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Abstract In this study, a novel multi-classifier ensemble method based on dynamic weights is
proposed to reduce the interference of unreliable decision information and improve the
accuracy of fusion decision. The algorithm defines decision credibility to describe the real-
time importance of the classifier to the current target, combines this credibility with the
reliability calculated by the classifier on the training data set and dynamically assigns the
fusion weight to the classifier. Compared with other methods, the contribution of different
classifiers to fusion decision in acquiring weights is fully evaluated in consideration of the
capability of the classifier to not only identify different sample regions but also output decision
information when identifying specific targets. Experimental results on public face databases
show that the proposed method can obtain higher classification accuracy than that of single
classifier and some popular fusion algorithms. The feasibility and effectiveness of the proposed
method are verified.

Keywords Dynamicweights .Multi-classifier ensemble .Reliability.Decisioncredibility.Face
recognition

1 Introduction

The advent of the information age has increased the amount of data from scientific research in
various fields of social life. Realising massive data storage and intelligent processing and fully
utilising the knowledge and value contained in data have been the main tasks of the academia
and the industry [5, 16, 30, 56–58]. Machine learning is a mainstream intelligent data process-
ing technology and is an important way to achieve the above-mentioned goals. The continuous
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development of science and technology has facilitated the development of machine learning
and its application to various fields, such as 3D modeling [55] and forecasting and analysis of
stock trend [52, 54, 59]. Classification technology is an indispensable part of machine learning.
Machine learning solves classification problems by finding a fully good function, that is, the
classifier, by use of a specific learning algorithm in the hypothetical space to simulate the actual
classification function. The widely used single classifier models are forward feedback artificial
(BP) neural network [40], support vector machine (SVM) [10] and decision tree [27]. BP neural
network is a non-linear mapping system with a forward structure without a feedback one. This
model can fit the input–output relationship of nonlinear systems effectively and have been used
by many scholars in this field. SVM is a supervised learning model. This model can transform
linear inseparable samples into high-dimensional space by use of a nonlinear mapping algo-
rithm to make the samples linearly separable and can effectively deal with binary classification
problems. Unlike the two previous models, the construction of the decision tree does not
depend on specific domain knowledge. This model uses the attribute selection metric to
determine the topology amongst various feature attributes and thus complete the classification
decision. Although each of these classifier models has achieved good results, all of them present
poor generalisation capability and of classification accuracy that cannot meet users’ require-
ments when noise exists in the input sample or the distribution of the training and classification
sets is inconsistent. Ensemble learning is a new paradigm of machine learning. This model
integrates multiple classifiers in accordance with specific integration rules to solve the classi-
fication problem and can thus improve the accuracy and generalisation capability of system
prediction. Ensemble learning is widely used in various fields, such as human activity recog-
nition [33–35, 39], human motion tracking [11, 32], prediction [36, 44], water quality super-
vision [37, 38] and face or emotion discrimination [4, 14, 20].

Multi-classification ensemble can be divided into static ensemble and dynamic ensemble
depending on whether weights are adaptively assigned to each classifier when different query
samples are identified. The classifier that participates in the static integration is no longer
changed after its determination. Castrillón-Santana et al. [47] focused on gender classification
based on face images and evaluated multi-expert systems using three different fusion protocols.
However, the said methods ignore the importance of classifiers when identifying different query
samples and assign the same weight value to each expert. Adaboost [43] is a widely used static
weighted ensemble algorithm. The weights of the base classifiers are evaluated before the query
samples arrive, and these base classifiers are integrated by linear weighting to obtain the final
decision. Kuncheva [25] proposed a method based on probability weighted voting. Chen [7]
proposed a method based on training error to calculate the weight coefficient in completing the
SAR image classification. The aforementioned static methods enable the classificationmodel to
statistically achieve the best outcome; however, a corresponding change cannot be made with
the change in the input information and the abnormal output of the classifier. Such condition is
obviously unreasonable. By contrast, dynamic methods can determine the adaptive weights on
the basis of the characteristics of the sample; these weights can effectively emphasise the
decision-making contribution made by excellent classifiers and suppress the influence of
unreliable information output by use of high-deviation classifiers on classification. Cheon [8]
assigned weights following the Hausdorff distance between query and gallery image sequences.
Zhang [60] considered the performance of each classifier in different sample environments and
then proposed a dynamic adaptive weighted voting method. Considering the correlation and
reliability of the query descriptors, Sun [49] calculated the weights on the basis of the sparse
coefficients of the query sample in different classes. The results showed that the weights change
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with the change in the number of query sample. Most of the existing weight allocation methods
assign weights to the classifier from a certain aspect, and none of the methods either based on
the statistical performance of the classifier or the characteristic distribution of the query sample
comprehensively consider the identification performance of the classifier for different sample
regions and samples. Each classifier presents different recognition capabilities for different
samples owing to the different characteristics of these samples, and the recognition performance
of the same classifier in different regions of the sample space also differs. Therefore, we
determine whether the weight of the classifier in the fusion process can be dynamically adjusted
by estimating the recognition performance of the classifier on different sample regions and
samples, thereby reducing the interference of unreliable information on the decision making
and achieving good ensemble performance. This study provides the following contributions.

& A dynamic weighted multi-classifier ensemble method that defines reliability and credi-
bility is proposed. Weights can be dynamically changed with the query samples, and the
importance of the classifier in the fusion process can be described fully.

& The reliability of the classifier is defined on the basis of its recognition capability, which is
determined by the prior knowledge gained during the training process. Fuzzy set theory
and cloud model are utilised to evaluate this criterion for base classifiers.

& The credibility of the classifier is obtained by calculating the posterior probability distri-
bution, which is used to determine the separability feature of the classifier. A mapping
function is used to map the separability into the credibility of the classifier.

Compared with single classifier and current popular fusion methods, our method can more
effectively reduce the effect of unreliable instance information in the training phase of the
classifier and can therefore fuse the decisions in classification efficiently and improve the
overall performance of the integrated method.

The rest of the paper is organised as follows. Section 2 reviews the traditional multi-
classifier ensemble method. Section 3 presents the proposed method of multi-classifier
ensemble based on dynamic weights. Section 4 demonstrates the application of the proposed
algorithm in face recognition. Section 5 provides the experimental results and analysis.
Section 6 contains the discussion. Finally, Section 7 elaborates the conclusions of the study.

2 Related work

On the basis of the output of the classifier, the decision information can be divided into three levels
[53]: abstract, ranked andmeasurement levels. At the abstract level, each classifier directly outputs
the category labels. Common ensemble methods include voting [42], weighted voting and
behavioural knowledge space. The ranked level sorts the output results of the classifier. This type
of output usually occurs in problems with a large number of categories. The commonly used
ensemble methods of ranked level are highest rank method, Borda count method [19] and logistic
regression. At the measurement level, the output of each classifier is the probability, credibility or
distance measure of the class. The measurement level is more informative than the abstract and
ranked levels. The measurement level also contains a richer amount of decision information
compared with that of the two other levels. The corresponding ensemble methods include Max/
Min/ Sum, linear combination method, D-S evidence theory [17] and fuzzy integral method [9,
26]. The multi-classifier ensemble method based on measurement level is defined as follows.
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We define a classification space S, which contains M different classes, for K classifiers.
Furthermore, S =C1 ∪⋯∪CM, Cm indicates the m-th class, 1 ≤m ≤M, E = {e1, e2,⋯eK} is a
collection of base classifiers and pkm(x) represents the posterior probability of query sample x
discriminated by classifier ek as belonging to class m. Thus, the subsequent decision output
matrix can be obtained by Eq. (1) as follows:

p11 xð Þ p12 xð Þ ⋯ p1M xð Þ
p21 xð Þ p22 xð Þ ⋯ p2M xð Þ
⋮ ⋮ ⋱ ⋮

pK1 xð Þ pK2 xð Þ ⋯ pKM xð Þ

2
664

3
775: ð1Þ

The multi-classifier ensemble obtains the final classification decision by merging the
recognition outputs of each classifier in different categories. The decision output of the
multi-classifier system on class Cm is obtained by Eq. (2) as follows:

Pm xð Þ ¼ ∑
K

k¼1
pkm xð Þ: ð2Þ

We select the category with the maximum posterior probability sum as the class to which
query sample x belongs and complete the final decision. In particular, the decision result of the
joint classification is as follows:

E xð Þ ¼ max
j

P j xð Þ; 1≤ j≤M : ð3Þ

To highlight the importance of different classifiers in the fusion process, Eq. (2) is modified
as follows:

Pm xð Þ ¼ ∑
K

k¼1
ωkpkm xð Þ: ð4Þ

In Eq. (4), ωk represents the weight of classifier ek. High value of ωk means high importance
of the classifier in the fusion process.

3 Multi-classifier ensemble based on dynamic weights

In this study, we propose a multi-classifier weighted ensemble method based on measurement
level fusion. Figure 1 presents the framework of our approach that comprises three major
components. (1) In the training phase, the fuzzy density of the classifier is computed firstly and
then inputted into an inverse cloud generator in accordance with the correct and incorrect
decisions of the corresponding instances. As a result, the reliability of the classifier can be
modelled on the basis of the expected value, entropy and hyper entropy digital eigenvalues. (2)
The separability of the classifier is obtained by calculating the posterior probability distribution
when a specific target is identified. Thereafter, a mapping function is used to map the
separability into the credibility of the classifier. (3) The dynamic weights of the classifier are
obtained on the basis of reliability and decision credibility. We utilise the dynamic weights to
implement dynamic weighted integration. The three major components are discussed in detail
in the following sections.
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3.1 Statistic of fuzzy density

We aim to obtain the reliability of the classifier. For this purpose, we use different learning
algorithms firstly to train the data set for constructing the base classifier and then use confusion

matrix CMk
M�M to compute the identification of the known class samples made by base

classifier ek. The expression is as follows:

CMk
M�M ¼

nk11 nk12 ⋯ nk1M
nk21 nk22 ⋯ nk2M
⋮ ⋮ ⋱ ⋮
nkM1 nkM2 ⋯ nkMM

2
6664

3
7775; ð5Þ

where k = 1, 2,⋯, K and nkml is the number of samples in class Cm identified by base classifier

ek as class Cl. If m = l, then nkml is the number of samples in class Cm correctly identified by

Fig. 1 Framework of multi-classifier ensemble based on dynamic weight: (a) acquisition process of classifier
reliability; (b) diagram for obtaining classifier credibility and fusion decision

Multimed Tools Appl (2018) 77:21083–21107 21087



base classifier ek; if m ≠ l, then nkml is the number of samples in class Cm incorrectly identified
by base classifier ek as class Cl.

For K different base classifiers, we can obtain K confusion matrixes CM1, CM2,⋯, CMK to
determine the recognition capability of classifier ek(k = 1, 2,⋯,K) to Cm(1 ≤m ≤M). We use
fuzzy integral theory to compute the fuzzy density of the classifier by confusion matrix CMk.
Fuzzy density can be calculated by

gkm ¼ 1

M−1
∑
M

n¼1;n≠m
1−

nknm

∑
M

l¼1
nknl

0
BB@

1
CCA

2
664

3
775 nkmm

∑
M

l¼1
nkml

: ð6Þ

In Eq. (6), nkmm

∑
M

l¼1
nkml

is the ratio that class Cm is correctly recognised by classifier ek;
nknm

∑
M

l¼1
nknl

is the

ratio that class Cn is incorrectly recognised by classifier ek as class Cm, n ≠m. Large value of
nkmm

∑
M

l¼1
nkml

means small value of nknm

∑
M

l¼1
nknl

and large value of gkm, thereby indicating that the recognition

capability of classifier ek to class Cm is strong.
The recognition capability of classifier ek to identify M classes can be represented by fuzzy

density vectorGk ¼ gk1; g
k
2;⋯; gkM

� �
. K different base classifiers make up fuzzy density matrix

GM as follows:

GM ¼ G1;G2;⋯;GK� �T ¼

g11 g12 ⋯ g1M
g21 g22 ⋯ g2M
⋮ ⋮ ⋱ ⋮
gK1 gK2 ⋯ gKM

2
6664

3
7775: ð7Þ

3.2 Basic concept and eigenvalue acquisition of cloud model

The cloud model is introduced to describe the reliability of the identification results made by
the classifier in different sample regions. The cloud model is a type of uncertain transformation
model between qualitative concept and quantitative data proposed by Li [29]. The model
combines the fuzziness in fuzzy set theory with the randomness in probability theory to
characterise a whole concept. The model also occupies an important position in performance
evaluation, recognition and other areas [12, 31, 48]. The cloud model consists of three
eigenvalues: expected value Ex, entropy En and hyper entropy He. Ex is the central value of
qualitative language concept domain and reflects the situation of gravity of cloud drop group.
En is a measure of the ambiguity of the qualitative concept. On the one hand, it reflects the
range of the concept that can be accepted in the domain space (i.e. the ambiguity). On the other
hand, the points reflected in the domain space can represent the probability of this concept,
thereby indicating the randomness of cloud droplets of the qualitative concept. He represents
the aggregation of cloud droplets in the domain space and reflects the discrepancy in the cloud
droplets and the random change in membership. In the number field space, He represents the
cohesion of the uncertainty of all points of the language value. The cloud generator can be in
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forward and reverse modes. The inverse cloud generator is a large number of cloud droplet
distributions Drop(x, μ) in the known cloud and determines the three numerical eigenvalues
Ex, En and He of the normal cloud. The output ensemble problem of the classifier completes
the quantitative to qualitative conversion. Therefore, this study focuses only on the inverse
cloud generator, and the fuzzy density value of the classifier in different sample regions is used
as a cloud droplet and input into the inverse cloud generator to generate a cloud that
characterises the reliability of the classifier. The three digital eigenvalues (Exk, Enk,Hek) of
classifier ek(k = 1, 2,⋯,K) are calculated as follows:

(1) The mean of Gk is given by

μk ¼ 1

M
∑
M

m¼1
gkm: ð8Þ

(2) The variance of Gk is given by

S2k ¼
1

M −1
∑
M

m¼1
gk
m−μk

� �2
: ð9Þ

(3) The expected value of classifier ek is given by

Exk ¼ μk : ð10Þ

(4) The entropy of classifier ek is given by

Enk ¼
ffiffiffiffi
π
2

r
� 1

M
∑
M

m¼1
jgkm−μk j: ð11Þ

(5) The hyper entropy of classifier ek is given by

Hek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2k−En

2
k

q
: ð12Þ

Fuzzy density reflects the confidence of the classifier for each category and can effectively
describe the recognition performance of the classifier to different sample regions. The cloud
model for describing the reliability of the classifier is used because the three digital features
(Ex, En, He), which are generated by the cloud model using the fuzzy density of the classifier,
can reflect not only the average performance of the classifier but also the stability and
randomness of the change of the classifier with the changes in the number of sample. Ex
represents the average recognition performance of the classifier, and large expected value
means good performance of the classifier. En represents the degree of discretisation of the
classifier’s capability to identify the sample and reflects the stability of the classifier with the
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change in the number of sample. Small value of entropy means better stability (i.e. the
performance of the classifier). He represents the degree of deviation (i.e. randomness) from
the normal operation of the classifier. Therefore, small value of hyper entropy means good
performance of the classifier and that the recognition performance of each classifier in different
sample regions is converted to the corresponding cloud model.

3.3 Reliability of the classifier based on the cloud model

This study defines reliability from two aspects: subjective and objective. The subjective
reliability of the classifier is determined by the first digital feature of the cloud model, that is,

αsk ¼ Exk

∑
K

k¼1
Exk

: ð13Þ

Good average recognition performance of the classifier means high subjective reliability.
The objective reliability is determined by the sum of the entropy and hyper entropy of the
cloud model. The entropy characterises the fuzziness of the classifier, and the hyper entropy
characterises the randomness of the classifier. Therefore, this study considers using the entropy
and hyper entropy of the cloud to construct the optimisation model for calculation.

We let εk = Enk +Hek be the sum of the entropy and hyper entropy of the k-th classifier and
construct the optimisation model with the smallest sum of the entropy and hyper entropy of all
classifiers. In particular, we set the sum of the fuzziness and randomness of all classifiers to be
relatively minimal. Wang [50] considered the three eigenvalues of the normal cloud correspond-
ing to different orders of magnitude. Therefore, the square of the objective reliability is used in
the current study to constrain the entropy and hyper entropy in constructing the optimisation
model of the entropy and hyper entropy based on the cloud model shown in Eq. (14).

αok jk∈1; 2;⋯;Kð Þ ¼ argmin ∑
K

k¼1
αokð Þ2εk

∑
K

k¼1
αok ¼ 1;αok ≥0

k ¼ 1; 2;⋯;K

8>>>><
>>>>:

ð14Þ

We solve Eq. (14) and construct the Lagrangian function as Eq. (15).

L αok ;λð Þ ¼ ∑
K

k¼1
αokð Þ2εk þ λ ∑

K

k¼1
αok−1

� �
ð15Þ

According to the existence conditions of extremum, we obtain

∂L αok ;λð Þ
∂αok

¼ 2αokεk þ λ ¼ 0

∂L αok ;λð Þ
∂λ

¼ ∑
K

k¼1
αok−1 ¼ 0

8>>><
>>>:

; ð16Þ
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where k = 1, 2, ⋯K. Combining the two equations in Eq. (16), we obtain

λ ¼ −2

∑
K

k¼1
εkð Þ−1

αok ¼ εkð Þ−1

∑
K

k¼1
εkð Þ−1

8>>>>>>><
>>>>>>>:

: ð17Þ

The reliability α*
k of classifier ek is synthetically determined by subjective and objective

reliabilities as follows:

α*
k ¼ αsk þ αok ; k ¼ 1; 2;⋯K: ð18Þ

Each classifier can use the three eigenvalues obtained from the cloud model to obtain

reliability. For K different base classifiers, we obtain ζ ¼ α*
1

	
;α*

2;⋯;α*
K



, and the value in ζ

is normalised by Eq. (19).

αk ¼ 1

2
1þ α*

k−αmin

αmax−αmin

� �
; k ¼ 1; 2;⋯;K ð19Þ

In Eq. (19), αmin ¼ min
1≤ k 0 ≤K

α*
k
0

n o
and αmax ¼ max

1≤ k 0 ≤K
α*
k
0

n o
. The normalised reliability

αk ∈ [0.5, 1] of the classifier ek is obtained. The reliability of the classifier is propor-
tional to the expected value and is inversely proportional to the entropy and hyper
entropy of the classifier. Therefore, the requirement that the classifier should charac-
terise the recognition of different regions is satisfied. The reliability of the classifier
can be used as the static weight of the classifier to realise the multi-classifier static
weighting ensemble. Considering the characteristics of the sample itself, we aim to
identify the real-time recognition performance of the classifier with respect to the
currently tested sample and reduce the interference of the unreliable decision infor-
mation to the classification. For this purpose, the decision credibility of the classifier
is defined by measuring the separability amongst the posterior probabilities of the
classifier.

3.4 Decision credibility of classifier

Under normal circumstances, the classifier can easily identify the category of the
query sample when the posterior probability value obtained by the classifier is highly
concentrated in a certain class. At this time, the possibility of misjudgement is low
and the credibility of the classifier is high. When the distribution of the posterior
probability is uniform, the classifier can exhibit difficulty in discriminating the class
of the query sample. Furthermore, the possibility of misjudgement is high and the
credibility of the classifier is low. In this study, we use the posterior probability
distribution to define the decision credibility of the classifier in measuring the real-
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time importance of the classifier in the fusion process. The decision credibility βk of
classifier ek is solved as follows:

(1) The set of posterior probability values obtained by entering query sample x into classifier
ek is denoted asPk = {pk1, pk2,⋯, pkM}.

(2) The components of the posterior probability value Pk are normalised to [0, 1] and then we
obtain P*

k ¼ p*k1; p
*
k2;⋯; p*kM

	 

. We let p*kj be the largest posterior probability value in

P*
k and then define that separability τk is the sum between the difference of the other

posterior probability values in P*
k and p*kj. Specifically, the difference is calculated first

and then the sum is obtained using Eq. (20).

τk ¼ 1

M−1
∑
M

m¼1
p*kj−p

*
km

� �
¼ 1

M−1
Mp*kj−1

� �
ð20Þ

According to Eq. (20), the separability τk of the classifier is only related to p*kj, and

high proportion of p*kj in the output component of classifier ekmeans large value of τk and

separability τk ∈ [0, 1]. When τk = 1, the maximum decision output value obtained by
classifier ek is 1 and the other output components are 0. At this point, classifier ek
maximises the probability of sample x being correctly identified and the decision
credibility reaches a high value. When τk = 0, the posterior probability values of classifier
ek are equal. At this time, the probability of misjudgement is high and the decision
credibility of classifier ek is low.

(3) To emphasise the contribution of large τk to the decision making and suppress
the interference of small τk, a function is used to map τk to the decision
credibility. When the value of τk is small, the assignment of decision credibility
is as low as possible. As the value of τk increases, the decision credibility of the
reliable decision output to the fusion decision rapidly enlarges. The mapping
value approaches 1 when the value of τk increases to a certain range. To meet
the requirements, this study uses the curve fitting in the numerical analysis to
construct the sigmoid function in describing the change relationship between τk
and decision credibility βk as shown in Eq. (21). Each parameter in Eq. (21) is
the optimal value obtained after several simulation experiments.

βk ¼
1

2 1þ exp ‐ 14τ k‐6ð Þðð Þ þ 0:5 ð21Þ

In Eq. (21), βk ∈ (0.5, 1) and k = 1, 2,⋯, K. Figure 2 shows that, when the proportion
of the maximum posteriori probability of the classifier is small, the value of τk is also
small as reflected by the curve; the mapping value βk is also low. As separability
increases, the decision credibility βk of the classifier ek also gradually increases. When
τk > 0.3, the growth degree of decision credibility βk increases; when the proportion of
the maximum posteriori probability of the classifier is large (i.e. when τk > 0.65), the
credibility of the classifier is extremely high. In addition, the value of decision credibility
βk is stable and approaches 1.
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3.5 Description of the proposed algorithm

In this study, a novel method of multi-classifier ensemble based on dynamic
weights is proposed. The acquisition of weights is divided into four parts: (1)
using different learning algorithms to train data sets to generate base classifiers;
(2) using the cross-validation technique to estimate the recognition capability of the
classifier in different sample regions, thereby obtaining the three eigenvalues of the
cloud model and calculating the reliability of the classifier; (3) using function
mapping to obtain the decision credibility of the classifier in accordance with the
separability of the output components of the base classifier; (4) the corresponding
dynamic weight is assigned to each classifier in accordance with reliability and
decision credibility. The obtained weight vector and the output of each base
classifier are used to make an integrated judgement to the tested samples. The specific
processes are described below:

Input: data set Tr comprising the samples with known class information, Tr
includes M different categories, in which each category contains n samples, a
collection of learning algorithms L = {l1, l2,⋯lK}) and the sample x to be
tested.
Output: the class of sample x to be tested.

(1) Using the learning algorithm lk(k = 1, 2,⋯,K) to train data set Tr, we obtain the base
classifier ek(k = 1, 2,⋯,K); the stratified cross-validation technique is used to estimate
the classification performance of the base classifier ek, and the obtained confusion matrix

is denoted as CMk
M�M .

(2) By calculating the confusion matrix, we obtain the fuzzy density gkm 1≤m≤Mð Þ of base
classifier ek in different sample regions.

(3) We input gkm as a cloud droplet to the inverse cloud generator, obtain the three
eigenvalues (Exk, Enk,Hek) of the cloud model and calculate the reliability αk of
base classifier ek.

(4) According to the posterior probability values of sample x to be tested belonging to each
class obtained by base classifier ek, we calculate the decision credibility βk of the
classifier using Eqs. (20) and (21).

k

k

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1Fig. 2 Relationship between τk
andβk
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(5) We calculate the weight of classifier ek using Eq. (22) as follows:

ωk ¼ αk þ βk

2
; 0:5≤ωk ≤1: ð22Þ

(6) We integrate the output components of each base classifier as follows:

Pm xð Þ ¼ ∑
K

k¼1
ωkpkm xð Þ;m ¼ 1; 2;⋯;M : ð23Þ

(7) The result of the integrated discrimination of sample x to be identified is

c ¼ argmax
m

Pm xð Þjm ¼ 1; 2;⋯;Mf g: ð24Þ

3.6 Analysis of computational complexity

Computational complexity focuses on the resources required to calculate the problem, such as
time and spatial resources. The spatial resources required by the algorithm can meet the
requirements of the general computer program. The time complexity of the base classifier
for the training process is denoted as O(Classifiertraining). We calculate the confusion matrix
of each base classifier and denote the time complexity of fuzzy density as O(MKn2), where M
represents the number of pattern categories, K represents the number of base classifiers and n
represents the number of each training samples. The time complexity of decision recognition is
denoted as O(MK). Other processes are ignored. The total time complexity is denoted as
O(O(ClassifierLearn) + n2MK +MK).

4 Application of the proposed algorithm in face recognition

4.1 Feature description of face image

Face recognition [6, 13, 24, 28, 41, 51] uses computers to verify the identity of a face. Face
recognition is used to promote many related disciplines and related fields, such as emotion
recognition, image process [45] and face detection [3, 22]. Face recognition consists of two
steps: feature description and target classification. Commonly used image features include
colour, shape and texture features. Amongst them, the texture features based on statistics are
favoured by domestic and foreign scholars because of their simplicity and effectiveness; the
representative methods are local binary pattern [61], central symmetric local binary pattern
[18], local directional pattern [21], local gradient patterns [23], modified census transform [15]
and local mean pattern [46]. In this study, the symmetric local graph structure (SLGS) [1]
algorithm is used to extract the feature of face images. SLGS is an improvement of the local
graph structure [2] operator and is also a local texture description algorithm based on statistics.
Compared with the traditional binary pattern, SLGS is no longer limited to the circular
neighbourhood of the central pixel, has a range of comparison that can be extended to the
comparison between the neighbourhood points and obtains a richer texture feature. However,
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when describing the face texture feature, the SLGS algorithm only focuses on the texture
information in the horizontal neighbourhood direction whilst ignoring the information in other
neighbourhood directions. Accordingly, texture information in other directions is usually lost.
The description of the facial features is insufficiently comprehensive. Therefore, SLGS is
extended from the directional perspective by adding diagonal and vertical directions and
defining 45° SLGS, 90° SLGS and 135° SLGS; the original SLGS referred to herein is 0°
SLGS. Figure 3 shows the calculation of the SLGS coding in different directions. Figure 4
shows the SLGS reconstruction diagrams in different directions, including illumination,
expression, gestures and occlusion changes. The reconstruction diagram clearly indicates the
difference amongst the four different directions of SLGS in the texture feature description.

4.2 Face databases

The stability and validity of the proposed algorithm is tested by conducting simulated
experiments on publicly available face databases including ORL, Yale A, FERET and AR
databases. These databases cover various conditions of partial occlusion, complex illumination
and different expressions and poses. The ORL database contains different images of 40 people;
10 face images are stored for each person, thereby comprising a total of 400 images, including
poses, facial expressions and facial ornaments (e.g. glasses) and other changes. Each image is a
112 × 92 greyscale image. Some of the images in the ORL database are shown in Fig. 5a.

The Yale A database published by Yale University contains 11 images each from 15
individuals with lighting, occlusion and facial emotion variations. Some of the images in the
Yale A database are shown in Fig. 5b.

The FERET database contains different images of 200 people, including frontal face
images; face images with expression changes; face images under different illumination
conditions; face images with left turn and right turn at 15°; face images with left turn and
right turn at 30°. Some of the images in the FERET database are shown in Fig. 5c.
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Fig. 3 Calculation of the SLGS coding in different directions: (a) 0° SLGS; (b) 45° SLGS; (c) 90° SLGS; (d)
135° SLGS

Multimed Tools Appl (2018) 77:21083–21107 21095



The AR database consists of more than 4000 frontal face images of 126 persons (70 men
and 56 women). Each person has up to 26 images taken in two sessions. The first session
contains 13 images, including different facial expressions, illumination variations and occlu-
sions. The second session duplicates the first session two weeks later. To verify the robustness
of the method to illumination, occlusion and expression changes, this study divides the AR

Images 0°SLGS 45°SLGS 90°SLGS 135°SLGS

Fig. 4 SLGS reconstruction diagrams in different directions

(a)

(b)

(c)
(d)

Fig. 5 Face databases: (a) images from the ORL database; (b) images from the Yale A database; (c) images from
the FERET database; (d) images from the AR database
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database into four parts on the basis of different conditions that contain normal, occlusion,
illumination and expression. As shown in Fig. 5d, the images numbered 1–4 are normal face
images (the expression is neutral and without illumination changes and occlusion limits), those
numbered 5–16 are face images under occlusion conditions and those numbered 23–26 are
face images with expression changes. In the experiment, the images in the four face databases
are pre-processed to 96 × 96 resolution.

5 Experiments

In the multi-classifier system, this study constructs the base classifier by separately using the
nearest neighbour rule and BP neural network combined with the SLGS features in different
directions. For the nearest neighbour classifier, the Euclidean distance between the query
sample and the training samples in different classes is calculated firstly and then the posterior
probability of the nearest neighbour classifier is constructed using the distance. BP neural
network is composed of the input, hidden and output layers. In this study, the output of the BP
classifier is in the form of posterior probability. The indicator of the performance of the classifier
includes recognition accuracy, Kappa coefficient and efficiency. In this study, static ensemble is
the fusion result obtained using reliability as the weight of the classifier. Dynamic ensemble
refers to the fusion result obtained using reliability and decision credibility as the weight of the
classifier. All experiments and comparisons are conducted under the same evaluation protocol.

5.1 Recognition rate comparison of each classifier under different blocks

In the experiment, five face images are selected randomly from ten face images of each
individual and used as training set on the ORL database. In the Yale A database, five training
samples of each person are randomly selected and used for training and the other images for
testing. In the FERET database, four training samples of each person are randomly selected
and used for training and the other images for testing. In the AR database, under occlusion
conditions, we randomly select six pieces of numbers 5–16 for training and the other as testing
samples. Under illumination conditions, three pieces of numbers 17–22 are randomly selected
for training and the other as testing samples. Under the condition of expression changes, we
randomly select two pieces of numbers 23–26 as facial expression image for training and the
other as testing samples. Figure 6 shows the recognition results of the classifiers trained by
four different algorithms and the proposed ensemble methods under different blocks.

Overall, in different face databases, the recognition performance firstly shows a rising trend
and then a flat or descending trend with the increase in the number of blocks. Compared with
the single classifier, the proposed multi-classifier fusion methods present good performance
advantages regardless of their use in static and dynamic ensemble. Their recognition rates are
also much higher than that of single classifier prior to fusion. Among them, the classification
effect of the dynamic ensemble is better than that of the static ensemble. For the feature
description algorithm, large number of blocks in a certain range means good details of the
spatial texture structure described and good performance of the classifier. Given the increase in
the number of blocks, the number of the pixels in different sub blocks gradually reduces and the
operator’s feature description capability gradually weakens. Consequently, the classifier’s
identification performance firstly rises and then declines. Figure 6 also shows that the classi-
fication performance of the classifier formed by different characteristics of the same training
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sample differs. By taking the FERET database as an example, the recognition performance of 0°
SLGS + NN is in a state of equality with 90° SLGS + NN on the FERET database, whereas the
recognition performance of 0° SLGS + NN is inferior to that of the 45° SLGS + NN. Such a
scenario is also reflected from the side that the recognition capability of different classifiers to
identify the same sample area differs. This study complements the missing information of original
SLGS from the perspective of direction, and the classifiers trained by four different texture
description operators construct the integrated systemwith the difference. In addition, the importance
of the classifier in the fusion decision is described on the basis of the prior knowledge and posteriori
output of each classifier. The three eigenvalues of the cloud model can fully describe the reliability
of the classifier in different sample regions and can fully utilise the classification advantages of the
classifier. The decision credibility can effectively describe the real-time performance of the

Fig. 6 Recognition rates of the classifiers trained by four algorithms and the proposed ensemble methods under
different blocks
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classifier’s recognition performance with the change in the number of sample to be tested. Thus, the
final dynamic ensemble achieves good recognition performance that is higher than that of static
ensemble and single classifier. The increase in the number of blocks can also increase time
complexity. Notably, this study aims to find a compromise between Bsimplicity^ and
Beffectiveness.^ In Fig. 6, when the number of blocks is 6 × 6, the system obtains the best
recognition performance with a small time cost. Therefore, this parameter is used in the subsequent
experiments to address the corresponding face image.

Kappa coefficient to further evaluate the optimal classification accuracy of dynamic
and static ensembles. Kappa coefficient represents the proportion of the error reduction
produced by the evaluated classification to that of the completely random classification.
Large Kappa coefficient value means good performance of the classifier. In the contrast
experiment, we select 13 images of each person as training samples on the AR database
and the remaining samples as testing samples. The number of training samples on other
face databases remains unchanged. Table 1 shows the comparison of the Kappa coeffi-
cients of static and dynamic ensemble methods.

Table 1 shows that the Kappa coefficients of the dynamic weighted ensemble method are
higher than those of the static method on different databases. It can be seen from the definition
of Kappa coefficient that the higher the Kappa value, the higher the accuracy of classification.
Obviously, the method of dynamic weighted ensemble is better than the static method. In the
process of weight acquisition, compared with the static method, the dynamic method not only
considers the recognition ability of the classifier in different sample areas, but also takes the
difference of the samples into consideration and considers the recognition result of the current
target by this classifier as an important indicator in measuring the importance of it. Thereby,
the acquired weight can effectively reduce the interference of unreliable decision information
to fusion and thus obtaining improved classification performance.

5.2 Recognition rate comparison of each classifier under different number
of training samples

In further verifying the effectiveness of the proposed algorithm, 2–8 images per person in
the ORL and Yale A databases are used for training and the remaining samples for
testing. In the FERET database, 2–5 training samples are selected randomly and the
other images are for testing. In the AR database, 9–14 training samples are randomly
selected and the other images are for testing. Following the conclusion of experiment
(Section 5.1), the images in four face databases are blocked into 6 × 6 blocks. We
repeat the experiments four times and calculate the average recognition rate for each
database. The experimental results are shown in Fig. 7.

Figure 7 shows the curves of the recognition rates of the base classifiers based on four
algorithms and the proposed multi-classifier fusion methods. These curves change with the

Table 1 Comparison of the Kappa coefficients (%) of static and dynamic ensembles

Kappa ORL Yale A FERET AR

Static ensemble 98.08 98.57 72.36 96.97
Dynamic ensemble 98.97 1 73.37 97.12
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increase in the number of training samples. In a certain range, large number of training
samples results in complete classifier training and high recognition rate. In different face
databases, the multi-classifier system composed of four different texture features and
using NN or BP significantly improves after the decision fusion. Therefore, the method is
valid. The reasons are that the four different texture features are portrayed from different directions
in the feature description and that the classifier that comprises them is highly complementary. In the
decision-making fusion, the dynamic ensemble exhibits a good description of the classifier’s
reliability in different sample areas and real-time performance with the change in number of sample
compared with the static ensemble. The former method also can be more targeted to play the
recognition advantage of each classifier in different regions and different samples and ultimately
improve the overall recognition rate. In the FERET and AR databases, the 0° SLGS + NN and
0°SLGS + BP classifiers present a lower performance than do those in the vertical and diagonal
directions. By contrast, the performance of the four classifiers is comparable on theORL andYaleA
databases. The experimental results show that different directions of SLGS play different roles in
describing the image texture features. Thus, SLGS should be extended from a directional
perspective.

Fig. 7 Curves of the recognition rates of the base classifiers and the proposedmethods under different training samples
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5.3 Recognition rate and identification time comparison of different multi-classifier
ensemble methods

In this experiment, the optimal recognition rate obtained by the proposed dynamic ensemble
method is compared with the recognition rate obtained by several typical fusion methods (e.g.
voting method, maximum rule, D-S fusion rule and fuzzy integral method). The number of
training samples of the ORL and Yale A databases is 5, that of the FERET database is 4, that of
the AR database is 13 and the remaining samples are used as testing samples. The comparison
results are shown in Table 2.

The experimental data in Table 2 indicate that the recognition performance of the maximum
rule method, D-S fusion method, fuzzy integral method and dynamic ensemble method is
better than that of the voting method. The voting method is a hard-grading standard, which
considers that the input pattern either belongs to a certain class, or not. The voting method is an
abstract-level fusion method, while the other fusion algorithms are belonging to metric-level
fusion which contains more decision information.Thus they can achieve higher recognition
rates than voting method. In the ORL and Yale A databases, the recognition performance of the
maximum rule method, D-S fusion method and fuzzy integral method is close to that of the
proposed method. On the contrary, the difference is significant in the AR database. Such a
difference mainly occurs because the changes in illumination, occlusion and expression are
complex in the AR database, thereby possibly causing different degrees of interference and
reducing the performance of the fusion decision. D-S evidence theory is based on the
assumption that different pieces of evidence should remain independent, thereby requiring
that the classifiers should be independent of one another. However, in practice, complete
independence is difficult. Fuzzy integral avoids the limitation of D-S evidence theory that the
evidence needs to be completely independent, thus, it can effectively deal with the uncertainty
of the classification decision. However, fuzzy integral generally makes the training perfor-
mance index of the classifier as the basis for determining the fuzzy density, which no longer
change once determined. When the classifier outputs unreliable information to the decision-
making layer, decision-making interference occurs. Thus, the integrated classification effect
becomes undesirable. Multi-classifier weighted ensemble can effectively emphasise the
decision-making contribution made by excellent classifiers and suppress the influence of
unreliable information output by high-deviation classifiers on classification. Thus it can reduce
the interference of unreliable decision factors and still maintain its fusion decision-making
performance above or close to that of the optimal classifier in the multi-classifier system.

Table 2 Comparison of optimal recognition rates (%) under different integration rules, mean process-
ing time per image (milliseconds for MATLAB implementation in an i7 quad core processor with
4 GB RAM, windows 7 32bit)

Methods Voting Maximum rule D-S fusion rule Fuzzy integral Proposed method

ORL Acc 94.84 96.85 97.81 97.46 98.28
T 182.4 64.9 66.4 88.6 68.9

Yale A Acc 91.33 96.67 97.78 98.67 99.34
T 127.9 55.9 61.7 84.1 56.7

FERET Acc 69.94 71.5 72.75 71.25 73.34
T 274.1 75.4 80.4 94.5 80

AR Acc 92.57 93.78 96.92 95.38 97.17
T 562.5 80.0 89.6 108.3 86.4
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Therefore, the proposed method exhibits a stronger resistance to unreliable decision-making
interference than common fusion methods do in the fusion decision making.

With regard to process time, that of different algorithms from fast to slow is in the following
order: maximum rule method, dynamic ensemble method, D-S fusion method, fuzzy integral
method and the voting method. The voting method consumes much time to find the nearest
sample, especially when the training set is large. The fuzzy integral involves an iterative
process and thus consumes much time when dealing with multiple types or large sample
problems. The D-S fusion method presents increased time complexity during the construction
of its basic probability distribution function, which reduces the classification efficiency. Given
that the weights of the dynamic ensemble method are assigned by defining reliability and
credibility, its reliability can be obtained by offline training and its credibility can be obtained
by dispersion mapping of the classifier with negligible the time consumption for mapping. As
a result, the dynamic integration method exhibits good efficiency in classification, which is
only slightly below that of the maximum rule method. Considering the classification accuracy
and efficiency of the proposed method in face recognition, its feasibility and effectiveness are
verified.

To better illustrate the advantages of our method, the optimal experimental results of the
multi-classifier dynamic ensemble method in face recognition are compared with those of
some existing face recognition methods.

As shown in Table 3, the proposed multi-classifier dynamic ensemble method achieves a
good classification performance. The classifier adjusts its weight by analysing its recognition
capability in different regions of the sample set and the decision information of the output,
thereby emphasising the Bcontribution^ of the excellent classifier to the final classification
result. Accordingly, some error-prone divisions can be corrected and the interference of
unreliable decision output to fusion can be decreased.

6 Discussion

In a multi-classifier system, the base classifier should satisfy the difference and complemen-
tarity. If all the classifiers incorrectly identify the sample, then the ensemble will be meaning-
less. Therefore, a classifier set with difference and complementarity should be
comprehensively constructed. In classifying different query samples, the performance of the
classifiers shows a certain difference. If a numerical value is used to measure its importance,

Table 3 Recognition rates (%) compared with other methods

Methods ORL Yale A FERET AR

SRC [51] 92.30 – 33.07 88.44
PNN [24] 94.95 – 56.87 95.82
TWSBF+ LDA [20] 97.15 – 59.45 97.51
LGP +BAW-GSA [6] 90.7 96.5 – –
W-LBPAT [61] 96.5 94.91 – –
FMSD [28] 97.56 96.53 53.46 –
ACS-IDA [41] 95 97.8 86.4 –
Proposed method 98.28 99.34 73.34 97.17
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then the value should reflect not only the identification performance of the base classifier in the
entire sample space but also the adaptability of the base classifier, which changes with the
change in the number of query sample. This study aims to dynamically adjust the weights of
each base classifier. Consequently, the weight of the classifier providing the correct classifi-
cation information increases and the weight of the classifier providing incorrect information
decreases. The weight exhibits strong adaptability and can be updated as the query sample
changes.

7 Conclusions

In this study, we analyse the advantages and disadvantages of existing weighted ensemble methods
on the basis of the study on ensemble learning. A dynamic weight assignment method that defines
the reliability and credibility of the classifier is proposed. Compared with general methods, two
aspects, namely, the performance on the training set and the decision information output when
identifying specific target, are considered in acquiring the weights of the classifier. This method can
thus describe the importance of the classifier comprehensively. The comparison between the results
of simulation experiment on face recognition and those of the existing popular ensemble methods
proves that the proposed method can effectively reduce the interference of unreliable decision
information and efficiently improve the recognition performance of the classification system. The
current study on multi-classifier ensemble method is of practical value to face recognition problem,
of methodological significance to other fields in addition to machine learning and possesses a wide
application prospect.

Issues related to multi-classifier ensemble methods, such as constructing and selecting efficient
base classifiers and obtaining effective results of the base classifier, should be explored. In this
study,the proposed method is only verified on standard face databases,corresonding optimisation
and adjustment should be made according to the specific circustances when solving other pattern
classification problems.Meanwhile, the base classifiers constructed in this paper are homogeneous,
this would inevitably lead to the overlapping of wrong samples, which will affect the classification
system to make accurate decision.The next research focus is how to screen the classifier by
measuring the difference between the classifiers so as to obtain a better classification result.
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