to its own cluster, then, at each step, the two clusters that
are the most similar are merged. The algorithm continues until all of the clusters have
been merged. The evaluation of the generated division is subjective, one simply assess
the quality of clusters inspecting the generated dendrogram. However, if the data labels
are known in advance, it is also possible to make objective statements of the clustering
quality.

The centroid-based algorithms form clusters in numeric domains, partitioning objects
into disjoint clusters. The centroid of a cluster can be thought of as the pure type the cluster
represents, whether that object exists in the reality or is just an abstract construct. The cen-
troid may be a particular data point in the cluster or may be a point in the convex hull of the
cluster, such as the cluster mean. Given an initial data division, centroid-based methods find
the centroids of the clusters, reassign the objects to new clusters defined by the distance to
the centroids, and then repeat the procedure. The similarity between two clusters is the sim-
ilarity between their respective centroids. Thus, aside from an initial clustering, a clustering
algorithm has to define what centroids and what distance among them are to be used, and
how many iterations to execute.

From a number of the centroid-based algorithms we used in our work we used MinMax
K-Means, OPTICS and AutoClass.

4.1 MinMax K-Means

The MinMax K-Means algorithm is based, as the name suggest, on the K-Means algorithm
which belong to partition based algorithms. In partition based algorithms, the single data
object is explicitly assigned to one and only one cluster. The main idea behind K-Means is
to define k centroids, one for each cluster. These centroids should be placed in a deliberate
way because the final result is influenced by the location. The procedure starts at those k

centroids, and each of them absorbs nearby points, based on a defined distance. Thus each
point belonging to a given data set is associated with its nearest centroid. When no point is
pending, new centres of clusters are re-calculated taking into account the absorbed points.
After obtaining k new centroids, a new binding has to be done between the same set of
points and the nearest new centroid. Then, the procedure is being repeated: new centers
are allowed to absorb nearby points based on a defined distance and the coordinates of the
new centres are re-calculated. As a result of this loop, k centroids shift to new locations
step by step until no more significant changes are noticed. Finally, this algorithm aims at
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minimizing the objective function, in this case, a squared error function which has the form
of

La(C) = arg min
C

k∑

i=1

∑

Q∈Ci

||Q − μi ||2, (1)

where Q = {Q1,Q2, . . . , Qn} is a dataset of n video quality traces and μi are the
coordinates of the centroid of the cluster Ci . However, the K-Means algorithm has some
disadvantages, among them sensitiveness to the selection of the initial centroids. An inap-
propriate initialization may lead to a slower convergence and misclassified clusters. The
MinMax K-Means approach tries to make the algorithm’s result less dependent on the ini-
tial centroids selection. The algorithm starts also with random initial centers but instead of
minimizing the sum of internal variance of clusters like in (1), it attempts to minimize the
maximum internal variance of clusters

La(C) = arg min
C

max
1≤i≤k

∑

Q∈Ci

||Q − μi ||2. (2)

Each cluster is weighted so that higher weights are assigned to the cluster with larger
internal variance. By applying this method, the results become less dependent on the initial-
ization and, thus, the quality of clustering increases even when the initial centers of clusters
are not selected optimally [44]. This approach can be justified as following: the summation
over all clusters in (1) allows to achieve similar sum values either by having a few clusters
with a large variance that are counterbalanced by the others clusters with small variance, or
by having a moderate variance for all clusters. However in (2), having a few clusters with
large variance leads to a higher objective value. Hence in (2), clusters with a large variance
are avoided and the solution space is restricted towards clusters that have similar variances.

4.2 OPTICS

Ordering points to identify the clustering structure (OPTICS) represents the family of
density-based algorithms. These algorithms consider clusters as dense areas of objects that
are separated by less dense areas. Density-based algorithms have the ability to find clusters
of arbitrary shapes, what is an advantage over partition-based algorithms (e.g. K-Means,
MinMax K-Means) which are limited to recognize only spherical shaped clusters.

The basic idea of OPTICS is similar to DBSCAN [21] but it addresses one of DBSCAN’s
significant weaknesses, i.e. the ability to detect meaningful clusters in data which have
variable density. In order to handle this problem, the algorithm uses two concepts: a core-
distance and reachability-distance. These concepts depend on two input parameters: ε which
is the distance around an object that defines its ε-neighbourhood, and minPts which is a
minimum number of points constituting ε-neighbourhood.

For a given object p, when the number of objects within the ε-neighbourhood Nε(p) is
at least minPts, then p is defined as a core object. The core-distance of p is defined as the
smallest distance ε′ between p and an object in its ε-neighborhood such that p would be a
core object with respect to ε′ if this neighbour is contained in Nε(p). If there not enough
objects in Nε(p), i.e. |Nε(p)| < minP ts, the core distance is undefined. This is illustrated
in Fig. 3.

The reachability-distance of an another object o from the object p is either the distance
between o and p, or the core distance of p, whichever is bigger assuming that |Nε(p)| ≥
MinP ts. If the latter condition is not fulfilled, the core distance is undefined. Thus, both
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Fig. 3 The concepts of a
core-distance core(p) and
reachability-distance for r(q1)

and r(q2) for minPts set to 4
(including p)

the core-distance and the reachability-distance are undefined if no sufficiently dense cluster
(w.r.t. ε) is available.

As a result, the OPTICS algorithm produces a list of objects in a particular ordering,
annotated with their smallest reachability distance. Since grouped objects have a low reach-
ability distance to their nearest neighbour, using a special kind of dendrogram, so called
reachability-plot, it is possible to identify clusters in the data.

4.3 AutoClass

AutoClass is a clustering algorithm based on probabilistic model which assigns instances
to classes probabilistically, not deterministically as in the case of MinMax K-Means or
OPTICS. To build the probabilistic model, the clustering algorithm determines the num-
ber of clusters and the parameters that govern the distinct probability distributions of each
cluster. To accomplish this, AutoClass uses the Expectation Maximization (EM) algorithm.
To find the global maximum, AutoClass repeats EM searches starting from pseudo-random
points in the parameter space. The model with the parameter set having the highest proba-
bility is considered to be the best. AutoClass uses a Bayesian score to determine the best set
of parameters to use for the probabilistic model and allows for an automatic selection of the
number of clusters. The Bayesian score is based on intra-cluster similarity and inter-cluster
dissimilarity. Also, the Bayesian score penalizes models with more clusters to minimize
potential over-fitting.

4.4 Measures of similarity

In order to cluster network traces, one needs to define notions of similarity. Similarity can
be thought of as distance so that the points in a cluster are closer to each other than they are
to the points in other clusters. Distance measures provide quantification for the similarity
between two time series. Calculating distances, as well as cross-distance matrices, between
time-series objects is one of the cornerstones of any time-series clustering algorithm. The
algorithm computes distance between all pairs of data objects applying a suitable distance
function. In our work, the distance will be based on the cross-correlation among network
traces.



18280 Multimedia Tools and Applications (2019) 78:18271–18291

Thus, in the first step of our analysis, we are interested in a correlation of traffic gen-
erated by particular video strategies. While adjusting video bit-rate to a current network
environment, each of the players generates time series representing respective quality levels
qi which correspond to video bit-rates. From the above set of time series, we compute the
correlation coefficient between any pair of players as

ρij = 〈QiQj 〉 − 〈Qi〉〈Qj 〉
√

(〈Q2
i 〉 − 〈Qi〉2)(〈Q2

j 〉 − 〈Qj 〉2)
, (3)

where Qi,Qj ∈ {Qmin, . . . , Qmax} represent a stochastic process whose elements are qual-
ity levels of video qi , qj received by players i and j respectively, and 〈Qi〉 is an average of
the vector Qi . By definition, ρij can vary from -1, what denotes completely negative corre-
lated (or anti-correlated) video bit-rates, to 1, what denotes completely positive correlated
video quality levels. When ρij = 0, the quality of video streamed to i-th and j -th players are
uncorrelated. The correlation coefficient ρij (3) is computed between all the possible pairs
of players downloading video from the emulated CDN. As a result, we obtain a symmetri-
cal matrix characterised completely by n(n − 1)/2 correlation coefficients with ρii = 1 in
the main diagonal.

However, we cannot input the correlation matrix directly to the clustering algorithms
because the matrix elements in their original form are not suitable as a distance measure, for
example, a distance between the same two elements would have been one (ρii = 1) instead
of zero. Generally, the elements of the correlation matrix do not fulfil the three axioms that
define a metric: minimality, symmetry and triangle inequality. Hence, the matrix must be
transformed in order to define a genuine metric. Following [34] we use the transformation

dij = √
2(1 − ρij ). (4)

With this choice dij fulfils the three axioms of a metric distance: a) dij = 0 if and only
if i = j ; b) dij = dji and c) dij ≤ dik + dkj . The draft of the proof is presented in [8] in
Appendix I.

4.5 Evaluation

One of the advantages of unsupervised clustering is the automatic identification of classes.
Nevertheless, the obtained cluster should be labelled in order to be correctly mapped to
applications.

To assess the clustering results, we adopt the majority heuristic to label clusters based on
ground truth. That is, we label clusters with the most popular play-out strategies presented in
them. For this purpose, we adopted the labeling schema used in [37]. Let C = {C1, . . . , Ck}
be the clusters and S = {S1, . . . , Sm} be the actual play-out strategies. The labeling function
Lb : C → S associates a class label to each cluster

Lb(C) = arg max
Sj ∈S

∑

xi∈C

�(β(xi), Sj ), (5)

where β(x) returns the actual play-out strategy of the given flow sample x and �(X, Y ) is
defined as

�(X, Y ) =
{

1 if X = Y

0 otherwise.
(6)

To estimate the performance of the clustering algorithms we employed the accuracy mea-
sure which describes how well the clustering algorithm is able to create clusters that contain
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only a single video traffic category. The traffic class which instances inhabit the majority
of objects within a cluster labels this particular cluster. Assigning two similar traces to the
same cluster is a true positive (TP) decision while assigning two different strategies to dif-
ferent clusters is a true negative (TN) decision. During this process, it is also possible to
assigns two dissimilar strategies to the same cluster what is considered a false positive (FP)
decision, or to assign the same two strategies to different clusters what is a false negative
(FN) decision. These objects which have not been assigned to the cluster are labelled as
noise. Consequently, accuracy is the fraction of correctly classified objects and is computed
as follows:

Accuracy = TP+TN

TP+TN+FP+FN
. (7)

When there are problems with the proper classification of the object, the accuracy goes
towards zero. When the opposite situation takes place, the measure heads to one.

One of the drawbacks of (7) is that a system tuned to maximize accuracy can appear to
perform well by simply deeming all objects non-relevant (FP and TN) to all queries. There-
fore, the second applied complimentary measure is precision. The precision concentrates on
the evaluation of true positives, asking what percentage of relevant objects have been iden-
tified. Thus, this metric indicates the fraction of instances from a particular category that
are correctly classified from the total amount of instances classified as that category. The
precision is computed as follows

Precision = TP

TP + FP
. (8)

5 Laboratory set-up

In order to acquire traffic traces, which were generated by the algorithms mentioned
in Section 2.1, we prepared a test environment emulating content distribution network
(CDN), which in the real world is applied to deliver video to multiple users. The environ-
ment consists of network environment emulators (NEE), web servers, video players and a
measurement point located in an edge router, as shown in Fig. 4.

Fig. 4 An emulated CDN network which consist of network environment emulators, web servers, video
players and a measurement point located in an edge router
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As the NEE, we used a network emulation node based on the built-in Linux Kernel
module netem [25]. The module allows for manipulation with network parameters such as
network bandwidth or packet delays; thus, it is possible to test the data transmission in
different network environments.

The role of the web server plays Apache [5], which stores the video clips as a set of
chunks. Each of the three Apache servers used in the experiment has assigned an NEE
which mimics a different network environment so that there are different packet delays
and network bandwidth between the servers and the edge router. The delays are described
by the Weibull distribution [24, 26] with an average of 0.03 s. The network bandwidth is
uniformly distributed and takes its values 4 MB/s to 12 MB/s. We assume that the servers in
the CDN are connected by a high-performance wired network, therefore, the packet losses
are negligent. Taking into account that according to [14] about 65%-80% of current network
traffic is generated by video services, we allocated a quote of 25% of the bandwidth for
background traffic which was generated by the tool presented in [10].

The background traffic is labelled and is not taken into account during the identification
process. As it was stated, the goal of the present study is to obtain the taxonomy of the
play-out algorithms. The problem of video traffic distinction from other traffic is broadly
discussed in a number of works, some of which are surveyed in, e.g. [12].

As a video player, we chose the VLC media player with the DASH plug-in [36]. Both
the player and the plug-in have an open-source code, thus, it is possible to manipulate or
completely change the adaptation logic without affecting the other components. As a conse-
quence, the plug-in enables integration of a variety of adaptation logics making it attractive
for performance comparison of different adaptive streaming algorithms and their parame-
ters. As it was mentioned, we implemented here the algorithms listed in Table 1. The players
were divided into three groups and each group had assigned an NEE which imposed on the
groups different network properties so that the NEE of the first group emulated properties
of a wired network, the NEE of the second group emulated a wireless network and the NEE
of the third group mimicked a wireless mobile network.

Taking into account the proportion of players assigned to each particular network type,
we consider here three scenarios. In the first scenario, we assigned 60% of video players to
wired network, and the rest was equally split between wireless and mobile environments. In
the second scenario, we split the players equally among the three network types and in the
third scenarios, 60% of video players operated in a mobile network, while the remaining
part was equally split between wired and wireless network. As our experiment will show,
the network characteristics have a certain influence on clustering performance of video
streams.

The players started to download the content at random times described by an exponential
distribution with mean set to 30 s. Taking into the account the findings presented in [46], the
content was divided into 4 s length segments and the size of the player buffer was set to 12 s.
Similarly to the server-side, on the client-side packet delays have the Weibull distribution
while the bandwidth is distributed uniformly. Table 2 summarizes basic parameters of the
experiment.

We transmitted several video files, acquired from [32] and presented in Table 3, through
the simulation environment. Using the edge router with installed capturing software, based
on Tcpdump and Libcap [27], we obtained aggregated traffic traces. Next, the traces were
converted into time series represented by a point process.

We believe that the above-described methodology provides an attractive middle ground
between a simulation and real network experiments. To a large degree, the emulator should
be able to maintain the repeatability, reconfigurability, isolation from production networks,
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Table 2 Simulation parameters
Parameter Value(s)

Number of web servers 3

Number of NEE 6

Number of video players 120

Bandwidth at the edge routes 16, 20, 24 MB/s

Bandwidth at the server side (per a server) 4 - 12 MB/s

Packet delays at the server side 0.03 s in average

Bandwidth at the client side (per a player) 0.16 - 1 MB/s

Packet delays at the client side 0.06 s in average

Packet losses at the client side max. 1%

Video segment length 4 s

Buffer size of players 12 s

and manageability of a simulation while preserving the support for real video adaptive appli-
cations. The output from test experiments, which included 30 video players, is presented in
Fig. 5, where it is possible to notice how three randomly selected video players switch their
bit-rates with the corresponding total aggregated traffic generated by all players involved in
the experiment.

6 Clustering performance

Visualisation is a primary method to reveal possible relationships among video streams.
Unfortunately, as our data is n-dimensional, it is not possible to visualise it directly. Nev-
ertheless, it is customary for the multidimensional data to be fairly well represented in
smaller dimensions than n. A two-dimensional representation is usually a good compromise
between fidelity to the original distances and the easiness of visualisation of the objects.
One of the methods which may be applied for this purpose is multidimensional scaling
(MDS). MDS takes data points in a high-dimensional space and compresses them down to a
lower-dimensional space, representing them as a fully connected weighted graph. MDS is a
multivariate statistical method for estimating the scale values along one or more continuous
dimensions such that those dimensions account for proximity measures defined over pairs
of objects.

Figure 6 presents the relation among streams, generated by four play-out strategies listed
in Table 1, for the network environment configured as defined in Scenario 2. In order to

Table 3 Video clips used during the experiments

Name Genre Bitrate levels

Big Buck Bunny animation
100 kbit/s – 320x240,

Elephants Dream animation
300 kbit/s – 480x360,

Red Bull Playstreets sport
700 kbit/s – 854x480,

The Swiss Account sport
1.2 Mbit/s – 1280x720,

Valkaama movie
2.5 Mbit/s – 1920x1080

Of Forest and Men movie
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Fig. 5 Scenario with 3 randomly selected players. Total number of players = 30. Dotted areas show examples
of positive correlation between Player 2 and Player 3, and negative correlation between Player 1 and the two
other players

increase the presentation visibility, we sampled 80 quality traces from the total number
of 120 simultaneous connections. We labelled the same play-out algorithms by the same
symbols A, B, C and D; see Table 1 which lists the symbols with the corresponding play-
out strategies. We may easily notice that the arrangement of the streams is not random. The
streams generated by the same play-out strategies are clustered and constrained with less or
more clear boundaries. Some of the clusters are easy to distinguish, e.g. the clusters labelled
as 1, while the other groupings may be mixed and composed from the points representing
different play-out strategies, e.g. the cluster labelled as 2.

Fig. 6 Multidimensional scaling for Scenario 2. Easily distinguished clusters are labelled as 1. The grouping
composed from different play-out strategies is labelled as 2
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As the preliminary investigation presented in Fig. 6 indicates that there are clear relations
among the video flows, we want to identify theses relation by objective measurements,
applying for this purpose clustering algorithms described in Section 4.

In the next step, we used hierarchical clustering and obtained so-called dendrogram: a
tree that represents the nested clusters, see Fig. 7. Similarly to Fig. 6, in order to distinguish
the details, we chose a subset of the data sampling this time 40 quality traces. We can notice
that the generated partition has some patterns. The dominant strategy in the first branch is
A with the slight addition of strategies B and D. In the second branch, there is a mix of
strategies, however, in the third branch prevails strategy C followed by strategies D and B.
Strategies A and C are usually separated from each other.

Hence, the conclusion is that the most positive correlation have strategies A with B, and
C with D. Also, to a lesser extent, the positive correlation can be observed between strategies
A and D, and between C and B. Figure 7 shows no significant positive correlation between
strategies A and C.

Hierarchical clusterings is a quite fast way to compare and contrast similarity measures
since a dendrogram of size N summarizes O(N2) distance calculations [29]. Nevertheless,
the hierarchical algorithms are weak in terms of quality because once divided they cannot
adjust the clusters. As a result, more flexible approaches are needed. Hence, in the next
analyses, we employ centroid-based solutions.

The MinMax K-Means algorithm has an input parameter k which is the number of dis-
joint partitions mentioned in Section 4.1. In our data sets, we would expect that there would
be at least one cluster for each play-out algorithm. In addition, due to the diversity of the
traffic which often does not form clearly distinguishable clusters, as presented in Figs. 6
and 7, it is reasonable to assume that the traffic will create even more disjoint partitions.
Thus, the MinMax K-Means algorithm was evaluated with k initially being 4 and then being
incremented of 4 in every step until k reached 20. As we have 120 data objects represent-
ing quality traces, it does not make sense to increase k further as an excessive number of
clusters rises the risk of over-fitting.

The minimum, maximum, and average results for the MinMax K-Means clustering algo-
rithm are shown in Fig. 8. Initially, when the number of clusters is small the accuracy of

Fig. 7 Hierarchical clustering
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Fig. 8 Accuracy for the MinMax K-Means algorithm in a function of the number of clusters

MinMax K-Means reaches approximately 53% for the traffic generated by the wired system
in Scenario 1. For the wireless and mobile networks, the accuracy increases in average about
7%-10% respectively. With the growing number of clusters, the accuracy steadily improves.
However, the rate of the improvement declines after the number of clusters exceeds 16.
Finally, for 20 clusters, MinMax K-Means obtains about 75%-77% depending on the net-
work environment. The improvement in the accuracy with an increase of the clusters number
may suggest that the clusters have no clear boundaries and clusters’ structure may have
varied density.

As described in Section 4.2, the OPTICS algorithm has two input parameters: ε and
minPts. Contrary to DBSCAN, the ε parameter denoting the maximum size of the ε-
neighbourhood does not play a practical role in determining the properties of the clusters.
However, it is used to improve performance by OPTICS as limiting the neighborhood size
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Fig. 9 Accuracy for the OPTICS algorithm in the function of the minPts parameter. The number of clusters
is from 10 to 14
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Fig. 10 Accuracy for the AutoClass algorithm

decrease amount of computations needed by the algorithm. Technically, if the parameter is
not specified, the largest minPts-distance in the data set is used which gives the same result
as infinity. Thus, we manipulate only with minPts, setting it between 3 and 8 which covers
the range considered in [19]. The sensitivity analysis with regard to the minPts parameter
shows that the best result is obtained for the parameter set to 5 as presented in Fig. 9. Thus,
the relatively low value of this parameters suggest that there is not much noise in the exam-
ined data. The accuracy achieves about 70% for stable network conditions, and from 74%
to 79% in average for more dynamic network environments. OPTICS produced in average
14 clusters for Scenario 1, 12 clusters for Scenario 2 and 10 clusters for Scenario 3.

The accuracy for the AutoClass algorithm achieves in average about 70% for video-
players localised mainly in a wired network, see Fig. 10. With the migration of the players
to wireless and mobile environments, the accuracy increases to about 75% and 80% respec-
tively. As it was mentioned, for this algorithm, the number of clusters and the cluster
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Fig. 11 Accuracy for individual classes. Parameters: MinMax K-Means: 20 clusters; OPTICS: minPts=5
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Fig. 12 Precision for different play-out strategies. Computed for the AutoClass algorithm

parameters are determined automatically. AutoClass produced in average 18 clusters for
Scenario 1, 14 clusters for Scenario 2 and 12 clusters for Scenario 3.

Once the accuracy is calculated separately for every play-out strategy, the best score of
about 90% achieves the MMS strategy, as presented in Fig. 11. A little harder to classify
accurately is Festive which obtains in average less than 90%. Both the PANDA and LOLY
strategies acquire in average less than 80%. Considering the performance of the clustering
algorithms, the accuracy for MMS is similar for all three clustering algorithms, while for the
others play-out algorithm the best accuracy gets AutoClass, followed by OPTICS and Min-
Max K-Means. Nevertheless, the difference between the scores achieved by the algorithms
is usually confined to several percents. In conclusion, we can observe that the algorithms
with a simpler adaptation mechanism are easier to classify, even for a less advanced cluster-
ing algorithm. The more complicated adaptive mechanism generate probably less correlated
traffic; therefore, more advanced clustering algorithms are needed for its classification.

Figure 12 shows the precision (8) of classification obtained by the AutoClass algorithm
for every play-out algorithm separately. The classification of the traffic generated by MMS
achieves the highest precision for all the examined clustering algorithms. Depending on the
network conditions, between 66% and 72% of the play-out strategies classified as MMS are
actually MMS. The second score achieves the Festive strategy while PANDA and LOLY are
little harder to classify precisely Similarly to the accuracy, the best score is achieved for
the scenario, where the majority of the players remain in a mobile environment. With the
stabilisation of network conditions, the precision of classification decreases.

7 Conclusion

In this work, using the cluster analysis and information about traffic flows gathered at the
application level, we were able to identify groups of traffic flows that were generated by
four exemplary play-out strategies. As the research shows, the performance of the clustering
algorithms differs depending on the applied parameters and network environment of the
video players. Generally, unstable network conditions like variable throughput and packets
delays encountered, e.g. in mobile networks, exposes a weakness of the play-out algorithms
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which tend to make similar decisions about adaptations to the current network conditions.
The algorithms make more quality switches which quite often are synchronised. Although
such behaviour has a negative impact on users’ QoE, it generates more correlated data what
increases the probability of the correct identification of video flows.

Depending on the applied parameters, the performance of the examined algorithms,
namely MinMax K-Means, OPTICS and AutoClass, is roughly similar. However, AutoClass
have a slight advantage in case of mobile networks characterised by variable conditions,
while MinMax K-Means achieves a better score for stable network environments. Proba-
bly, this may be explained by how the algorithms build their clusters. As it was mentioned
in Section 4, the clusters defined by MinMax K-Means have fixed size and are symmetri-
cal, while OPTICS and AutoClass build their clusters with more flexibility. In the case of
stable network conditions, the shape of the clusters probably matches better these defined
by MinMax K-Means. However, this assumption requires further research. In general, the
results are in agreement with the other works in which AutoClass obtains usually the best
score [19, 20].

The easiest to classify is the traffic which is produced by relatively simple play-out strat-
egy, e.g. MMS or Festive. The adaptive play-out strategies of more advanced algorithms try
to avoid mutual synchronisation of streams quality, therefore, their traffic is less correlated
and harder to classify.

It is worth mentioning that the results of obtained by our approach may be boosted
by gathering and taking into account additional information about the network traffic, e.g.
video segment sizes or patterns of communications between a video player and a server.
This information could be used to create hybrid classification models supported by super-
vised and unsupervised learning processes. Thus, in our future works, we plan to apply a
combination of several specialized classifiers which are to be trained with the same data.
An incoming input is to be evaluated by all the classifiers and the obtained results should be
merged by means of a combination method, such as e.g. maximum likelihood. Thus, each
of the applied classifiers should vote on one class, and the class with the most votes should
be the output.

Acknowledgements The work was carried out within the statutory research project of the Institute of
Informatics, BK-213/RAU2/2018, Gliwice, Poland.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Alcock S, Nelson R (2011) Application flow control in YouTube video streams. ACM SIGCOMM
Comput Commun Rev 41(2):24–30

2. Alshammari R, Zincir-Heywood AN (2011) Can encrypted traffic be identified without port numbers IP
addresses and payload inspection? Comput Netw 55(6):1326–1350

3. Amancio DR, Comin CH, Casanova D, Travieso G, Bruno OM, Rodrigues FA, da Fontoura Costa L
(2014) A systematic comparison of supervised classifiers. PloS one 9(4):e94137

http://creativecommons.org/licenses/by/4.0/


18290 Multimedia Tools and Applications (2019) 78:18271–18291

4. Ankerst M, Breunig MM, Kriegel H-P, Sander J (1999) OPTICS: ordering points to identify the
clustering structure. In: ACM sigmod record, vol 28. ACM, pp 49–60

5. Apache Apache Web Server, www.apache.org
6. Arndt DJ, Zincir-Heywood AN (2011) A comparison of three machine learning techniques for encrypted

network traffic analysis. In: 2011 IEEE symposium on computational intelligence for security and
defense applications (CISDA). IEEE, pp 107–114

7. Bakhshi T, Ghita B (2015) User traffic profiling. In: Internet technologies and applications (ITA), 2015.
IEEE, pp 91–97

8. Biernacki A (2016) Analysis of aggregated HTTP-based video traffic. J Commun Netw 18(5):826–836
9. Biernacki A (2017) Improving Video Quality by Diversification of Adaptive Streaming Strategies. KSII

Trans Internet Inf Syst 11(1):374–395
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45. Velan P, Čermák M, Čeleda P, Drašar M (2015) A survey of methods for encrypted traffic classification
and analysis. Int J Netw Manag 25(5):355–374

46. Yao J, Kanhere SS, Hossain I, Hassan M (2011) Empirical evaluation of HTTP adaptive streaming under
vehicular mobility. In: International conference on research in networking. Springer, pp 92–105

47. Zhang J, Chen X, Xiang Y, Zhou W, Wu J (2015) Robust network traffic classification. IEEE/ACM
Trans Netw 23(4):1257–1270

48. Zhang J, Xiang Y, Wang Y, Zhou W, Xiang Y, Guan Y (2013) Network traffic classification using
correlation information. IEEE Trans Parallel Distrib Syst 24(1):104–117

Arkadiusz Biernacki received the M.Sc. and Ph.D degree in Computer Science from the Silesian University
of Technology, Poland, in 2002 and Ph.D. 2007 respectively. From 2007 he is an Assistant Professor at the
Silesian University of Technology. His research interests focus on network traffic modelling and computer
system simulations.

https://ieeexplore.ieee.org/document/8543584

	Identification of adaptive video streams based on traffic correlation
	Abstract
	Introduction
	Application level flow control
	Play-out algorithms

	Related works
	Traffic clustering
	MinMax K-Means
	OPTICS
	AutoClass
	Measures of similarity
	Evaluation

	Laboratory set-up
	Clustering performance
	Conclusion
	References




