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Abstract Human age estimation from gait is expected to be an important technology for
a variety of applications such as automatic customer counting for marketing research or
automatic age-based access control restriction for a specific area because the gait can be
observable at a distance from a camera (e.g., CCTV). Although the aging process of gait
significantly differs among age groups (e.g., children, adults, and the elderly), previous
studies on gait-based human age estimation employ a single age group-independent esti-
mation model that suffers from large estimation errors when the age variation increases.
We therefore propose an age group-dependent gait-based human age estimation method
for better accuracy. Specifically, in the training phase, we first compose age groups that
are well-separated from each other by clustering gait features along with their age labels.
We then learn a classifier that classifies the gait features for multiple age groups using
a directed acyclic graph support vector machine. Next, we learn an age regression model
for each age group using support vector regression with a Gaussian kernel in conjunction
with a manifold learning technique, i.e., orthogonal locality preserving projection, to better
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characterize the gait feature. In the test phase, given a gait feature, it is first classified into
an age group and then its age is estimated with the age regression model of the classified
age group. Experimental results on a gait database that has the world’s largest population of
participants ranging from 2 to 90 years old demonstrate the state-of-the-art performance of
the proposed method.

Keywords Human age estimation · Age group classification · Support vector regression ·
Manifold learning

1 Introduction

Gait biometrics have recently received more attention because of increasing demands for
visual surveillance. Compared with other biometrics (e.g., irises, faces, and finger veins),
gait has many advantages. For instance, it can be perceivable even at a long distance from a
camera (i.e., from a low-resolution image). Moreover, gait is an unconscious behavior (i.e.,
people generally do not conceal their gait intentionally) and it does not require the subject’s
cooperation. Most gait-based studies focus on gait-based authentication or identification
[17, 30, 34, 36, 38], which can be directly used for many applications such as surveillance,
forensics, and criminal investigations [2, 16, 22].

Moreover, studies on recognizing other human attributes (e.g., age, gender, and ethnic-
ity), also play an important role. Among them, human age estimation is an interesting and
active research area. Existing methods of human age estimation mainly rely on facial images
[4, 9–12, 40]. Face-based human age estimation may, however, not work in surveillance
scenarios because captured facial images may be of low-resolution, have limited texture
information, or even consist of faces covered by a mask. In contrast, gait-based human age
estimation has its own unique advantages, particularly in surveillance scenarios, because
gait can still be well perceived under such conditions. Gait-based human age estimation
therefore provides many potential applications, such as an automatic customer counting
scenario in which age group is of interest for product marketing research or automatic
age-based access control to a specific area.

Besides, gait, or, more strictly speaking, a composite of gait and shape, is feasible for
human age estimation because it contains age discriminative clues. For example, Davis [7]
showed the gait difference between an adult and a child in terms of leg length, stride width,
and stride frequencies. Ince et al. [14] showed that the head-to-body ratio of a child is
different from an adult. Similar findings were also reported in [25] by analyzing the most
widely used appearance-based gait representation (known as gait energy images (GEIs) [13]
or averaged silhouettes [18]), which contains both gait and shape information. To provide
more evidence for this, GEIs averaged over individuals for each age range are shown in
Fig. 1. As we can see, there are obvious changes in head-to-body ratio as children grow. In
addition, as people get older, a middle-aged spread and stoop appear. Hence, such changes
in appearance-based gait representation provide the possibility of gait-based human age
estimation.

Existing gait-based human age estimation methods typically consist of two modules:
feature representation and human age estimation algorithms. As for feature representation,
GEI is the most commonly used [19, 25] because of its simple yet effective properties.
Some other approaches [20, 21] apply age manifold learning techniques on GEI to help
find a low-dimensional representation that captures the intrinsic data distribution and geo-
metric structure of GEI. As for human age estimation algorithms, there are mainly two
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Fig. 1 Mean GEIs of subjects with different age ranges

categories: classification-based approaches [19] and regression-based approaches [21, 25].
The classification-based approaches usually regard each age label as an individual class,
then use multi-class classification algorithms to solve the human age estimation problem,
while the regression-based approaches directly solve a regression problem from a gait
feature to human age, which is more natural because age is essentially represented by a
continuous value.

However, these studies on gait-based human age estimation all employed a single age
group-independent estimation model, regardless of the fact that the aging process of gait
significantly differs among age groups (e.g., children, adults, and the elderly), which can be
easily seen in Fig. 1 (e.g., the growth speed of children is much faster than adults). Thus, a
single age group-independent estimation model may not handle well the differences among
age groups, which suffers from large estimation errors when the age variation becomes
large.

Therefore, we propose an age group-dependent framework for gait-based human age
estimation to handle this problem, which can be regarded as a fusion of classification
and regression-based approaches. The major contributions of this paper are summarized as
follows:

1) An age group-dependent framework for gait-based human age estimation.

The proposed age group-dependent framework is a fusion of classification-based and
regression-based approaches based on a coarse-to-fine principle. More specifically, we
employ a directed acyclic graph support vector machine (DAGSVM) for age group clas-
sification and support vector regression (SVR) in conjunction with orthogonal locality
preserving projection (OLPP) for age group-dependent age regressions, respectively. We
can better handle the differences in age progression among age groups thanks to the
proposed age group-dependent framework, which leads to higher age estimation accuracy.

2) State-of-the-art accuracy on the world’s largest gait database.

The proposed age group-dependent framework is shown to achieve the best accuracy
in terms of mean absolute error (MAE) between an estimated age and a ground truth age,
compared with other state-of-the-art approaches, through experiments on the OU-ISIR Gait
Database, Large Population Dataset with Age (OULP-Age) [39], which has a larger popu-
lation (more than 60,000 subjects) than any other dataset and ages that range from 2 to 90
years old.

3) Low computational cost.

Due to its coarse-to-fine framework, the proposed age group-dependent framework has
low computational cost, which is more easily applicable in real-world applications.

The rest of this paper is organized as follows. In Section 2, we briefly review related
work on human age group classification and human age estimation using gait features. In
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Section 3, we introduce the age group-dependent framework for gait-based human age esti-
mation. In Section 4, we show the experimental results of the proposed methods compared
with other benchmarks. Finally, Section 5 concludes this paper and suggests future research
directions.

2 Related work

2.1 Gait-based human age group classification

Methods of gait-based human age group classification usually employ static and kinematic
features. For example, Davis [7] utilized the properties of leg length, stride width, and stride
frequency to classify two age groups: children (3–5 years old) and adults (30–52 years
old). Begg et al. [1] classified younger people (28.4 years mean age and 6.4 years standard
deviation) and the elderly (69.2 years mean age and 5.1 years standard deviation) using
minimum foot clearance data. In [5], features such as head-to body ratio, leg length, and
stature were used to classified children and adults based on manually labeled datasets. In
[29], spatiotemporal longitudinal and transverse projections of the silhouette during a gait
cycle were used to represent the arms’ swing, the head’s pitch, the hunched posture and
the stride’s length, which showed a considerable discrimination between young and elderly
people. Unlike these studies, some methods used appearance-based gait features for human
age group classification. For example, Mannami et al. [27] used frequency-domain features
[24] to classify three age groups: children (under 15 years old), adults (between 15 and 65
years old), and the elderly (over 65 years old).

However, there are some limitations of the previous human age group classification
methods, e.g., insufficient experimental validation due to limited age range and a small
number of very coarse age groups.

2.2 Gait-based human age estimation

Gait-based human age estimation is a relatively new research area, and hence a limited
number of studies have been done so far. Lu and Tan [19] published the earliest study on this
topic. They first converted each age value into a binary sequence through an effective label
encoding scheme. Then, multilabel-guided (MLG) subspace learning was applied on the
GEIs and their Gabor representations to better characterize and correlate the age information
of a person for estimating human age. Last, they performed multilabel k-nearest neighbors
classification instead of traditional classification methods that regard each age label as a
class and decoded the age information of the label vector.

Subsequently, Makihara et al. [25] proposed a baseline algorithm for gait-based human
age estimation using Gaussian process regression (GPR) [33], which has showed the
great successes in the face-based human age estimation field [40], in conjunction with a
silhouette-based gait feature, i.e., GEI. The experimental results using a whole-generation
gait database including 1728 subjects with a wide age range (from 2 to 94 years old)
indicated the potential possibility for gait-based human age estimation in real-world
applications.

More recently, another work presented by Lu and Tan [21] employed ordinary preserving
manifold analysis methods (i.e., ordinary preserving linear discriminant analysis (OPLDA)
and ordinary preserving margin Fisher analysis (OPMFA)) to find a low-dimensional dis-
criminative subspace for human age estimation. Specifically, samples with similar age
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values were projected to be as close as possible and those with dissimilar age values were
projected as far as possible, simultaneously. Subsequently, a quadratic regression model
was applied to uncover the relationships among these low-dimensional features and the
ground-truth age values.

There is one more work using the fusion of gait and face features to estimate human age
[32]. They first individually fused gait features from several gait periods and face features
from several angels using averaging function, then concatenated these individually fused
features into a single-feature vector. Finally, a similar age estimation method as [19] was
utilized to get the estimated age.

However, these studies all employed a single age group-independent estimation model,
regardless of the fact that aging process of gait significantly differs among age groups (e.g.,
children, adults, and the elderly), and hence suffer from large estimation errors when the
age variation increases.

3 Proposed method

The flowchart of our proposed method is shown in Fig. 2. It contains three modules:
multi-class classification, age group-dependent manifold learning, and age group-dependent
regression. More specifically, in the training stage, we first train a set of support vector
machines (SVMs) as a multi-class classifier for the age groups. Second, for each classified
age group, we carry out age group-dependent manifold learning to map the original GEI
into a low-dimensional subspace for better regression at the next stage. Third, we train a
non-linear SVR model for each age group using all the samples that have been classified
into the specific age group to mitigate the effect of mis-classified test samples. In the testing
stage, for each test sample, we successively conduct multi-class classification, age group-
dependent manifold mapping, and prediction to estimate age. More details of these three
modules are given in the rest of this section.

3.1 Gait feature representation

Among the large number of gait feature representations, GEI [13] is the most popular gait
feature representation and has been frequently used in many gait recognition algorithms and
gait-based human age estimation algorithms due to its simple yet effective properties. We
therefore also choose GEI as our gait representation. A GEI is a gait template obtained by
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Fig. 2 Flowchart of our proposed method
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averaging size-normalized and registered silhouettes over a complete gait period (cycle) T

as

I (x, y) = 1

T

T∑

t=1

B(x, y, t), (1)

where B(x, y, t) is a size-normalized and registered binary silhouette at the position (x, y)

at the t-th frame, and I (x, y) is a gait energy at the position (x, y). Clearly, GEI effectively
represents dynamic gait features, which are the movement of arms and legs, using pixels
with grayscale intensities as well as static gait features using pixels with intensities of 0 or
255, which represent background only or static body parts, respectively.

3.2 Age group definition

In this subsection, we introduce how to define appropriate age groups to obtain a good
trade-off between age group classification and age regression in the following stage. In this
trade-off, if we prepare higher numbers of age groups, we can train a more precise age
group-dependent age regressor while age group classification gets more difficult, and vice
versa. By analyzing the human growth process, we initially divide age, in 5-year intervals,
up to 20 years old because people tend to grow quickly in their youth. We use 10-year
intervals after 20 years old because, as they age, their growth progresses more slowly; for
people over 60, we simply group them together due to the relative lack of training data for
older people. As a result, we have nine age groups (i.e., 0–5, 6–10, 11–15, 16–20, 21–30,
31–40, 41–50, 51–60, and over 60 years). It is, however, difficult to classify these nine age
groups correctly because some age groups may have very similar gait features due to slow
growth. Thus, we intend to further merge some age groups to obtain a moderate number of
age groups to balance the trade-off between age group classification and age regression.

Specifically, we first calculate the L2 distances of the mean GEIs between every two
adjacent age groups because smaller L2 distances indicate more similar age groups. We then
choose a threshold and combine those age groups whose L2 distance is under a threshold.
Finally, we obtain merged age groups that are more easily classified. The results of age
group definition are presented in Section 4.4.

3.3 Age group classification

We choose DAGSVM [31] to solve our multiple age group classification problem. Although
the basic SVM [6] was originally designed for binary classification, DAGSVM can inte-
grate multiple binary SVM classifiers to solve the problem of multi-class classification.
Additionally, DAGSVM is more suitable for groups with ordered information by using a
rooted binary directed acyclic graph. The graph is constructed from root node to leaves by
considering the difficulty of classification for each two groups (from easy to difficult).

Suppose there are K age groups, where the 1st age group is children and the Kth age
group is the elderly. In the training stage, DAGSVM constructs K(K − 1)/2 binary classi-
fiers using a linear kernel and every classifier is trained by the samples from two age groups.
In the testing stage, the method constructs a rooted binary directed acyclic graph that has
K(K − 1)/2 internal nodes and K leaves, as shown in Fig. 3. In the graph, each node is a
binary SVM classifier for the ith and j th age groups; each leaf indicates an age group deci-
sion. The root node is the easiest classifier between children and the elderly, while the node
in the four layer is the most difficult classifier between two adjacent age groups. Given a
test sample x, we first perform classification at the root node classifier. After evaluation,
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Fig. 3 Rooted binary directed acyclic graph for DAGSVM (using K = 5 as an example, the 1st age group
is children and the Kth age group is the elderly). Each node is a binary SVM classifier for the ith and j th
age groups; each leaf indicates an age group decision

the algorithm moves either left or right depending on the output value. We then traverse the
graph and repeat the evaluation. Finally, we end at the leaf node that indicates the predicted
age group.

Because the numbers of subjects in different age groups tend to be unbalanced, we adjust
the penalty parameters for different binary classifiers. For this purpose, we set a larger
penalty parameter for an age group with smaller number of subjects, and vice versa. More
specifically, we set the penalty parameters to be inversely proportional to the number of
subjects. Let nk and ck be the number of subjects and a penalty parameter of the kth age
group Gk (k = 1, 2, . . . , K). We then set the penalty parameters as

ck = α

nk

, (2)

where α is a penalty coefficient that is common for all the age groups.

3.4 Age manifold learning

The purpose of manifold learning is to find a low dimensional subspace that maintains the
intrinsic data distribution and geometric structure with respect to different ages for GEIs.
In this paper, we adopt a typical manifold leaning method named OLPP [3] as our age
manifold learning method. In this subsection, we briefly describe the procedure to obtain
the manifold and we refer the reader to [3] for more details.

Suppose {zk
1, z

k
2, . . . , z

k
n} ∈ R

D and {lk1 , lk2 , . . . , lkn} ∈ R are respectively a set of GEIs
and their ground truth age labels in classified age group Gk . Here, each GEI is represented
as a D-dimensional column vector. Similar to [3], we first project the GEIs zk

i onto their
principal component analysis (PCA) [37] subspace xk

i by keeping a pre-defined cumulative
variance contribution rate. We denote the transformation matrix of PCA by WPCA. Then,
the projection is represented as

xk
i = WT

PCA(zk
i − z̄k), (3)

where z̄k is the mean of all the GEIs in Gk .
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Next, we define a similarity matrix S to model the local structure of the gait manifold,
where its component at position (i, j) is represented as

Sij =
{

e
−(‖xk

i −xk
j ‖2/t)

(lki = lkj )

0 (lki �= lkj ).
(4)

An optimal projection a∗ for OLPP is obtained as

a∗ = arg min
a

n∑

i=1

n∑

j=1

(aT xk
i − aT xk

j )
2Sij

= arg min
a

aT XkL(Xk)T a,

s.t. aT XkD(Xk)T a = 1, (5)

where L = D − S is a Laplacian matrix, D is a diagonal matrix defined as Dii = ∑
j Sij ,

and Xk is a matrix of projected vectors in the PCA space defined as Xk = [xk
1, x

k
2, . . . , x

k
n].

Let {a1, a2, . . . , ap} be the orthogonal basis vectors. The first projection vector a1 is
obtained by solving eigenvalue problem of (5); then, the remaining projection vectors are
obtained in an asymptotic way. The whole procedure is as follows. (1) Compute a1 as the
eigenvector of the following Q associated with the smallest eigenvalue:

Q = (XkD(Xk)T )−1XkL(Xk)T . (6)

(2) Compute ap as the eigenvector of the following M(p) associated with the smallest
eigenvalue:

M(p) = Q − (XkD(Xk)T )−1A(p−1)[B(p−1)]−1[A(p−1)]T Q, (7)

where

A(p−1) = [a1, a2, . . . , ap−1],
B(p−1) = [A(p−1)]T (XkD(Xk)T )−1A(p−1). (8)

Once we have obtained the projection matrix of OLPP WOLPP = [a1, a2, . . . , ap], we
project the original GEI zk

i into dimension reduced feature yk
i as

yk
i = WT

OLPPWT
PCA(zk

i − z̄k). (9)

3.5 SVR

Given the low dimensional feature yk
i in the kth classified age group, an SVR [35] function

is used to characterize the relationship between the feature and corresponding age label lki .
The goal of SVR is to find a function f (yk) that has a deviation of at most ε from the
actually obtained targets lk for all the training data, and, at the same time, is as smooth as
possible. In other words, we only care about errors that are larger than ε.

Suppose D = {(yk
1, l

k
1), (yk

2, l
k
2), . . . , (yk

n, l
k
n)} are the data in the kth classified age

group. We first describe function f (yk) in a linear form as

f (yk) = 〈wk, yk〉 + b, (10)

where 〈., .〉 denotes the dot product.
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Introducing slack variables ξi , ξ∗
i to cope with otherwise infeasible constraints, the

optimization is formulated as

min
1

2
‖wk‖2 + C

n∑

i=1

(ξi + ξ∗
i ).

s.t.

⎧
⎨

⎩

li − 〈wk, yk〉 − b ≤ ε + ξi

〈wk, yk〉 + b − li ≤ ε + ξ∗
i

ξi , ξ
∗
i ≥ 0

(11)

The constant C > 0 determines the trade-off between the flatness of f and the amount to
which deviations larger than ε are tolerated. The formulation above corresponds to dealing
with a so-called ε-insensitive loss function |ξ |ε , described by

|ξ |ε =
{

0, if |ξ | < ε

|ξ | − ε, otherwise.
(12)

It turns out that the optimization problem (11) can be solved very easily in its dual
formulation. The final solution is given by

wk =
n∑

i=1

(αSV(i) − α∗
SV(i))y

k
SV(i), (13)

and therefore

f (yk) =
n∑

i=1

(αSV(i) − α∗
SV(i))〈yk

SV(i), y
k〉 + b, (14)

where αi and α∗
i are Lagrange multipliers and SV(i) denotes the sample index for the

ith support vector in D. The value of b is computed by exploiting Karush–Kuhn–Tucker
conditions. More details can be found in [35].

In this paper, we use a nonlinear SVR function with a Gaussian kernel (i.e., the radial
basis function) because its nonlinear property models the complex aging process well. The
radial basis function is defined as

k(y, y′) = e
− ‖y−y′‖2

2σ2 , (15)

where kernel scale σ is a constant to adjust the width of the Gaussian function. Replacing
〈yk

SV(i), y
k〉 with the kernel function, the solution in (14) becomes

f (yk) =
n∑

i=1

(αSV(i) − α∗
SV(i))k(yk

SV(i), y
k) + b. (16)

3.6 Training sample selection for regression

When preparing training samples for the age group-dependent regression, we need to con-
sider the effect of mis-classification at the preceding age group classification. Suppose that
we train a regression model for a specific age group (e.g., with an interval from 5 to 9 years
old; called age group A). If we use training samples whose ground-truth age belongs to the
age group, the ages estimated by the regression model are usually bounded by the age group
(e.g., between 5 and 9 years old). If a sample from another age group (e.g., with an inter-
val from 10 to 14 years old; called age group B) is mis-classified to age group A, which is
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inevitable because perfect age group classification is naturally impossible, we have almost
no chance to estimate age from the correct age group B.

To mitigate the effect of the mis-classification, when we train a regression model for a
specific age group, we use all the samples that are classified into the age group regardless
of their ground truth age groups. In other words, we include a certain proportion of samples
from other age groups when training an age group-dependent SVR model. Using this strat-
egy, we have a chance to estimate the correct age of these mis-classified samples, which
reduces the effect of mis-classification.

In the best practice of this training sample selection approach, we also consider gener-
alization errors of the age group classification. If we use the same training samples for the
regression model as those used for the age group classifier, the number of mis-classified
samples are often underestimated, i.e., more samples may be mis-classified at the test phase
due to the generalization errors. To avoid this underestimation, we use a sort of validation
set as another training set for the regression model that is disjoint from the training set for
age group classification.

4 Experiments

4.1 Dataset

We conducted the experiments on the OULP-Age dataset [39]. This dataset was collected
by a gait measurement system [26] in an experience-based long-run exhibition at a science
museum. Each participant was required to walk using their preferred speed without carry-
ing any items. In addition, they were also asked to declare their informed consent to the
use of the collected data for research purposes and provide age and gender information
as the ground truth for performance evaluation. After collecting the gait video sequences,
we extracted the GEI feature of each participant in three steps: (1) extraction of gait sil-
houettes using a background subtraction-based graph-cut segmentation [23]; (2) use of the
region center to obtain size-normalized (128 × 88 resolution) and registered silhouettes
[24]; and (3) detection of gait period [24] and averaging of the silhouettes within one gait
period.

There are a total of 63,846 subjects in the dataset, including 31,093 males and 32,753
females with ages ranging from 2 to 90 years old. The statistics of the subjects’ age and
gender in 5-year intervals are shown in Fig. 4. The statistics show that the dataset has
an extremely large population (approximately 16 times larger than the publicly available
large-scale gait database [15]), covers more than four generations (from 2 to 90 years
old), and has a good gender balance (the ratio of males to females is close to one). With
these advantages, the dataset is an ideal choice for evaluating the performance of the pro-
posed age group-dependent human age estimation method. We then randomly divided the
entire dataset into two disjoint subsets: a training set and a testing set. As mentioned in
Section 3.5, the training set is further divided into a training set for age group classification
and a training set for the regression model (the same as the validation set for the age group
classification). The training set for classification includes 15,961 subjects (7829 males and
8132 females) and the training set for regression includes 15,962 subjects (7767 males and
8195 females), whereas the testing set contains 31,923 subjects (15,497 males and 16,426
females).
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Fig. 4 Statistics of subjects’ age and gender in OULP-Age dataset

4.2 Parameter settings

There are several hyper-parameters in our proposed method: (1) penalty coefficient α for
DAGSVM in the age group classification module; (2) the cumulative variance contribution
rate of PCA and dimension p of the OLPP projection matrix in the age group-dependent
manifold learning module; and (3) penalty parameter C, tolerance ε, and kernel scale σ for
SVR in the age group-dependent regression module.

For DAGSVM, we determined the penalty coefficient α by grid search using the valida-
tion set for age group classification. The search range of ck∗ = α/nk∗ , where k∗ is an index
for the age group with the largest subjects, was set to [10−7, 10−6, . . . , 100]. To evaluate
the accuracy of multiple age groups classification, we used macro-average F1 measure [8],
which is the traditional arithmetic mean of the F1 measure computed for each age group.
It gives equal weight to each age group because we expect each age group to have a high
correct classification rate regardless of the sample size. Finally, the optimal ck∗ was set to
10−6, and the penalty parameters ck of the other age groups were then set using (2).

For manifold learning, we experimentally set parameter t in (4) to 1, as in [3], and the
dimension p of OLPP for every age group was set equal to the dimension of GEI after PCA
projection that maintains a 99% cumulative variance contribution rate.

For SVR, we experimentally set a small ε = 0.1, which means we tolerated an estimated
error within 0.1 years of age, and then determined C and σ by a grid search through 4-fold
cross-validation on the training set for regression. The search range for both parameters was
set to [21, 22, . . . , 210], and the optimal C and σ were both set to 25 as a result.

4.3 Evaluation metrics

We measured the performance of human age estimation by two widely used measures: the
MAE and cumulative score (CS) [11, 19, 21, 26]. The MAE is defined as the average of the
absolute errors between the estimated ages and ground truth ages using the formulation

MAE = 1

N

N∑

i=1

|l̂i − li |, (17)
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where li is the ground truth age for test sample i, l̂i is the estimated age, and N is the total
number of test subjects. The cumulative score for j -years absolute error tolerance CS(j) is
defined as

CS(j) = Ne<j

N
, (18)

where Ne<j is the number of test samples whose absolute errors are less than j years.

4.4 Evaluation on age group classification

As mentioned in Section 3.2, we first defined nine age groups (i.e., 0–5, 6–10, 11–15, 16–
20, 21–30, 31–40, 41–50, 51–60, and over 60 years) on the training set as a result of an
analysis of the human growth process. We then merged adjacent age groups that have similar
gait features. The L2 distances between every pair of adjacent age groups are shown in
Fig. 5. Subsequently, we experimentally chose a threshold of 8.0 × 104, represented by
the red dotted line, and we combined those age groups whose differences are smaller than
the threshold. Finally, we obtained five age groups (0–5, 6–10, 11–15, 16–60, and over 60
years) which should realize a good tradeoff between the age group classification and age
group-dependent regression compared with the original nine age groups. The numbers of
samples for these five age groups are 830, 4,740, 4,373, 21,143, and 837, respectively.

Next, we applied DAGSVM for age group classification using these five age groups.
Table 1 shows the confusion matrix of the classification result on the testing set. We can see
from this table that the highest correct classification rate (CCR) is 79.84% for age group 0–
5 years and the lowest CCR is 63.48% for age group 11–15 years. In general, the average
CCR for all age groups is over 70.00%. Moreover, the mis-classified samples are mostly
predicted as belonging to the neighboring age groups. For example, in age group 0–5 years,
20.03% samples are predicted as belonging to the neighboring age group 6–10 years. This is

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

L2
 d

ist
an

ce

Mean GEIs

0-5 6-10 11-15 16-20 21-30 31-40 41-50 51-60 > 60

L2 distance between two adjacent age groups

Fig. 5 L2 distance between every pair of adjacent age groups. The red dotted line is the threshold (8.0×104)
that determines which age groups need to be combined. The age groups marked by rectangles of different
colors indicate the age groups combined at that threshold, that is, five age groups (0–5, 6–10, 11–15, 16–60,
and over 60 years) after combination
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Table 1 Confusion matrix of
classification rate [%] on the
testing set 0–5 6–10 11–15 16–60 Over 60

0–5 79.84 20.03 0.00 0.13 0.00

6–10 8.14 76.88 13.06 1.12 0.79

11–15 0.11 14.82 63.48 17.15 4.44

16–60 0.03 0.71 13.51 75.16 10.60

Over 60 0.00 2.01 6.86 25.34 65.79
Bold fonts indicate the correct
classification rate (CCR) of each
age group

because there is no clear boundary between these age groups. Thus, there is some possibility
that some samples will be classified into neighboring age groups.

4.5 Evaluation of human age estimation

Individual component analysis We first conducted experiments to evaluate the indi-
vidual components of the proposed method. The proposed method is treated as a basic
age group-independent regression-based method (regarded as the baseline) plus three indi-
vidual components: the age group-dependent framework, training sample selection for
regression (called SS), and manifold learning method (i.e., OLPP). We then represent the
baseline and baseline plus various individual components (1, 2, or 3 components) as “Age
group-independent”, “Age group-dependent”, “Age group-dependent + SS”, “Age group-
independent + OLPP”, “Age group-dependent + OLPP”, and “Age group-dependent +
SS + OLPP”, respectively. In addition, we kept the parameters of every individual com-
ponent unchanged throughout the experiments. The MAEs of all these methods are shown
in Table 2. As a result, the age group-dependent framework, in conjunction with SS, can
outperform the baseline, which shows the importance of SS in the age group-dependent
framework. Moreover, when all the individual components are included, the proposed
method achieves the best performance.

In addition, we compared the proposed method and the baseline, i.e., age group-
independent method using two other means of evaluation, in further detail. First, scatter
plots for the ground truth ages versus the corresponding estimated ages are shown in Fig. 6.
We can clearly see from the figure that the proposed method is more closely distributed
around the ground truth, particularly for small ground truth ages from 0 to 10 years. Sec-
ond, MAE with respect to the ground truth age and mean signed error (MSE) with respect
to the estimated age at each interval of 5 years are shown in Fig. 7. As a result, the MAEs
of the proposed method in small ground truth age ranges (0–5 and 6–10 years) are much
lower than the baseline, which is consistent with the result revealed by Fig. 6. Moreover, the

Table 2 MAE [years old] of
individual components Method MAE [years old]

Age group-independent 7.66

Age group-dependent 8.52

Age group-dependent + SS 7.13

Age group-independent + OLPP 6.96

Age group-dependent + OLPP 8.34

Age group-dependent + SS + OLPP (proposed) 6.78

Bold and italic bold fonts indicate
the best and the second-best,
respectively. This convention is
consistent throughout this paper
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Fig. 6 Scatter plots for ground truth age versus the corresponding estimated ages of the proposed method
and the basic age group-independent method. The orange diagonal line indicates where the estimated age is
equal to the ground truth age

proposed method also yields lower MAEs in larger ground truth age ranges (over 60 years).
As for the MSEs, the estimated age range of the baseline is from -10 to 75 years, which is
inconsistent with our knowledge that human ages are non-negative. However, the proposed
method can handle the problem well and yields a more reasonable estimated age range from
0 to 85 years.

Comparison with the state-of-the-art methods We compared the proposed method
with other state-of-the-art methods: the classification-based method (MLG [19]),
regression-based methods (GPR [25] and SVR [35]), and age manifold learning-based
methods (OPLDA and OPMFA [21]). Specifically, we implemented three different K ∈
{10, 100, 1, 000} for GPR, which is a parameter that determines the number of neighbor-
ing training samples to the test sample. We also implemented SVR with both linear and
Gaussian kernels.

The MAEs of the proposed method and other comparison methods are shown in Table 3.
We can clearly see that the proposed method achieves the state-of-the-art performance, with
an MAE that is 0.52 lower than that of the second-best method (GPR with K = 1,000) and
with an MAE that is 4.20 lower than the worst method (MLG). Furthermore, we show
the cumulative scores of all the methods with absolute error tolerance values from 1 to 15
years in Fig. 8. The proposed method outperforms other state-of-the-art methods across
almost the entire range of absolute errors (from 1 to 14 years). More specifically, the pro-
posed method can reach the highest accuracy of 18.41% for an absolute error tolerance of 1
year, which is approximately twice that of other methods excluding MLG. Although MLG
achieves the second-best accuracy of 16.71% for an absolute error tolerance of 1 year, the
gap between MLG and the proposed method becomes more obvious as the absolute error
tolerance increases.

4.6 Sensitivity analysis of hyper-parameters

In this subsection, we analyze the sensitivity of cumulative variance contribution rate r

for PCA in the age group manifold learning module and tolerance ε for SVR in the
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Fig. 7 MAE and MSE of the proposed method and the basic age group-independent method in intervals of
5 years. The upper figure shows the MAEs with respect to the ground truth age, while the lower one shows
the MSEs with respect to the estimated age

age group-dependent regression module on the human age estimation performance in
OULP-Age. More specifically, we set the default values for all the hyper-parameters based
on the criteria mentioned in Section 4.2, then analyzed the sensitivity by changing either r

or ε.

Table 3 Comparison of MAEs
[years old] of the proposed
method and state-of-the-art
methods

Method MAE [years old]

MLG 10.98

GPR (K = 10) 8.83

GPR (K = 100) 7.94

GPR (K = 1,000) 7.30

SVR (linear) 8.73

SVR (Gaussian) 7.66

OPLDA 8.45

OPMFA 9.08

Proposed 6.78
Bold and bold-italic fonts
indicate the best and
second-best results
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Table 4 Computational time of the proposed method, age group-independent method, and GPR (K =
1, 000)

Method Averaged computational time per test sample [ms]

GPR (K = 1,000) 4749.21

Age group-independent 25.38

Proposed 2.69

Bold and bold-italic fonts indicate the best and second-best results

We varied r within the range of [10, 20, . . . , 100] and ε within the range of
[0.01, 0.02, 0.05, 0.1, . . . , 10]. The MAEs for the sensitivity analysis are shown in Fig. 9.
Figure 9a shows that the proposed method achieves lower MAE as the contribution rate r%
increases because the gait feature includes more information with more cumulative vari-
ance. When the variance changes from 90 to 100%, the MAE changes very slightly from
6.85 to 6.78. Figure 9b shows that the proposed method is insensitive to ε as long as it is
smaller than a certain value (e.g., 1).

4.7 Evaluation on computational time

To evaluate the computational time, we ran the MATLAB code of the proposed method
on a PC with an Intel Core i7 4.00 GHz processor and 32 G RAM. We also computed
two other methods for comparison. One is GPR (K = 1, 000) [25], which achieves the
second-best MAE. The other one is the age group-independent regression-based method.
Averaged computational times per test sample for each method are shown in Table 4. It is
evident that the proposed method has a much lower computational time than the second-
best method (GPR (K = 1, 000)). Moreover, because of the relatively small number of
training samples for regression in the age group-dependent framework, the proposed method
is approximately 10 times faster than the age group-independent method. Thus, the proposed
method is more suitable for real applications.

5 Conclusion

In this paper, we described an age group-dependent manifold learning and regression
method for gait-based human age estimation. Specifically, we first defined five optimal age
groups to balance the tradeoff between age group classification and age group-dependent
age regression. We then learned a classifier for multiple age groups using DAGSVM. We
finally trained the age group-dependent SVR with a Gaussian kernel for human age esti-
mation on classified test samples, in conjunction with age group-dependent OLPP, to better
characterize the gait feature. Experimental results on OULP-Age show the state-of-the-art
performance of the proposed method.

For future work, we plan to define more appropriate age groups using a learning-based
method, and design more efficient age group classifiers to enhance the performance of the
proposed method for human age estimation. Moreover, while we demonstrated the effec-
tiveness of age group-dependent framework for gait-based human age estimation under
the basic regressor (i.e., SVR) in this paper, the age group-dependent framework, how-
ever, could also be easily incorporated with deep learning-based approaches (i.e., replace
the DAGSVM for age group classification and SVR for age estimation by deep learning
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models). We therefore plan to leave combination of the deep learning-based approaches and
the proposed age group-dependent framework for our future studies.

Additionally, because the proposed method can be regarded as a fusion of classification-
based and regression-based method, its application is not limited to human age estimation.
It could also be of great importance for the medical domain, particularly, on predicting
Parkinson’s disease, where typical symptoms (e.g., tremors) appear in gait patterns [28].
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