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Abstract Objects are often organized in a semantic hierarchy of categories, where fine-
level categories are grouped into coarse-level categories according to their semantic
relations. While previous works usually only classify objects into the leaf categories, we
argue that generating hierarchical labels can actually describe how the leaf categories
evolved from higher level coarse-grained categories, thus can provide a better understand-
ing of the objects. In this paper, we propose to utilize the CNN-RNN framework to address
the hierarchical image classification task. CNN allows us to obtain discriminative features
for the input images, and RNN enables us to jointly optimize the classification of coarse and
fine labels. This framework can not only generate hierarchical labels for images, but also
improve the traditional leaf-level classification performance due to incorporating the hierar-
chical information. Moreover, this framework can be built on top of any CNN architecture
which is primarily designed for leaf-level classification. Accordingly, we build a high per-
formance network based on the CNN-RNN paradigm which outperforms the original CNN
(wider-ResNet) and also the current state-of-the-art. In addition, we investigate how to uti-
lize the CNN-RNN framework to improve the fine category classification when a fraction
of the training data is only annotated with coarse labels. Experimental results demonstrate
that CNN-RNN can use the coarse-labeled training data to improve the classification of fine
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categories, and in some cases it even surpasses the performance achieved by fully annotated
training data. This reveals that, CNN-RNN can alleviate the challenge of specialized and
expensive annotation of fine labels.

Keywords Convolutional neural network - Recurrent neural network - Hierarchical image
classification - Wider-Resnet

1 Introduction

Image classification has long been an active area of research, which aims to classify images
into pre-defined categories, and helps people to know what kind of objects the images con-
tain. Traditionally, image classification is mainly performed on small datasets, by encoding
local hand-crafted features and using them as input for classifiers [20, 47, 51].

In recent years, two fundamental changes occurred for this task: first, the number
of digital images has been increasing exponentially. This brings people more alterna-
tives, and more difficulties, in finding relevant images from this large volume of data.
To help people access data, in an effortless and meaningful way, we need a good seman-
tic organization of the categories. Second, deep learning methods have proven to be
successful for image classification. In recent years, researchers have built various deep
structures [12, 35, 41], and have achieved quite accurate predictions on small datasets
[4, 10].

As a consequence, the current research focus has moved to larger and more challeng-
ing datasets [3, 34], such as ImageNet [6]. Such datasets often organize the large number
of categories in a hierarchy, according to their semantic belongings. The deeper one goes
in the hierarchy, the more specific the category is. In contrast to current approaches, which
only focus on the leaf categories, we argue that generating hierarchical labels in a coarse-
to-fine pattern can present how the semantic categories evolve, and thus can better describe
what the objects are. For example, for Fig. Ic, the predicted leaf-category label is “Tricer-
atops’. Without specialized knowledge, we cannot learn that this category label belongs to
the higher level category label ‘Horned Dinosaur’.

The first contribution of this paper is a framework capable of generating hierarchical
labels, by integrating the powerful Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN). CNN is used to generate discriminative features, and RNN is used
to generate sequential labels.

There are several notable advantages for the CNN-RNN framework:

(1) Learning things in a hierarchical way is consistent with human perception and con-
cept organization. By predicting the labels in a coarse-to-fine pattern, we can better
understand what the objects are, such as depicted in Fig. 1c.

(2) It can exploit the relationship between the coarse and fine categories, which, in turn,
helps the traditional image classification task. For example, when we build the CNN-
RNN framework with wrn-28-10 [53], we can increase the accuracy of coarse and
fine categories by 2.8% and 1.68%, respectively. To the best of our knowledge, this
is the first work trying to employ RNN to improve the classification performance by
exploiting the relationship between hierarchical labels.

(3) It is transferrable. In principle, the framework can be built on top of any CNN
architecture which is primarily intended for single-level classification, and boost the
performance for each hierarchical level. To verify this, we have conducted extensive
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(a) Dog—> Basenji (b) Dog—> Leonberg (C) Horned Dinosaur—> Triceratops

Fig. 1 The example images with the ‘coarse — fine’ label

experiments with three high-performance networks, i.e. CNN-7 [25], wrn-28-10 [53]
and our proposed wider-Resnet.

(4) The structure can be trained end-to-end. In contrast to other methods which can only
model the category relationship with pre-computed image features [7, 30], the CNN-
RNN framework can jointly learn the features and relationship in an end-to-end way,
which can improve the final predictions considerably. For a subset of ImageNet 2010,
we compared employing pre-computed CNN features to train the RNN with end-to-
end training the CNN and RNN and demonstrated a significant improvement of the
subcategory accuracy from 77.27% to 82%.

(5) The number of the hierarchical labels can be variable. The flexibility of RNN allows us
to generate hierarchical labels of different lengths, i.e. more specific categories would
have more hierarchical labels. We have demonstrated this property on the widely used
ImageNet 2012 dataset [32].

As the framework is transferrable, we intend to build a high performance CNN model,
and utilize its CNN-RNN variant to further boost the accuracy. Therefore, the second con-
tribution of this paper is, we build a high performance network, i.e. wider-ResNet. In recent
years, deep residual networks (ResNet) [12] have attracted great attention because of its
leading performance in several image classification tasks and Zagoruyko et al. [53] pre-
sented a thorough experimental study about several important aspects of ResNet, such as
the width and depth, and proposed a wide Resnet that obtained better performance than
the original ResNet. We intend to further enhance the performance and build a wider
ResNet compared to [53]. Our implementation shows that, the wider-Resnet performs better
than [53] on CIFAR-100, and also outperforms the original ResNet with thousands layers.
In addition, by utilizing the CNN-RNN framework, we obtain considerably better results
than the state-of-the-art.

The performance of deep models has benefited from the accurate and large-scale anno-
tations, such as ImageNet [6]. However, manual labeling is an excessively tedious and
expensive task, especially for the fine-grained classes, which often require expert knowl-
edge (e.g. breeds of dogs, flower species, etc.). For example, for Fig. 1a and b, it is easy
to annotate the images with the coarse label ‘dog’, but it requires specialized knowledge to
divide them into subcategories ‘Bsenji’ and ‘Leonberg’. One optional thought is, if a part of
the training data is only annotated with coarse category labels, whether we could utilize the
coarse-labeled training data to improve the classification performance of fine categories?

The third contribution of this paper is, we investigate how to utilize the CNN-RNN
framework to improve the subcategory classification when a fraction of the training data
only has coarse labels. By training the CNN-RNN framework on the fully annotated data
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in the training set, we can exploit the relationship between the coarse and fine categories.
Thereby, we can predict the fine labels of the coarse-labeled training data, and then re-train
the CNN-RNN model. Experimental results demonstrate that the coarse-labeled training
data can normally help the subcategory classification. In some cases, it can even surpass
the performance of fully annotated training data. This alleviates the expensive process of
fine-grained labeling.

2 Related work
2.1 Usage of CNN-RNN framework

In recent years, deep learning methods have attracted significant attention [11] and have
achieved revolutionary successes in various applications [12, 24]. Two important structures
for deep learning are CNN and RNN. CNN has proven to be successful in processing image-
like data, while RNN is more appropriate in modeling sequential data. Recently, several
works [8, 23, 44, 48, 52, 54] have attempted to combine them together, and have built
various CNN-RNN frameworks. Generally, the combination can be divided in two types:
the unified combination and the cascaded combination.

The unified combination often attempts to introduce a recurrent property into the tra-
ditional CNN structure in order to increase the classification performance. For example,
Zuo et al. [54] converted each image into 1D spatial sequences by concatenating the CNN
features of different regions, and utilized RNN to learn the spatial dependencies of image
regions. Similar work appeared in [46]. The proposed ReNet replaced the ubiquitous con-
volutional+pooling layer with four recurrent neural networks that sweep horizontally and
vertically in both directions across the image. In order to improve the multi-label classifica-
tion, Wang et al. [48] presented the CNN-RNN framework to learn a joint embedding space
in modeling semantic label dependency as well as the image-label relevance.

On the other hand, the cascaded combination would process the CNN and RNN sepa-
rately, where the RNN takes the output of CNN as input, and returns sequential predictions
of different timesteps. The cascaded CNN-RNN frameworks are often intended for differ-
ent tasks, rather than image classification. For example, [8, 45, 52] employed CNN-RNN
to address the image captioning task, and [50] utilized CNN-RNN to rank the tag list based
on the visual importance.

In this paper, we propose to utilize the cascaded CNN-RNN framework to address a new
task, i.e. hierarchical image classification, where we utilize CNN to generate discriminative
image features, and utilize RNN to model the sequential relationship of hierarchical labels.

2.2 Hierarchical models for image classification

Hierarchical models have been used extensively for image classification. For example,
Salakhutdinov et al. [33] presented a hierarchical classification model to share features
between categories, and boosted the classification performance for objects with few train-
ing examples. Yan et al. [49] presented a hierarchical deep CNN (HD-CNN) that consists
of a coarse component trained over all classes as well as several fine components trained
over subsets of classes. Instead of utilizing a fixed architecture for classification, Mur-
dock et al. [29] proposed a regularization method, i.e. Blockout, to automatically learn the
hierarchical structure.
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Another pipeline to employ hierarchical models tends to improve the classification per-
formance by exploiting the relationship of the categories in the hierarchy. For instance,
Deng et al. [7] introduced HEX graphs to capture the hierarchical and exclusive relationship
between categories. Ristin et al. [30] utilized Random Forests and proposed a regular-
ized objective function to model the relationship between the categories and subcategories.
This type of hierarchical models can not only improve the traditional image classifica-
tion performance, but also provide an alternative way to utilize the coarse-labeled training
data.

In contrast to previous works, our paper utilizes RNN to exploit the hierarchi-
cal relationship between coarse and fine categories, and aims to adapt the model to
address the hierarchical image classification task, in which we simultaneously gener-
ate hierarchical labels for the images. Compared with [7, 30] that can only process
the pre-computed image features, our proposed CNN-RNN framework can be trained
end-to-end.

3 Our proposed scheme

The goal of our approach is to simultaneously generate hierarchical labels of the images. To
this end, we can employ two types of generators: a CNN-based generator and a CNN-RNN
generator. Both of them keep the preceding layers of the basic CNN structure except for the
last layer.

3.1 CNN-based generator

A CNN-based generator aims to generate coarse and fine labels by utilizing the conven-
tional CNN structure. It acts as a common practice to fulfill this specific task. In this paper,
we replace the last layer of conventional CNN with two layers, through which to provide
separate supervisory signals for both the coarse categories and fine categories. The two lay-
ers can be arranged either in a serial pattern (Fig. 2: Strategy 1 & 2), or in a parallel pattern
(Fig. 2: Strategy 3).

During the training phase, we utilize the softmax loss function to jointly optimize the
coarse and fine label predictions, as defined in (1).

C

Loss:—i}i Zl{xi:j}logpj—kil[yi:k}logpk (@9
k=1

i=1 \j=1

Where 1 {-} is the indicator function. N, C, F' denote the number of the images, coarse
categories, and fine categories, respectively. p; and py are the softmax probabilities of the
coarse and fine categories, respectively.

During the inference phase, we can utilize the trained network to determine the coarse
and fine labels at the same time.

There are two potential drawbacks for the CNN-based generator: first, it treats the two
supervisory signals individually, and does not exploit the relationship between them. Sec-
ond, when the hierarchy is of variable length, we cannot define a universal CNN-based
generator to simultaneously determine the hierarchical labels.
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Fig. 2 The illustration of the four strategies which can jointly train and generate the coarse and fine labels

3.2 CNN-RNN generator

A CNN-RNN generator determines hierarchical predictions using an architecture where the
last layer of a CNN is replaced by an RNN (Fig. 2: Strategy 4).

RNN [9] is a class of artificial neural networks where connections between units form
a directed cycle, as shown in Fig. 3. It can effectively model the dynamic temporal behav-
ior of sequences with arbitrary lengths. However, RNN suffers from the vanishing and
exploding gradient problem since the gradients need to propagate down through many lay-
ers of the recurrent network. Therefore, it is difficult to model the long-term dynamics.
In contrast, Long-Short Term Memory (LSTM) [14] provides a solution by incorporating
a memory cell to encode knowledge at each time step. Specifically, the behavior of the
cell is controlled by three gates: an input gate, a forget gate and an output gate. These
gates are used to control how much it should read its input (input gate i), whether to for-
get the current cell value (forget gate f) and whether to output the new cell value (output
gate o). These gates help the input signal to prorogate through the recurrent hidden states
without affecting the output, therefore, LSTM can deal well with exploding and vanishing
gradients, and effectively model long-term temporal dynamics that RNN is not capable of
learning.
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Fig. 3 The pipeline of RNN(left) and LSTM(right)

In this paper, we use LSTM neurons as our recurrent neurons. The definition of the gates
and the update of LSTM at the timestep t are as follows:

ir = 0 (Wyix; + Wiihi—1 + Wyiv + b;) (2
Jie=0Wxpxe + Wiphi—1 + Wyrv + by) 3
01 = 0 (Wxox; + Wiohi—1 + Wyov + by) )
8 = @(Wxexy + Whehi—1 + Wycv + be) &)
o =fiOc-1+i0Og (6)
hy = 0; © @(cr) 7

Where © represents the product operation, ¢ is the sigmoid function (o (x) = (1 +
e )71, and ¢ is the hyperbolic tangent function (¢(x) = i;;gj ). The definition for
other symbols are: iy, f;, o;, g denote the input gate, forget gate, output gate, and input
modulation gate, respectively. x, &, v and ¢ represent the input vector, hidden state, image
visual feature, and memory cell, respectively. We propose to impose the image visual feature
v at each timestep when updating the LSTM. W and b are the weights and bias that need to
be learned.

The goal of our approach is to generate hierarchical labels for images. The labels are
ordered in a coarse-to-fine pattern, i.e. coarser labels appear at the front of the list. To
this end, we merge the C coarse categories and F fine categories as C + F super cate-
gories. For different timesteps, the CNN-RNN generator takes the labels of different levels
as input, where the coarser-level labels appear at the preceding timesteps. In this way, the
coarser-level labels can provide insightful information for the prediction of finer labels. The
procedure is shown in Fig. 4.

During the training phase, the CNN-RNN generator utilizes the groundtruth coarser-level
labels as input, and jointly optimizes the coarse and fine predictions, as denoted in (8).

T C+F

N
Loss=—%2 ZZl{x}:j}logpj (8)

i=1 \t=1 j=I

During the inference phase, when the groundtruth coarser-level labels are not available,
the CNN-RNN generator first predicts the maximum likelihood label for current timestep,
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Fig. 4 The pipeline of the CNN-RNN framework

ie. W, = argmaxw,_, p(W;_1|I), and then utilize the predicted label as the input for the
next timestep.

Furthermore, we visualize the LSTM activations of different timesteps using the t-SNE
technique [43] on CIFAR-100 [18], as shown in Fig. 5. The two activations are intended for
the coarse and fine predictions, respectively. We can see that, the activation of the second
timestep is more discriminative than that of the first timestep.

As the CNN-RNN generator defines the super categories, and it equally trains and pre-
dicts the super categories, we do not need to design specific networks for the categories
of different levels. Therefore, the CNN-RNN generator is robust, and can be employed to
generate hierarchical labels of different lengths.

4 Experiments

We perform our experiments on three well-known datasets: CIFAR-100 [18], ImageNet
2012 [32] and a subset of ImageNet 2010 [30]. These three datasets have provided hier-
archical image labels. The characteristics of the three datasets are summarized in Table 1.

Fig. 5 The visualization of the LSTM activations of different timesteps. The left one is the feature intended
for the coarse label classification, while the right one is used for the fine label classification
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Table 1 The characteristics of

the datasets, including the depth Dataset Depth Coarse No. Fine No.

of the hierarchy, the number of

the coarse categories and fine CIFAR-100 2 20 100

categories ImageNet 2012 1-9 860 1000
Subset of ImageNet 2010 2 143 387

The performance is measured based on the top-1 accuracy. All the experiments are
conducted using the Caffe [16] library with a NVIDIA TITAN X card.

The experiments can be divided into two parts. In the first part, we evaluate the perfor-
mance of hierarchical predictions. In the second part, we investigate the performance of
subcategory classification when only a part of the training data is labeled with fine labels
while the rest only has coarse labels.

4.1 Hierarchical predictions

We evaluate the hierarchical predictions on two widely-used datasets: CIFAR-100 [18] and
ImageNet 2012 [32].

4.1.1 CIFAR-100

CIFAR-100 contains 100 classes, and each class has 500 training images and 100 test
images. These classes are further grouped into 20 superclasses. Therefore, each image
comes with two level labels: a fine label (the class to which it belongs) and a coarse label
(the superclass to which it belongs). For data preprocessing, we normalize the data using
the channel means and standard deviations. The symbol ‘+’ means a standard data augmen-
tation, i.e. first zero-padded with 4 pixels on each side, and randomly crop 32 x 32 images
from the padded images, or their horizontal reflections.

Evaluation of the hierarchical image classification task The CNN-based generator
and CNN-RNN generator are considered as two alternative structures to fulfill the hierarchi-
cal image classification task. In contrast to CNN-based generator, the CNN-RNN generator
can effectively exploit the dependency of the hierarchical labels, and thereby achieving a
better classification performance for both the coarse and fine categories. We compare their
performance in Table 2.

All of the evaluations in this part are conducted based on the CNN model proposed
in [25], because of its high training efficiency and decent performance on CIFAR-100. The

Table 2 The comparison of the accuracy for the coarse categories and fine categories. Best results are in
bold face

C100 C100+

Coarse Fine Coarse Fine
Coarse-to-fine 73.88% 58.41% 78.1% 64.16%
Fine-to-coarse 75.02% 61.75% 78.16% 65.56%
Fine-and-coarse 74.72% 61.8% 77.56% 64.87%
CNN-RNN 80.81% 69.69 % 83.21% 72.26%

‘+’ indicates a standard data augmentation (translation/mirroring)
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Fig. 6 The CNN baseline proposed in [25]

CNN structure is shown in Fig. 6. We employ exactly the same experimental configuration
as used in [25].

As can be seen, the CNN-RNN generator can significantly outperform the CNN-based
generator, both for the coarse/fine predictions with/without data augmentation. Specifically,
for the coarse predictions, the CNN-RNN generator outperforms the CNN-based genera-
tor by at least 5.05%, while for the fine predictions, the CNN-RNN generator is even more
advantageous, with an improvement of more than 6.7%. This demonstrates that, by exploit-
ing the latent relationship between the coarse and fine categories, RNN can properly address
the hierarchical-based task.

Evaluation of the traditional image classification task The traditional image classifi-
cation task consists of classifying images into one pre-defined category, rather than multiple
hierarchical categories.

As the CNN-RNN generator can simultaneously generate the coarse and fine labels,
in this part, we further compare its performance with ‘coarse-specific’ and ‘fine-specific’
networks. The ‘fine-specific’ network uses the common CNN structure which is specifically
employed for the fine category classification. The ‘coarse-specific’ network shares the same
preceding layers with the ‘fine-specific’ network, where the last layer is adapted to equal
the coarse category number, e.g. 20 for CIFAR-100.

The coarse-specific, fine-specific and CNN-RNN framework can be constructed based on any
CNN architecture. To make the comparison more general and convincing, we evaluate the per-
formance on three networks: CNN-7 [25], wrn-28-10 [53] and our proposed wider-Resnet.

For wrn-28-10, we adopt the version with dropout [39], and train the network with larger
mini-batch size (i.e. 200), and more iterations (a total of 7 x 10* iterations, and the learning
rate dropped at 2 X 10%, 4 x 10%, 6 x 10* iterations). Other experimental configuration
follows [53].

The structure of our proposed wider-Resnet is shown in Table 3. We adopt the pre-
activation residual block as in [13], and train the models for a total of 7 x 10* iterations, with
a mini-batch size of 200, a weight decay of 0.0005 and a momentum of 0.9. The learning
rate is initialized with 0.1, and is dropped by 0.1 at 4 x 10* and 6 x 10* iterations.

The results on these three datasets are shown in Table 4. We can see that, CNN-RNN can
simultaneously generate the coarse and fine labels without developing two separate models,
and the accuracy for both categories outperforms the specific networks. Take our proposed
wider-Resnet as an example, the CNN-RNN structure increases the coarse and fine accuracy
by 2.85% and 1.17% respectively, over the coarse-specific and fine-specific networks. This
advantage demonstrates that, by exploiting the latent relationship of the coarse and fine
categories, CNN-RNN can help the traditional image classification task.

Our implementation of wrn-28-10 [53] cannot reproduce the original published results,
possibly as a result of the differences in the platforms (Torch v.s. Caffe), or the differences
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Table 3 The framework of our

proposed wider-Resnet Group name Output size wider-Resnet

convl 32x32 3x3, 64
[1x 1,256

conv2 32x32 3 x 3,256 | x3
L1x1,256
[1x1,512

conv3 16x16 3x3,512 | x3
L1x1,512
[1x1,1024

conv4 8x8 3x3,1024 | x3
| 1 x1,1024

pool5 1x1 global average pooling

in the preprocessing step (pad with reflections of original image v.s. pad with zero). Never-
theless, we can still improve the coarse and fine accuracy by 2.8% and 1.68% respectively,
through utilizing the CNN-RNN structure.

Comparison with the state-of-the-art We compare our wider-Resnet network, as well
as its CNN-RNN variant, with the state-of-the-art, as is shown in Table 5.

Through the comparison, we further demonstrate the superiority of the wider networks
on CIFAR-100 dataset, as our not-very-deep wider-Resnet network (29 layers) surpasses the
performance of the ResNet with super deep layers (1001 layers). In comparison with another
wide ResNet [53] with similar depth, wider-Resnet also demonstrates great improvements
and remarkably reduces the classification error from 25.45% to 22.03%, under the same
platform and pre-processing step.

Overall, our proposed wider-Resnet achieves the best performance over previous works,
and wider-Resnet-RNN further increases the state-of-the-art to 20.86%. Nevertheless, we

Table 4 The comparison of the accuracy for the coarse categories and fine categories. For each network,
CNN-RNN could get better results and their results are bolded

C100+
Coarse Fine
coarse-specific 82.09% -
CNN-7 [25] fine-specific - 72.03%
CNN-RNN 83.21% 72.26%
coarse-specific 82.59% -
wrn-28-10 [53] fine-specific - 74.55%
CNN-RNN 85.39% 76.23%
coarse-specific 85.38% -
wider-Resnet fine-specific - 77.97%
CNN-RNN 88.23% 79.14%

‘+’ indicates standard data augmentation (translation/mirroring)
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Table 5 The test error of

different methods on the Method C100+

CIFAR-100 dataset with standard

data augmentation FitNet [31] 35.04%

(translation/mirroring). Best DSN [21] 34.57%

results are in bold face AI-CNN [38] 33.71%
Highway Network [40] 32.39%
APL [1] 30.83%
SReLU [17] 29.91%
BayesNet [37] 27.4%
Fitnet4-LSUV [28] 27.66%
ELU [5] 24.28%
MBA [22] 24.1%
ResNet-110 [12] (according to [15]) 27.22%
ResNet-110 (Stochastic Depth) [15] 24.58%
ResNet-164 (Pre-activation) [13] 24.33%
ResNet-1001 (Pre-activation) [13] 22.71%
18-layer + wide RiR [42] 22.90%
FractalNet-20 [19] 23.30%
FractalNet-40 [19] 22.49%
SwapOut V2 [36] (widthx4) 22.72%
wrn-28-10 [53] (our reproduced) 25.45%
wrn-28-10-RNN 23.77%
wider-Resnet 22.03%
wider-Resnet-RNN 20.86%

are still seeking to build the CNN-RNN framework on top of future state-of-the-art
architectures to boost the classification performance.

4.1.2 ImageNet 2012

One notable advantage of RNN is that it can generate sequences with variable lengths. To
demonstrate this, we investigate the CNN-RNN framework on the widely used ImageNet
2012 dataset [32].

ImageNet is an image dataset organized according to the WordNet hierarchy [27]. It is
larger in scale and diversity than other image classification datasets. ImageNet 2012 uses a
subset of ImageNet with roughly 1300 images in each of 1000 categories. The images are
annotated with hierarchical labels of different lengths. In total, there are about 1.2 million
training images and 50000 validation images. For all the experiments, we train our model
on the training images, and test on the validation images of the ImageNet 2012 dataset.

We utilize the ResNet-152 [12] as our CNN model. For simplicity, pre-trained model
weights are kept fixed without fine-tuning. For the RNN model, we use 1000 dimensions for
the embedding and the size of the LSTM memory. During the experiments, we first resize
all the images to 224 x 224 pixels and extract the last pooling features utilizing ResNet-152,
and then send the features into LSTM for modeling the category dependency.

Figure 7 demonstrates the hierarchical predictions for some example images, from which
we can observe that: first, RNN is able to generate predictions with different lengths, and
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Fig.7 The hierarchical predictions of some example images. a and ¢ show some positive examples. b shows
the examples with partly wrong predictions, e.g. correct coarse labels & wrong fine labels. d shows examples
in the same category as (c), but which have totally wrong predictions

more specific categories would have more hierarchical labels. Second, the hierarchical
labels can describe how the fine categories are evolved from higher level coarse categories,
and thus can provide us a better understanding of the objects. Consider for example the
upper image in Fig. 7a, we may get confused with the leaf-level label: ‘Granny Smith’.
But when the coarse-level labels are provided, we observe that ‘Granny Smith’ is a breed
of apple. Third, it may be more difficult to classify images into leaf-level categories than
branch-level categories. When we get faulty leaf-level predictions for the given image, we
might still learn what the image depicts from the coarse predictions, as shown in Fig. 7b.

4.2 From coarse categories to fine categories

In the previous section, we have investigated the hierarchical classification performance of
CNN-RNN when all of the coarse and fine labels are available for the training data. How-
ever, annotating fine labels for large amounts of training data is quite expensive, especially
when it requires expert knowledge. In this subsection, we focus on a scenario in which a
part of the training data is annotated with fine labels, while the rest only has coarse labels.
This can be viewed as a special case of weakly supervised learning, and has ever been
investigated in [30].

We follow the experiment setup of [30], and conduct our experiment on a subset of
ImageNet 2010. This dataset particularly selected the classes from ImageNet 2010 that have
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Table 6 Accuracy for classifying fine labels using the ImageNet 2010 subset described in [30]

Training Set Accuracy
NCM [26] S 66.02%
Multiclass SVM [2] S 71.67%
RNCMF [30] S 74.18%
RNN 0.28 75.09%

0.48 76.17%

S 77.27%
CNN S 76.01%
CNN-RNN S 82%
CNN-RNN* S 90.69%

RNN: train the RNN with extracted image features from VGG-Net [35]; CNN: finetune the VGG-Net [35]
on the ImageNet 2010 subset; CNN-RNN: jointly train the VGG-Net [35] and RNN in an end-to-end pattern;
We use the superscript “*’ to denote that the coarse labels are provided when predicting the fine labels in the
test phase

a unique parent class, and obtained 143 coarse classes and 387 fine ones accordingly. The
reduced training set contains 487K images where each coarse class has between 1.4K and
9.8K images, and each fine class has between 668 and 2.4K images. The test set contains
21450 images, and each coarse class has 150 images. More details about the dataset can be
found in (http://www.vision.ee.ethz.ch/datasets_extra/mristin/ristin_et_al_cvprl5_data.zip).

All of the image features are extracted from the VGG-Net [35], as was done for the
preliminary experiments in [30].

Evaluation of the classification performance when all of the training fine labels
are available When all of the coarse and fine labels are available, we can directly train
the RNN on the full training set, and evaluate the classification performance on the test
set. To better demonstrate the advantage of RNN, we further conduct the training process
on a fraction of the training set. In addition, we investigate how much the performance
may improve when the coarse labels are provided for the test data, and when we train the
CNN-RNN in an end-to-end way, rather than with the off-the-shelf image features. As a
comparison with CNN-RNN framework, we also finetune the VGG-Net on the ImageNet
2010 subset. The results are shown in Table 6.

We can notice that, training on more data results in a more powerful RNN model, and
thus can achieve better performance. Compared with the models trained on parts of the
training set, i.e. 0.2S5 and 0.4, utilizing the full training set S shows an improvement of
2.18% and 1.1%, respectively. It reveals that, a large training dataset is essential in training
the deep models.

In contrast to other methods listed in [30], RNN achieves superior classification per-
formance by inherently exploiting the relationship between the coarse and fine categories.
Notably, RNN can deliver better performance even utilizing only 20 percent of the training data.

One additional advantage of the CNN-RNN framework is that it can be trained end-
to-end. Compared with the predictions generated with off-the-shelf CNN features, jointly
training the CNN and RNN results in a significant improvement, from 77.27% to 82%. It is
also much better than directly finetuning the VGG-Net on the ImageNet 2010 subset (82%
v.s. 76.01%). When provided the coarse labels for the test images, CNN-RNN achieves an
accuracy of 90.69%.
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Fig. 8 The classification performance with different training/test set

Evaluation of the classification performance when part of the fine labels for train-
ing are missing The training set S in this part are randomly divided into two disjoint
sets: Scoarse and S fine. Scoarse has only the coarse labels, while S¢;,, has both coarse and
fine labels. We vary |Srize| € {0.1]S], 0.2]S], 0.5]S]}, and for each S;,., we further vary
|Scoarsel € {0.1]S], 0.2[S], 0.5]S1}.

For each training/test configuration, we conduct three evaluations:

1) Sfine: We train the RNN on Sy, and evaluate on the test set;

2)  Sfine + Separse: We first train the RNN on Sy, and use it to predict the fine labels of
Scoarse- In this way, we obtain a new training set S_,,, ., Which contains both coarse
and (predicted) fine labels. Next, we utilize the S;,. and S_,,,, to re-train the RNN,
and evaluate on the test set.

3)  Stine + S}arse: We train the RNN on S and S7 ., and evaluate on the test set.
S+

oarse Means we utilize the groundtruth fine labels of Scoqrse.

The results are shown in Fig. 8.

In general, S¢ine + S;yy, 50 Performs better than Sy, indicating that even some of the
fine labels for the training data are missing, the fine category classification can benefit from
the CNN-RNN structure.

Since the fine labels of S¢oq 5. are predicted by the RNN trained on S ¢;,, their accuracy
cannot be guaranteed. As a consequence, the second training of RNN may be conducted on
a partly wrong labeled dataset. This is particularly severe when |S ;| is small. As we can
see in Fig. 8a, when [S ;.| = 0.1]5], the classification hardly benefited from using Scoarse
when compared to the RNN trained solely on S;je.

@ Springer



10266 Multimed Tools Appl (2018) 77:10251-10271

Table 7 Accuracy in classifying fine categories for the test set. We set the amount of coarse-labeled data to
|Scoarsel = 0.5]S|. Best results are in bold face

|Sfine|

0.1]8] 0.2|S| 0.5/S|
RNCMF [30] 68.49% 70.49% 73.07%
NN-H-RNCMF [30] 69.95% 71.41% 73.43%
RNN 74.26 % 75.64% 77.12%

On the contrary, when |Sy;,.| is large, e.g. |Sfinel = 0.5]S|, we can achieve a consid-
erable improvement by incorporating Scoqrse. Notably, when [S¢ine| = 0.5|S], |Scoarse| =
0.1|S, Sfine + Szparse even performs slightly better than S ¢ine + S,,.s.» demonstrating its
great potential in weakly supervised classification.

We further compare our method with the NN-H-RNCMF [30], which also attempted to
improve the classification by exploiting the hierarchy. We set the amount of coarse-labeled
data to [Scoarsel = 0.5|S], and vary |Sgine| € {0.1]5],0.2|S], 0.5|S]}, and the results are
shown in Table 7. It can be seen that, RNN performs much better than NN-H-RNCMF in all

configurations, demonstrating its great potential in exploiting the hierarchical relationship.

5 Conclusion

In this paper, we proposed to integrate CNN and RNN to accomplish hierarchical classifi-
cation task. The CNN-RNN framework can be trained end-to-end, and can be built on top
of any CNN structures that are primarily intended for leaf-level classification, and further
boost the prediction of the fine categories. In addition, we also investigated how the classi-
fication would benefit from coarse-labeled training data, which alleviates the professional
and expensive manual process of fine-grained annotation.

Currently, it is necessary to have hierarchical labels in the training set, in order to train
the RNN. However, this is not available for many small datasets. In the future, we will exam-
ine taking advantage of traditional clustering methods towards automatically constructing
a hierarchy for the objects, and use CNN-RNN to boost the classification performance for
general datasets.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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