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Abstract
The effective extraction of continuous features in ocean optical remote sensing image is the key to
achieve the automatic detection and identification for marine vessel targets. Sincemany of the existing
datamining algorithms can only dealwith discrete attributes, it is necessary to transform the continuous
features into discrete ones for adapting to these intelligent algorithms. However, most of the current
discretization methods do not consider the mutual exclusion within the attribute set when selecting
breakpoints, and cannot guarantee that the indiscernible relationship of information system is not
destroyed. Obviously, they are not suitable for processing ocean optical remote sensing data with
multiple features. Aiming at this problem, a multivariable optical remote sensing image feature
discretization method applied to marine vessel targets recognition is presented in this paper. Firstly,
the information equivalent model of remote sensing image is established based on the theories of
information entropy and rough set. Secondly, the change extent of indiscernible relationship in the
model before and after discretization is evaluated. Thirdly, multiple scans are executed for each band
until the termination condition is satisfied for generating the optimal number of intervals. Finally, we
carry out the simulation analysis of the high-resolution remote sensing image data collected near the
coast of South China Sea. In addition, we also compare the proposed method with the current
mainstream discretization algorithms. Experiments validate that the proposed method has better
comprehensive performance in terms of interval number, data consistency, running time, prediction
accuracy and recognition rate.
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1 Introduction

Automatic detection and recognition of vessel targets is one of the most active research topics
in the field of ocean remote sensing image analysis and processing. As its name implies, the
aim of vessel detection and recognition is to extract, identify and locate ship targets in the
remote sensing image without human intervention [18]. Among the data acquired on remote
sensing satellites for vessel target surveillance, optical remote sensing image combined with
the characteristics of all-day and all-weather SAR imaging including the phase information,
has become the research hotspot of the current vessel target detection and recognition
technology [7], due to their advantages of high spatial resolution, intuitive content, significant
structure, etc.. To analyze and process the monitored data, the feature extraction of remote
sensing images must be performed firstly. Since many existing data mining algorithms can
only deal with discrete attributes, continuous features need to be transformed into discrete
features to adapt to these intelligent algorithms for expanding the scope of application. On the
other hand, the feature extraction of ship targets is mainly confronted with the problems of
strong sea clutter interference in extreme sea conditions [3], numerous types of vessels,
complex movement of vessels on the sea surface, less actual measured data of vessels and
so on. In addition, the grayscale and texture features of remote sensing images are often
indistinguishable from the port surface [10]. Compared with the offshore vessels on a simple
sea background, the extraction of features is relatively more difficult. Therefore, reasonable
discretization is very important in the process of feature extraction. It can not only reduce the
space dimension of continuous features, eliminate data redundancy, reduce the complexity of
program execution, but also reduce the loss of important information and ensure classification
prediction accuracy, helps to improve the efficiency of subsequent intelligent detection and
recognition algorithms.

The essence of discretization is simply to decide how many segmentation points to exploit
and determine the segmentation point location. There are many methods about discretization.
According to whether the data contains category information, they can be classified into
supervised discretization [49] and unsupervised discretization [4]. Supervised discretization
needs to consider category information, such as 1R [1], ChiMerge [34], etc., however,
unsupervised discretization does not require any category information, such as Equal-Width
[30], Equal-Frequency [11], and so on. Although discretization, as a data reduction technique
in the data preprocessing stage, has received extensive attention and research in recent years,
and has achieved fruitful research results [13, 36], however, most discretization algorithms still
have relatively few applications in the analysis and processing of ocean optical remote sensing
images, and all of them have certain defects, mainly in the following aspects: (1) many
redundant breakpoints in properties and the lack of necessary breakpoints, which make the
learning inaccurate; (2) get a very large number of intervals while avoiding information loss,
and thus the overfitting phenomenon occurred; (3) exponential growth of the program
complexity, unable to meet the real-time dynamic target recognition processing; (4) the choice
of breakpoint does not consider the breakpoint mutual exclusion among the attributes and
within the attribute, resulting in the destruction of the decision system compatibility; (5) the
reason that difficult to obtain the prior knowledge about the sea or the large changes in the
marine environment for ages leads to the fact that prior knowledge is no longer applicable,
which makes the accuracy of the algorithm decreased. Based on the above analysis, these
algorithms are not suitable for processing multi-feature optical remote sensing data in complex
marine environment obviously.
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Regarding the issues above, in order to get the optimal set of discrete breakpoints from the
image and to quickly and accurately separate the vessel targets in the image, we propose a new
method called MFD-mvtR (Multivariable optical remote sensing image Feature Discretization
applied to marine vessel targets Recognition) in this paper. The basic idea is as follows: (1) tag
the target area with significant visual features in the image, in the case of port images, the
grayscale value of the boundary area of the port needs to be converted before the tagging to
improve the range of gray areas of interest; (2) use the labeled area as a training sample to
establish the image information decision table; (3) adopt the Top-Down discretization method
for each band in the image to calculate the information entropy of all the intervals in the current
band [22], then select the interval with the highest entropy value for splitting; (4) discretize the
original decision table by the obtained candidate breakpoints, and introduce the equivalent
model of rough set [27] to compare the upper and lower approximation sets of the original
decision table with that of the new decision table to get the extent of change in the indiscern-
ible relationship of the image information table; (5) adjust the algorithm parameters and the
segmentation threshold according to the extent of the change in the indiscernible relationship,
then rescan each band until termination condition are met to obtain the optimal discretization
result.

In the original entropy algorithm [35], the number of segments is generally determined by
the user-defined splitting number or the given minimum entropy threshold, while in our
algorithm, besides the above conditions, the number of segments is controlled by calculating
the number of differences about the upper and lower approximate sets between before and after
discretization. In the literatures [9, 20, 51], when using the rough set to measure the system
compatibility, Eq. 1 is usually used to calculate the dependence among the knowledges. When
U is the set of objects, Q and R are knowledges about U, POSQ(R) is the positive domain of
knowledge R under the representation of knowledge Q, and card(•) is the cardinality of the set,
That is, the number of elements contained in the set.

γQ Rð Þ ¼ card POSQ Rð Þ� �
card Uð Þ ð1Þ

However, in practical applications, γ simply reflects the number of missing elements, while the
upper and lower approximate sets describe the entire equivalence class. Its changes are directly
related to the category information in the remote sensing image. Therefore, it would be more
appropriate than γ to measure system compatibility.

Finally, the high-resolution remote sensing image data collected from the port area of the
South China Sea is simulated and analyzed, and the proposed method is compared with EDiRa
[35], ChiMerge [34], 1R [1], NCAIC [47], FUDC [50], Cramer’s V-Test [43], Chi2 [31], these
seven state-of-the-art discretization methods. Experimental results show that the proposed
method not only has better comprehensive performances in terms of interval number, consis-
tency, and prediction accuracy, but also achieves higher detection rate and lower false alarm
rate in classifier of ship identification [38]. It validates the effectiveness of the proposed
method in the application of marine ship target detection and identification. Therefore, our
method is more suitable for the discretization of optical remote sensing image features for
target detection and identification of marine vessels.

This paper is composed of four section. The remaining sections are organized as follow.
Section 2 describes the problem model and basic concepts for the proposed work. Section 3
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introduces the proposed algorithm model. The experimental results and discussion are pre-
sented in Section 4. Section 5 concludes this paper.

2 Problem model

2.1 Remote sensing image feature discretization

In simple terms, remote sensing image feature discretization is to adopt a specific method
to divide a continuous feature interval on the image into a limited number of cells, then
to associate these cells with a set of discrete values. The discretization of continuous
features (also called continuous attributes) is an important preprocessing step for data
mining and machine learning, and is directly related to the effect of mining or learning
[6, 19].

The continuous features of optical remote sensing images are generally represented by
digital number (abbreviated as DN values). According to different levels of quantifica-
tion on different types of sensors, the value range of features in each band is not the
same. Some use 8-bit quantization, then the DN value range is 0–255, and some use 16-
bit quantization, such as high-resolution worldview-2 satellite [46], the value range is
larger, reaching 0–65,535. On the other hand, there are many bands in multispectral
remote sensing image, especially hyperspectral remote sensing images, the number of
bands is as high as tens or even hundreds. As a result, in the features processing of
optical remote sensing images, a TB-level data volume will be generated, which causes
considerable difficulties for most of the knowledge extraction, data mining, classification
and target recognition algorithms [5]. Therefore, it is very necessary to properly
discretize the band pixel values in optical remote sensing images. It can convert
quantitative data into qualitative data to obtain remote sensing feature partitions that
do not overlap each other, also greatly reduce the amount of data to be processed, and
optimize the data set [32].

Besides the above mentioned issues of large-scale data, the problem of data similarity
is also very important. In the application of marine vessel target identification, due to the
polymorphism of the port and the complexity of the background, the grayscale and
texture features of the docking vessel are very similar to the ports, and they are difficult
to distinguish in terms of the tonality of the image, which has caused great difficulties for
the identification of boats in ports. However, through observing the pixel values of each
band of the high-resolution optical remote sensing image, it is found that the pixel values
of boats and ports are similar on some bands while significant differences on other
bands, as shown in Fig. 1.

The above is a partial sample of the boat and port targets from the GF-2 satellite
image with four bands. We can see that the DN values of boats and ports in band 1 are
very close while significant differences in band 2, band3 and band 4. In general, the
resulting knowledge granularity tends to be fine if the equivalence classes are divided in
the bands with close DN values among different categories. On the contrary, the resulting
knowledge granularity will appear coarse if the equivalence classes are divided in the
bands with significant differences in DN values among different categories. When these
bands are mixed together to divide equivalence classes, the bands with large differences
will be affected by the bands with small differences, and the overall knowledge
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granularity will be skewed toward the bands with small differences, which leads to the
generation of excessive intervals to fail to achieve the ideal discretization scheme.
Therefore, in addition to converting DN values at the port junction, we also need to
group the bands for preventing the bands with large DN value differences of targets from
being interfered by the bands with small DN value differences of targets in the process of
discretizing the features of harbor images. For all remote sensing characteristics listed
above, this paper establishes a basic framework of optical remote sensing image feature
discretization for marine vessels recognition, as shown in Fig. 2.

First of all, the remote sensing image features are grouped according to the similarity
of the pixel values of boat and port, and the new features set generated is sorted
according to a certain specified rule, such as insertion sort, bubble sort, selection sort,
quick sort, heap sort, shell sort, etc. Then, initially determine the dividing points of the
continuous features, that is, the selection of initial breakpoints. The next step is to split or
merge breakpoints according to the discretization algorithm. Finally, the discretization

(a) DN values of boat (b) DN values of port

;     ROI      name:           boat

;     ROI rgb value: {255 0 0}        

;     ROI      npts:                10

File X File Y B1 B2 B3 B4

4354 2343 0.316169 0.31157 0.187685 0.201234

4356 2343 0.342704 0.286512 0.173978 0.201234

4357 2343 0.316169 0.310181 0.183118 0.187844

4353 2343 0.309059 0.308097 0.187685 0.203465

4358 2344 0.332703 0.328209 0.19225 0.191193

4358 2345 0.337413 0.340654 0.102132 0.209041

4360 2345 0.389432 0.264839 0.156432 0.159915

4357 2345 0.310245 0.283023 0.17474 0.193425

4355 2346 0.300151 0.29 0.17474 0.185612

4357 2346 0.367875 0.362706 0.199093 0.21127

;     ROI      name:           port

;     ROI rgb value: {128 0 0}        

;     ROI      npts:                10

File X File Y B1 B2 B3 B4

3922 3828 0.362622 0.412668 0.283062 0.303552

3922 3829 0.3597 0.409943 0.280049 0.303552

3921 3829 0.364374 0.415392 0.282309 0.304661

3921 3830 0.352091 0.400393 0.270252 0.298006

3922 3830 0.353263 0.400393 0.277036 0.299116

3930 3830 0.318535 0.451692 0.230199 0.252468

3931 3830 0.327987 0.458579 0.237013 0.261363

3932 3830 0.340354 0.383296 0.253648 0.270253

3921 3831 0.3597 0.405852 0.281555 0.299116

3922 3831 0.35619 0.401758 0.280049 0.298006

Fig. 1 Comparison of DN values of boat and port in each band

Fig. 2 Feature discretization process of remote sensing image
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result is evaluated. If the criterion is satisfied, the whole discretization process is
terminated, otherwise, returns to the previous step.

2.2 Remote sensing image feature model based on rough set

Rough set theory is an important mathematical tool for handling uncertain data [21]. In
rough set theory, knowledge is regarded as the division of the universal, that is,
knowledge is considered to be granular, and the uncertainty is caused by the large
granularity in the knowledge. Different from the DS evidence theory [39] and the fuzzy
set theory [14, 24], the membership function value of the object in the rough set theory
depends on the knowledge base. It can be directly obtained from the required data
without any prior knowledge or additional information. So, when the prior knowledge
of the ocean is not easy to obtain, it is much more objective to use rough set to reflect the
uncertainty of marine knowledge [26].

In rough set, data tables are called information systems. It can be described as a 4-tuple
S = (U, A, V, f), where U is a non-empty finite object set, A is a non-empty finite attribute set,
V =U(Va) is a set of attribute values, and Va is a value domain of attribute a, f :U × A→ V is a
mapping function that represents the mapping from each object to an attribute value. If one of
the attribute set is considered as a decision attribute, the above-defined information system S is
called a decision table, where A =C ∪D contains condition attribute set C and decision
attribute set D.

Since optical remote sensing images generally contain multiple bands, i.e. multiple feature
variables. If bands are discretized independently, the result will largely destroy the compati-
bility of the original system, thus affecting the subsequent classification accuracy and target
recognition rate. Therefore, this paper establishes a multivariate remote sensing image feature
model based on the rough set theory in the analysis and processing of remote sensing images.
Where U denotes the collection of image pixels, the attributes in condition attribute set C
represent bands, D contains only one decision attribute that corresponds to the land cover class
in the remote sensing image, Va represents the value domain of the ath band. The model is
represented by the following matrix.

DS ¼

u1 c11 c12 : : : c1m d1
u2 c21 c22 : : : c2m d2
: : : : : :
: : : : : :
: : : : : :
un cn1 cn2 : : : cnm dn

2
6666664

3
7777775

ð2Þ

Each row represents a sample item, training sample set U = {u1, u2, ..., un}, vector
C = {c1, c2, ..., cm} indicates the DN values of the sample in m bands. The last column
is the decision attribute column D, which identifies the category information of the
sample. Each item consists of a sample number, band attributes, and a class attribute.
The value range of band is 0 ≤ cij ≤ 1, where cij is the DN value of the ith sample in the
jth band. The value of the decision attribute is represented by a natural number. Its value
range is determined according to the number of the given number of the categories. For
example, if the number of defined categories is 5, the value range is D = {1, 2, 3, 4, 5}.
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2.3 Information entropy measure of feature interval

Information entropy is a well-known mathematical theory proposed by Shannon, the
father of information theory, for solving the quantitative measurement of information in
the communication field [37]. Catlette, Fayyad, and Irani introduced information entropy
into the discretization algorithm [2, 8]. According to the discussion of Fayyad and Irani,
the formulas of information entropy and break point information entropy are given
respectively.

E Sð Þ ¼ − ∑
k

i¼1
P Ci; Sð Þlog P Ci; Sð Þð Þ ð3Þ

E A; T ; Sð Þ ¼ jS1j
jSj Ent S1ð Þ þ jS2j

jSj Ent S2ð Þ ð4Þ

Where S is a set of objects, k is the number of categories, Ci represents the number of instances
whose category is i in the set of objects S, A, T represents the breakpoint T on the attribute A, S1
and S2 represent the two objects sets of interval divided by breakpoint T respectively, ∣S∣
denotes the cardinality of the set S.

The information entropy is a good measure for evaluating the divided feature inter-
vals. It can reflect the stability of the frequency of all classes within the interval [40],
thus ensuring the validity of the interval division. In literature [42], a semi-supervised
classification framework of hyperspectral images based on the fusion evidence entropy is
proposed and implemented by estimating the fusion evidence entropy of unlabeled
samples using the minimum trust evaluation and maximum uncertainty, which makes it
possible to achieve better classification charts with few labeled samples. Therefore, this
paper applies information entropy to the evaluation of the feature interval division of
optical remote sensing images. Where S denotes a set of image pixels, k denotes the
number of land cover categories, Ci denotes the number of instances of the category i in
the pixel set S, A, T represent the break point T in the band A, S1 and S2 represent the two
pixel sets of interval divided by the break point T in the band A respectively, ∣S∣
represents the cardinality of the set S, that is, the total number of pixels included in S
[44].

3 Multi-variable optical remote sensing image feature discretization
algorithm based on information entropy

The essence of discretization is to decide how many segmentation points to exploit and
determine the segmentation point location, and then divide the subintervals or merge
breakpoints according to certain criteria. The feature discretization method of remote
sensing image based on information entropy proposed in this paper, is a multivariate
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supervised algorithm that adopts the top-down [17, 36] strategy. The method is to find
the one with the largest entropy among the subintervals each time, and then to gain the
optimal number of intervals based on the indiscernible relationship.

3.1 Interval entropy table

In order to quickly find the subinterval with the largest entropy, a table needs to be established
to record the entropy of all current intervals, i.e., the interval entropy table, abbreviated as IET.
IET contains a total of 3 columns, the first column records the lower bound value of the
corresponding interval whose upper bound value is recorded in the second column, and the
third column records the corresponding entropy value obtained through a series of calcula-
tions, as shown in Table 1.

Each row in the table corresponds to a subinterval, and all of the subintervals are
arranged in ascending order according to entropy. The method is to search for the
separable interval with the largest entropy from the last item each time. Separable
intervals contain at least two breakpoints (i.e., the lower bound of the interval is not
equal to the upper bound of the interval), and the entropy is greater than the given
threshold. At the beginning, IET contains only one row, that is, the entire continuous
feature interval. As the algorithm runs, it starts to split. In the end, IET is imple-
mented for saving all intervals by updating the minimum and maximum of the two
operated intervals after adding a new row at the current split interval.

3.2 Calculating the number of differences in approximate sets

In order to calculate the number of differences between before and after discretization, the
concepts of indiscernible relationship, lower approximation set and upper approximation set
need to be introduced.

3.2.1 Indiscernible relationship

Given a decision table S = (U, R, V, f), where U is a finite set of objects, R is a set of
attributes, including a set of conditional attributes C and a set of decision attributes D.
For each attribute subset A ⊆ R, the indiscernible relationship IND(A) is defined in Eq. 5.

IND Að Þ ¼ < x; y > j < x; y > ∈U2;∀a∈A a xð Þ ¼ a yð Þð Þ� � ð5Þ

Table 1 IET structure

Low Bound Upper Bound Entropy Value

L1 U1 V1
L2 U2 V2
.
.
.

.

.

.

.

.

.
Ln Un Vn
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The equivalence class about attribute subset A in the universal U is also defined.

U jIND Að Þ ¼ X jX⊆U∧ ∀x∈X∀y∈X⇒∀a∈A a xð Þ ¼ a yð Þð Þð Þf g ð6Þ

3.2.2 Lower approximate set and upper approximate set

According to the above decision table S, for each subset X ⊆U and the equivalence classes of
the attribute subset A in the universal U, the lower and upper approximate sets of X are
respectively defined in Eq. 7 and Eq. 8.

A− Xð Þ ¼ ∪ Y jY∈U jIND Að Þ∧Y⊆Xf g ð7Þ

A− Xð Þ ¼ ∪ Y jY∈U jIND Að Þ∧Y∩X≠∅f g ð8Þ

In order to elaborate on the calculation process of the lower and upper approximate sets
differences between before and after discretization in the next section, we suppose that A =C,
X ∈U ∣ IND(d), and d is one of the decision attributes in set D. From the above definition, the
lower approximate set C−(dX) and the upper approximate set C−(dX) corresponding to each
decision attribute value can be calculated.

3.2.3 Differences between before and after discretization

According to the above definition, the number of differences Nd =Nl +Nu between before and
after discretization about the lower and upper approximate sets can be obtained, where Nl is the
number of the lower approximate sets differences while Nu is the number of the upper
approximate sets differences. Nd, Nl and Nu are initialized to 0 respectively. The calculation
steps of Nd are as follows.

Step 1: Select element di(i = 1, 2, ..., n) from decision attribute d of the original table, where
n is the number of different values of the decision attribute d in the universal U,
namely the number of categories;

Step 2: Calculate the lower approximate set C−(di) and the upper approximate set C−(di) of
di. If there are still elements in decision attribute d that have not been calculated,
return to Step 1, otherwise, continue the next step;

Step 3: Discretize the original decision table using the finally generated IET to get the new
decision table SE = (U, R, VE, fE);

Step 4: Select the element di(i = 1, 2, ..., n) from the decision attribute d in the new table,
then calculate the lower approximate set C−(di)' and the upper approximate set
C−(di)' of di;

Step 5: Determine whether the upper and lower approximate sets are equal before and after
discretization, respectively, in case C−(di) ' ≠C−(di), then Nl =Nl + 1, in case C−(di) '
≠C−(di), then Nu =Nu + 1; if there are still elements in the decision attribute d that
have not been calculated, return to Step 4, otherwise, Nd =Nl +Nu, and the program
ends.
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3.3 Algorithm flow

Algorithm 1: MFD-mvtR Pseudo Code

Input: Remote sensing image features

Output: Discretized features

begin
New features set               Features are grouped according to the similarity of the DN values of boat and port;

for each group i in new features set do
while Stopping criteria are not met do

for each feature j in group i do
Create an IET table;

while k > 0 do

Initialize IET by computing entropy values of all interval using Eq. (3);

Arrange IET in ascending order according to entropy value;

N         Size of IET;

VE         Entropy value of interval k;

k = N;

if VE < threshold do
break;
else if the number of breakpoints in interval k is larger than 1 do

Split interval k using Eq. (4);

k = N+1;

else do
k = k-1;

end
end

end
end
Modify the threshold;

Stopping criteria Calculate the differences of the upper and lower approximation sets using Eq. (5) ~ Eq. (8);     

end
end
Return the discretized features from all groups;

end

A basic flow of MFD-mvtR algorithm is represented in Algorithm 1. At the begin-
ning, the original decision table is input to the program execution and bands are
grouped to generate the new features set according to the similarity of boat and port.
Discretization is performed in order from the first attribute in the condition attribute
set to establish the IET. Then, the separable interval with the largest entropy value is
found to split from IET in each loop until all the attributes have finished the
discretization. Finally, the number of differences between before and after
discretization about the lower and upper approximate sets is calculated. If the spec-
ified deviation are not satisfied, then the splitting terminated conditions including the
threshold of entropy and the number of iterations are modified, and the new features
set will be re-discretized.

4 Experiments and analysis

4.1 Data source

The experimental data used in this paper comes from a GF-2 satellite data in the
offshore port area, China, on October 7, 2015, as shown in Fig. 3. The multispectral
image of this GF-2 satellite data contains four bands. The objects in this image are
divided into six categories: boat, port, building, bare land shoal, water body and
vegetation.
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4.2 Experimental environment

In order to verify the effectiveness of the proposed method, all four algorithms were executed
on a computer with Intel(R) Core(TM) i5-5200 U CPU@2.20GHz processor and 12G RAM
hardware. Visualization, programming, simulation, testing and numerical calculation process-
ing of this experiment are implemented in MATLAB (R2016a version) environment. Radio-
metric calibration of images, atmospheric correction, and comparison of results before and
after discretization are performed under ENVI 5.3 environment.

4.3 Evaluation of discretization quality

Firstly, several regions covering six major categories are randomly selected from the image
and integrated as training samples to be discretized, containing a total of 2607 pixels, among
which 676 are boats, 742 are ports, 143 are buildings, 116 are bare land shoals, 807 are water
bodies, 123 are vegetation. Then, after the pixels are sorted, and eliminates the duplicates by
value within the band, the number of initial breakpoints for the four bands is obtained, which is
502, 493, 358, 359, respectively. Therefore, the training sample has a total of 1712 breakpoints
at the beginning. The quality of the discretization scheme mainly depends on the number of the
obtained intervals and the data inconsistencies in the new information table. The number of
data inconsistencies is expressed by the following mathematical formula.

Inconsistencies ¼ ∑
N

k¼1
Totalk−Max Ck

1;C
k
2; :::C

k
M

� �� � ð9Þ

Where, N is the number of the obtained intervals under the current discretization scheme and
M is the number of categories in the information table. Totalk is the number of instances

contained in the kth interval. Ck
i represents the number of instances of the ith category in the

Fig. 3 Area used for study
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kth interval, 1 ≤ i ≤M, and Max Ck
1;C

k
2; :::C

k
M

� �
is the largest number of instances among all

categories in the kth interval.
We use the proposed method to discretize the above data, then compare with EDiRa [35],

ChiMerge [34], 1R [1], NCAIC [47], FUDC [50], Cramer’s V-Test [43], Chi2 [31], these
seven state-of-the-art discretization methods. The results of the number of intervals for each
band, indiscernible relationship differences, data inconsistency, and system runtime are shown
in Tables 2 and 3.

As shown in Tables 2 and 3, we can see that 1R algorithm obtains the minimum
number of breakpoints in the four bands, but the extent of change in the indiscernible
relationship is the largest, reaching 12 level, the data inconsistency is also the highest,
reaching 38 errors. The extent of change in indiscernible relationship of ChiMerge
algorithm is 2 level, and its data errors is two more than our method, but it is 127 more
than the number of breakpoints obtained by our method. Although EDiRa algorithm has
almost the same number of breakpoints as the proposed method, the extent of change in
indiscernible relationship is up to 4 level, and the number of data errors is more than
three times that of the method in this paper. NCAIC, Cramer’s V-Test and Chi2 have the
same degree of change in indiscernible relationship and number of data errors as
ChiMerge. Their breakpoints are respectively 215, 87, 100 more than our method. The
extent of change in indiscernible relationship of FUDC algorithm is 4 level, its data
errors is 2 more than MFD-mvtR, and the number of breakpoints is also 61 more than
our method. The seven algorithms have similar performance in terms of running time,
however, the proposed method is slightly better. Based on the above analysis, the overall
performance of the proposed method is best in the eight algorithms. Figure 4 shows a
performance comparison of the eight methods on the number of intervals and data
consistency.

The green area in Fig. 4 is the ideal solution range for experimental prediction. In these
eight algorithms, only the result produced by our proposed method falls into this ideal region.
The experimental results obtained above were analyzed in this paper to find out the reasons as
follows. The method of this article is discretized by features grouping at the beginning. After
combining the rough set to optimize the result, the number of the indiscernible relationship
differences is reduced to 0. So, the minimum interval number and the lowest data error are
guaranteed. Although EDiRa algorithm uses entropy to measure the stability of the interval, it
is necessary to consider overall similarity between the label rankings in the training set while
employing the top-down split strategy of MDLP (Minimum Description Length Principle) [35,
36]. Therefore, when the number of samples increases, the time overhead will increase

Table 2 Comparison of the number of intervals in each band

Method Band1 Band2 Band3 Band4 Number of intervals

MFD-mvtR 350 350 346 299 1345
EDiRa 349 349 346 299 1343
ChiMerge 442 433 298 299 1472
1R 64 70 42 40 216
NCAIC 447 468 346 299 1560
FUDC 397 439 312 258 1406
V-Test 432 423 288 289 1432
Chi2 410 438 325 272 1445
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significantly. In addition, because it discretizes only one band at a time, the results obtained
will destroy the compatibility of the system to some extent. So, we can see that the number of
indiscernible relationship differences it obtains is larger than the number of the proposed
method which equally use the entropy to measure the intervals. FUDC algorithm also uses
entropy to measure the stability of the interval. But unlike EDiRa algorithm, Eq. 1 in the rough
set is used by FUDC to define the uncertainty of decision system. Therefore, FUDC has much
fewer errors than EDiRa. However, as mentioned in Chapter 1, uncertainty only reflects the
number of differences in elements of the equivalence class before and after discretization, and
does not represent the number of differences in the equivalence class of decision system, thus,
it is not appropriate to use uncertainty to measure the compatibility of decision system. NCAIC
algorithm uses class-attribute interdependency as the partitioning criterion of the interval. In
addition, the upper approximation of each class and data distribution information are both
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Fig. 4 Comparison of the eight methods on the number of intervals and inconsistencies

Table 3 Comparison of performance

Method Differences Inconsistencies Run time

MFD-mvtR 0 5 53 s
EDiRa 4 16 98 s
ChiMerge 2 7 68 s
1R 12 38 56 s
NCAIC 2 7 95 s
FUDC 4 7 85 s
V-Test 2 7 91 s
Chi2 2 7 86 s
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considered. However, considering only the upper approximation does not fully describe the
entire equivalence class, the discrete discriminant still has a certain probability to skew the
class attribute containing the most samples in the interval, resulting in an excessive number of
intervals. Therefore, we can see that although NCAIC obtains fewer errors, the number of
intervals is the most among the eight algorithms. ChiMerge algorithm uses the method of
calculating the category information based on the similarity of intervals to judge and merge
adjacent intervals. It use Pearson statistics to determine whether the current breakpoint should
be removed, i.e. whether the two intervals adjacent to the breakpoint should be merged.
Although it guarantees the mutual exclusion of adjacent intervals, it does not guarantee
the stability of categories within an interval. In order to make the interval stability meet
the requirements as much as possible, it is necessary to increase the number of intervals
as a cost. Therefore, we can see that the number of intervals obtained by ChiMerge is
second only to NCAIC. Based on ChiMerge, Cramer’s V-Test algorithm weakens the
huge influence of n in the discretization scheme through dividing χ2 by In(n), where n is
the number of intervals. Although the discretization process can be accelerated in some
occasions, like ChiMerge, the number of intervals obtained is large because only
considering the mutual exclusion of adjacent intervals. Although Chi2 [31] algorithm
and Extended Chi2 [16] algorithm proposed later both improve the criteria for determin-
ing the importance of breakpoints, the lack of related theoretical evidence still leads to
the above discussed problems. The number of intervals for 1R algorithm is given by the
user, but the criteria for dividing the interval are too simple and lack flexibility. Although
it can quickly obtain the result of discretization, it cannot guarantee both the mutual
exclusion of adjacent intervals and the stability of the interior of interval, causing great
damage to the compatibility of the system. Therefore, we can see that it has obtained the
largest number of indiscernible relationship differences and data errors.

4.4 Evaluation of classification accuracy

The evaluation method at pixel-level is usually adopted for classification accuracy of remote
sensing image. This evaluation method is to randomly select the sample data on the classification
map then evaluate the classification accuracy by statistically analyzing and comparing with the
actual measurement results. The result of the classification accuracy evaluated at pixel-level is
usually represented by confusion matrix [23]. The definition of confusion matrix is as follows.

CM ¼ cmij
� �

n�n ¼

cm11 cm12 : : : cm1n

cm21 cm22 : : : cm2n

: : : :
: : : :
: : : :

cmn1 cmn2 : : : cmnn

2
6666664

3
7777775

ð10Þ

In the above matrix, n is the total number of categories in the remote sensing image, and cmij is
the number of pixels in the test sample set that should belong to the ith category but are
classified into the jth category. Obviously, the greater the value of the diagonal elements in
confusion matrix is, the higher the classification accuracy becomes. On the contrary, the
smaller value of the diagonal elements in confusion matrix indicates that the number of
classification errors is more and the classification accuracy is lower. So, we can get the overall
average prediction accuracy through confusion matrix. As shown in Eq. 11.
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PAccuracy ¼
∑
n

i¼1
cmii

∑
n

i¼1
∑
n

j¼1
cmij

ð11Þ

It is actually the ratio of the number of correctly classified instances to the total number of
samples. We can also get the user’s accuracy of the specified category. As shown in Eq. 12.

Pi
u ¼

cmii

∑
n

j¼1
cmij

ð12Þ

Where, Pi
u is the user’s accuracy of the ith category. It is the ratio of the number of correctly

classified instances in the ith category to the number of instances contained the ith category.
The overall average prediction accuracy and the specified category of user’s accuracy both
describe the classification accuracy from different aspects. Their calculations are simple and
have a clear statistical significance.

As well as confusion matrix, Kappa coefficient [41] is also widely used in remote
sensing image classification accuracy evaluation. Based on confusion matrix, it quan-
tifies the overall effectiveness of the classifier. The expression of Kappa coefficient is
shown in Eq. 13.

Kappa ¼
T ∑

n

i¼1
cmii− ∑

n

i¼1
cmiþcmþið Þ

T2− ∑
n

i¼1
cmiþcmþið Þ

ð13Þ

Where, T is the total number of pixels used for accuracy evaluation and n is the number of
categories. cmii is the number of pixels on the ith row and ith column in confusion matrix, i.e.,
the number of correctly classified pixels. cmi+ is the total number of pixels on the ith row and
cm+i is the total number of pixels on the ith column, respectively. Compared with confusion
matrix, Kappa coefficient not only takes account of the correctly classified pixels on the
diagonal, but also considers errors of omission and commission that are not on the diagonal.
Thus, the two evaluation indicators, confusion matrix and Kappa coefficient, are not equal in
general. At present, the application of neural network technology in remote sensing image
processing is more and more advanced and comprehensive [12, 15, 33, 45, 48]. It has become

Table 4 The classification accuracy of the eight algorithms

Method Accuracy Kappa

MFD-mvtR 85.2083% 0.8225
EDiRa [35] 74.1667% 0.6900
ChiMerge [34] 80.2083% 0.7625
1R [1] 56.4583% 0.4775
NCAIC [47] 80.6250% 0.7675
FUDC [50] 76.2500% 0.7150
V-Test [43] 79.7917% 0.7575
Chi2 [31] 79.3750% 0.7525
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an efficient and reliable method for classification of remote sensing images. Table 4 shows the
results of the eight algorithms analyzed on the neural network classifier.

It can be seen from the table that the proposed method has the best result in terms of the
average prediction precision of the six categories of boats, ports, building, bare land shallow,
water body and vegetation, which is about 10% higher than EDiRa algorithm. On the other
hand, we can also see that the number of indiscernible relationship differences has a greater
impact on the accuracy of the classification. The number of indiscernible relationship differ-
ences in ChiMerge algorithm is only 2 fewer than that in the proposed method, but the
accuracy is different by 5 percentage points. NCAIC, Cramer’s V-Test, Chi2 and ChiMerge
are consistent in terms of the number of indiscernible relationship differences, so their
accuracies are approximate. Similarly, the accuracies of FUDC and EDiRa are also approxi-
mate. 1R algorithm has the largest number of indiscernible relationship differences, so the
accuracy obtained is the lowest. We adjust the proposed method parameters to obtain the
accuracies for the different number of bands [44] under the different number of indiscernible
relationship differences, as shown in Fig. 5.

We can see from Fig. 5, with the increase of the number of bands, the accuracy also rises.
Conversely, the increase in the number of indiscernible relationship differences leads to a
decrease in accuracy. Figure 6 is a classification effect chart obtained by these eight algorithms
in turn.

From (a) to (h) in Fig. 6 correspond to the proposed method, EDiRa algorithm, ChiMerge
algorithm, 1R algorithm, NCAIC algorithm, FUDC algorithm, Cramer’s V-Test algorithm and
Chi2 algorithm, respectively. It can be seen from Fig. 6 that the texture of the objects in Fig. 6a
is clearer, and the vessels on the image can be more effectively identified. In particular, the
junction between the docking vessel and the port can be well separated. Compared with the
classification diagrams of the other seven algorithms, there are fewer bright fringes and the
boundaries of each category are clear in the classification diagram of MFD-mvtR algorithm.
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However, the middle areas of (b) to (h) in Fig. 6 respectively have a certain number of bright
fringes to different extents, and there are also unrecognizable spots in the water area.
Especially in Fig. 6d, the boundary between the docking vessel and the port is blurred, and
there are a lot of unrecognizable spots in the water area. From this point of view, the quality of
the classification map of our method obtained by the classifier is better than the others. The
effect of the proposed method on vessel targets recognition is shown in Fig. 7.

Figure 7a is the original remote sensing image, which contains a total of 48 vessels,
outlined by red lines. Figure 7b is the classification effect chart of the proposed method, only
the ports and the coastline to the sea are highlighted. The detection rate, false alarm rate, and
missed alarm rate are measured by the total number of ships [28, 29]. The results of
comparative experiments in the proposed method and the other seven algorithms are show
in Table 5. As can be seen from Table 5, the discretization results obtained by the proposed
method can be applied to the ship target recognition to gain both a higher detection rate and a
lower false alarm rate [25]. The comparison result of detection rate is generally consistent with

Fig. 7 The result of vessel targets recognition

Fig. 6 Classification effect chart of the eight methods
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that of the previous classification accuracy. It is related to the number of indiscernible
relationship differences. NCAIC, Cramer’s V-Test, Chi2 and ChiMerge are consistent in terms
of the number of indiscernible relationship differences, so their detection rates are approxi-
mate. Similarly, the detection rates of FUDC and EDiRa are the same. 1R algorithm has the
largest number of indiscernible relationship differences, so, its detection rate is the lowest. Our
method benefits from the fact that the level of indiscernible relationship difference can be
controlled to zero, thus the highest detection rate is achieved.

5 Conclusions and future work

In this paper, a multivariable optical remote sensing image feature discretization method
applied to marine vessel targets recognition is proposed to solve the problem of discretization
of marine remote sensing data with multiple features. Firstly, based on the sample set with DN
values and labels, an image information decision table which use bands as condition attributes
and use land cover classes as decision attribute is established. Secondly, adopt the Top-Down
discretization method for each band in the image to calculate the information entropy of all the
intervals in the current band, then select the interval with the highest entropy value for
splitting. Thirdly, discretize the original decision table by the obtained candidate breakpoints,
and introduce the equivalent model of rough set to compare the upper and lower approxima-
tion sets of the original decision table with that of the new decision table to get the extent of
change in the indiscernible relationship of the image information table. Finally, adjust the
algorithm parameters and the segmentation threshold according to the extent of the change in
the indiscernible relationship, then rescan each band until termination condition are met to
obtain the optimal discretization result. Simulation experiments verify the effectiveness of the
proposed method. Compared with other algorithms, it can obtain fewer intervals and higher
accuracy. It provides a new idea for preprocessing of optical remote sensing image. It also
brings certain guiding significance to the analysis and design of the discretization methods in
the marine targets recognition application. Applying our method to other datasets for further
testing and improvement is the work to be prepared in the future.

The innovations in this article mainly come from the following aspects: (1) by analyzing the
distribution characteristics of DN values of boat and port in each band of the remote sensing images,
a basic framework of optical remote sensing image feature discretization for marine vessels target
recognition was established, and the original features were grouped to solve the problem that
multiple bands interfere with each other in the process of discretization; (2) the compatibility of
the system was measured by replacing the γ in the rough set with the number of indiscernible

Table 5 The comparison experiment results of vessels target recognition

Method Detection rate False alarm rate Missed alarm rate

MFD-mvtR 83.3% 7.0% 16.7%
EDiRa [35] 75.0% 12.2% 25.0%
ChiMerge [34] 79.2% 11.6% 20.8%
1R [1] 66.7% 17.9% 33.3%
NCAIC [47] 79.2% 9.5% 20.8%
FUDC [50] 75.0% 10.0% 25.0%
V-Test [43] 77.1% 9.8% 22.9%
Chi2 [31] 77.1% 11.9% 22.9%
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relationship differences, and information loss after discretization was largely avoided; (3) informa-
tion entropy was introduced to continuously evaluated for the generated discretized intermediate
results, and the feature space was repeatedly scanned to obtain the optimal intervals.

Future research work includes: (1) Apply the method of this article to other data sets (especially
high-dimensional data, such as various hyperspectral remote sensing images) for testing and
improvement, and expand its scope of utilization to make it more practical; (2) Apply this method
to different classifiers for performance comparison and continue to optimize the algorithm model;
(3) Test this method in some complex marine environments, so as to continue to perfect its
implementation framework for marine targets recognition and detection applications.
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