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Abstract With the increasing availability of multiview nonnegative data in real applica-
tions, multiview representation learning based on nonnegative matrix factorization (NMF)
has attracted more and more attentions. However, existing NMF-based methods are sen-
sitive to noises and are difficult to generate discriminative features with noisy views. To
address these problems, we propose a co-regularized multiview nonnegative matrix factor-
ization method with correlation constraint for nonnegative representation learning, which
jointly exploits consistent and complementary information across different views. Differ-
ent from previous works, we aim at integrating information from multiple views efficiently
and making it more robust to the presence of noisy views. More specifically, we exploit the
complementary information of multiple views through the co-regularization to accommo-
date the presence of the noisy views. Meanwhile, correlation constraint is imposed on the
low-dimensional space to learn a common latent representation shared by different views.
For the induced objective function, we derive an alternative algorithm to solve the optimiza-
tion problem. The experimental results on four real datasets demonstrate the effectiveness
and robustness of the proposed algorithm.
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1 Introduction

In real application, each object can be described by multiple different views or different fea-
tures [30]. For example, as shown in Fig. 1, the objects can be represented by texture, color,
shape, text and speech. These multiview representations provide complementary informa-
tion to each other [47]. Integrating information from multiple views and uncovering the
common latent structure shared by multiple views are the main concerning for the multiple
views representation learning [55]. Generally, the traditional method is to concatenate all
the features into a single vector, and then applies existing algorithms to this single vector.
Obviously, this method ignores the differences of statistical properties between different
views and also lacks physical meaning [39]. Actually, multi-view data contains consistent
and complementary information simultaneously across different views [28, 31]. Leveraging
the complementary information amongst views has better generalization ability than single
view [7, 23, 25, 30, 46].

In the past year, multi-view learning algorithms have been proposed and applied suc-
cessfully to image processing and computer vision [20, 42, 45, 48]. Those methods can
be mainly categorized into three classes, i.e., co-training, multi-kernel learning and shared
subspace learning. Co-training [2, 26] pursues to maximize the mutual agreement on two
different views alternately. Based on the assumption that different kernels correspond to
different views, multiple kernel learning [27, 51] combines different kernels to improve the
performance . Different from co-training and multiple kernel method, the aim of subspace
learning [6, 14, 19, 22, 32, 48] is to obtain a latent subspace based on the assumption that
different views are generated from this latent common subspace. The classical subspace
method includes canonical correlation analysis [17], which obtains the latent subspace via
maximizing the correlation between different views. Though these approaches are success-
ful in multi-view learning, they do not perform well on purely non-negative features such
as pixel values or color histogram [21].
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Fig. 1 Examples of multiview data. a an object can be described from different views; b the fruit can be
depicted from color, shape and so on; c the identity of person can be represented by faces, iris and fingerprint;
d a word can be expressed in different languages
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As an effective technique for data analysis [10, 43], nonnegative matrix factorization
(NMF) has been widely used in non-negative features extraction [13, 24, 41]. In recent
years, many NMF-related feature extraction algorithms have been proposed. For example,
LNMF [29], GNMF [4], DNMF [53], RDPNA[52] and so on. These algorithms can gen-
erate superior clustering results, but only deal with single-view data. In the past five years,
several extensions of NMF to multi-view data have been proposed [5, 12, 34–36, 38, 44,
56]. For example, Liu et al. [12] presented a multi-view clustering approach via joint NMF,
which aimed at finding a consensus matrix by minimizing the disagreement between the
coefficient matrix and the consensus matrix. But, it performs well only for the homoge-
neous views. Akata et al. [1] presented an approach to learn common representation from
image features and the associated tag via common coefficient matrix constraint. Xiangnan et al.
[18] extended NMF for multi-view clustering by jointly factorizing the multiple matrices
through the co-regularization, which has shown better performance for views with varying
levels of quality. Sunil et al. [15] proposed a partial shared nonnegative subspace learning
method for two views, which shows the effectiveness in social media retrieval. Further-
more, Liu et al. [31] generalized this idea into multiview nonnegative data, which can
deal with more than two views. Recently, Shao et al. [37] proposed a online multi-view
clustering method with incomplete view via imposing lasso regularization on the represen-
tation of each view. More references can be referred to [16, 33, 40, 50]. These methods
are useful for the nonnegative multiview data analysis, however, they are not suitable for
the noisy views and incomplete views, which are often encountered in real applications.
For example, in the clustering of bi-lingual documents, two different languages can be
regarded as two different views, however, many documents usually have only one language
part.

In this paper, we propose a co-regularized nonnegative matrix factorization method with
correlation constraint for robust multi-view feature learning, which provides an explicit
latent representation via capturing complementary and consistent information across dif-
ferent views. As shown in Fig. 2, different views are represented in heterogeneous feature
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Fig. 2 Illustration of the proposed approach. Firstly, different features are extracted from the objects, such
as color, texture, shape and so on. Then, the low-dimensional representations are obtained by multi-view
nonnegative matrix factorization, in which the co-regularization on each pair of coefficient matrices and the
correlation constraints are imposed during the factorization processing
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spaces. The proposed method aims to learn robust features from all views simultaneously
via exploiting the complementary and consistent information between different views. More
specifically, we learn the latent representation shared by different views via maximizing the
correlation between the coefficient matrix and consensus matrix. Meanwhile, we impose
similarity constraints on the latent representation by co-regularizing each pair of views
during the factorization process. The main contributions are summarized as follows:

– co-regularization: we exploit co-regularization for each pair of views, which is effective
to accommodate the imbalance of the quality of multiple views;

– correlation constraint: we impose correlation constraint on the low-dimensional space
to obtain the compact latent representation shared by different views;

– robustness to noisy views: the experimental results show the proposed method are more
robust than existing methods, especially for the noisy views.

The remainder of this paper is organized as follows. In Section 2, we briefly review
some related works. In Section 3, we present the proposed multi-view NMF via the co-
regularization with correlation constraint. In Section 4, we give the details of optimization
algorithm. Then, we report the experimental results in Section 5 and summarize this paper
in Section 6.

2 Related works

In this section, we briefly review nonnegative matrix factorization (NMF) and multiview
NMF.

2.1 NMF

Given a nonnegative matrix X, NMF decomposes X into the production of non-negative
matrices U and V [10], i.e., X ≈ UV T . The objective function of NMF can be formulated
as follows [5]:

min
U,V

∥
∥
∥X − UV T

∥
∥
∥

2

F

s.t. U ≥ 0, V ≥ 0. (1)

NMF has shown good performance in pattern recognition and computer vision [41, 49].

2.2 Multi-view NMF

Given a multiview nonnegative dataset consisting of N samples with nv different views
as {X(1), X(2), . . . , X(nv)}. For each view X(v), multiview NMF [12] factorizes X(v) ≈
U(v)(V (v))T , and learns a latent representation V ∗ across all the views via the following
objective function:

min
nv∑

v=1

{∥
∥
∥X(v) − U(v)(V (v))T

∥
∥
∥

2

F
+ λv

∥
∥
∥V (v) − V ∗

∥
∥
∥

2

F

}

,

s.t. U(v), V (v), V ∗ ≥ 0, (2)

where λv is the regularization parameter, which balances the importance of different views
and the reconstruction error.
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3 Co-regularized multiview NMF with correlation constraint

In this section, we present the co-regularized multiview NMF with correlation constraint
for nonnegative representation learning. Given a multiview data set consisting of N sam-
ples with nv views as � = {X(v) ∈ R

mv×N
+ }nv

v=1, X(v) = {�x(v)
1 , · · · , �x(v)

N }, Xi =
{�x(1)

i , . . . , �x(nv)
i }, where X(v) denotes the N samples of the vth view with dimensional-

ity mv , Xi is the ith sample from different views. We want to learn the common latent
representation V ∗ cross different views under the framework of NMF.

3.1 Co-regularization

The intuitive method for multiview representation learning is to learn a common representa-
tion by regularizing the representation matrices of different views. This idea works well for
homogeneous views or all the views with similar quality. However, in real applications, the
quality between views might vary drastically. Thus, the existing methods would be failed.

In this paper, we impose similarity constraints on each pair of views, which encourages
the coefficients matrices learned from any pair of views to be complement with each other
during the factorization processing. Given the contaminated data from view X(v) and the
associated representation V (v), the corresponding clear data from view t isX(t) and the asso-
ciated representation is V (t), the coefficients matrices V (v) and V (t) would be complement

with each other by minimizing
∥
∥V (v) − V (t)

∥
∥
2
F
. Thus, the problem of quality imbalance

between different views can be addressed efficiently. Considering all the pair of views, the
co-regularization term can be defined as follows:

nv∑

t=1

λvt

∥
∥
∥V (v) − V (t)

∥
∥
∥

2

F
(3)

where λvt is the parameter to balance the importance of the similarity constraint between
V (v) and V (t).

3.2 Correlation constraint

As we known, different views are complementary to each other, which capture the same
latent structure of the same entity [12, 21]. To utilizing this information, in this paper, we
propose correlation constraint on the low-dimensional representation to learn a compact and
shared latent representation. Given the coefficient vector V

(v)
i,· and consensus vector V ∗

i,· of
the ith sample, we encourage the correlation between V

(v)
i,· and V ∗

i,· to be as large as possible.
This can be formulated as follows:

max
{

V
(v)
i,· (V ∗

i,·)T
}

.

Considering all the N sample, we have
∑N

i=1 V
(v)
i,· (V ∗

i,·)T = T r(V (v)(V ∗)T ), where T r

denotes the trace of a matrix. Thus, correlation constraints can be formulated as follows:

min
{

T r
[

V ∗(V ∗)T − V (v)(V ∗)T
]}

. (4)

Here, we impose constraints V ∗
i,·(V ∗

i,·)T on V ∗
i,· in order to learn meaningful representation.
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3.3 Objective function

Incorporating the co-regularization (3) and correlation constraint (4) into the NMF frame-
work, we obtain the objective function for the proposed method:

min
nv∑

v=1

{
∥
∥
∥X(v) − U(v)(V (v))T

∥
∥
∥

2

F
+

nv∑

t=1

λvt

∥
∥
∥V (v) − V (t)

∥
∥
∥

2

F

+σvT r
[

V ∗(V ∗)T − V (v)(V ∗)T
]
}

,

s.t. U(v), V (v), V ∗ ≥ 0,
∥
∥
∥U

(v)
·,k

∥
∥
∥
1

= 1, ∀1 ≤ k ≤ K (5)

where λvt and σv are the regularization parameters and K is the dimensionality of low
dimensional subspace. ‖U(v)

·,k ‖1 = 1 is the normalization with respect to the basis vector
according to the relationship between NMF and probabilistic latent semantic analysis [11].

4 Optimization algorithm

To simplify the computation, we formulate the constraint on the basis matrix U(v) into
following diagonal matrix:

Q(v) = Diag

(
mv∑

i=1

U
(v)
i,1 ,

mv∑

i=1

U
(v)
i,2 , . . . ,

mv∑

i=1

U
(v)
i,K

)

Thus, problem (5) can be reformulated as below:

min
nv∑

v=1

{
∥
∥
∥X(v) − U(v)(V (v))T

∥
∥
∥

2

F
+

nv∑

t=1

λvt

∥
∥
∥V (v)Q(v) − V (t)

∥
∥
∥

2

F

+σvT r
[

V ∗(V ∗)T − V (v)Q(v)(V ∗)T
]
}

s.t. U(v), V (v), V ∗ ≥ 0 (6)

4.1 Optimize U(v) and V (v) for given V ∗

We utilize the alternative update scheme, i.e., solving one variable with the others fixed.
When V ∗ is fixed, for each given v, the computation of U(v) and V (v) is independent of
view. Therefore, we use X, U , V , λt , σ and Q to denote X(v), U(v), V (v), λvt , σv and Q(v)

for the brevity.

4.1.1 Optimize U for given V and V ∗

Given V and V ∗, the problem (6) can be solved by optimizing each row of U separately as
follows:

L(U) =
∥
∥
∥X − UV T

∥
∥
∥

2

F
+

nv∑

t=1

λt

∥
∥
∥V Q − V (t)

∥
∥
∥

2

F

+σT r
[

V ∗(V ∗)T − V Q(V ∗)T
]

+ T r(�T U), (7)
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where � = [θi,k] ∈ R
m×K is the Lagrange multipliers for the non-negative constraint

U ≥ 0. The partial derivatives of L(U) with respect to Ui,k is presented below:

∂L(U)

∂Ui,k

= −2(XV )i,k + 2(UV T V )i,k + Si,k + σTi,k + θi,k, (8)

where Si,k is the derivative of
∑nv

t=1 λt

∥
∥V Q − V (t)

∥
∥
2
F

, and Ti,k is the derivative of
T r

[

V ∗(V ∗)T − V Q(V ∗)T
]

with respect to Ui,k . Their calculus formulations are shown
below, respectively:

Si,k = ∂
∑nv

t=1 λt

∥
∥V Q − V (t)

∥
∥
2
F

∂Ui,k

= 2
nv∑

t=1

λt

⎧

⎨

⎩

m
∑

l=1

Ul,k

⎛

⎝

N
∑

j=1

Vj,iVj,k

⎞

⎠ −
N

∑

j=1

Vj,iV
(t)
j,k

⎫

⎬

⎭

Ti,k = ∂T r
[

V ∗(V ∗)T − V Q(V ∗)T
]

∂Ui,k

= −
N

∑

j=1

Vj,iV
∗
j,k (9)

Setting (8) to zero and utilizing the KKT conditions θi,kUi,k = 0 , we can get following
equation for Ui,k:

(

−2(XV )i,k + 2(UV T V )i,k + Si,k + σTi,k + θi,k

)

Ui,k = 0

This equation leads to the update rule below for Ui,k :

Ui,k ← Ui,k

2(XV )i,k + 2
∑nv

t=1 λt

∑N
j=1 Vj,iV

(t)
j,k + σ

∑N
j=1 Vj,iV

∗
j,k

2(UV T V )i,k + 2
∑nv

t=1 λt

∑m
l=1 Ul,k

∑N
j=1 Vj,iVj,k

(10)

4.1.2 Optimize V for given U and V ∗

To optimize V , we first normalize the columns of U using Q as following:

U ← UQ−1, V ← V Q

Then, the problem (6) is equivalent to minimize following objective function:

L(V ) =
∥
∥
∥X − UV T

∥
∥
∥

2

F
+

nv∑

t=1

λt

∥
∥
∥V − V (t)

∥
∥
∥

2

F

+σT r
[

V ∗(V ∗)T − V (V ∗)T
]

+ T r(�T V ), (11)

where � = [ψj,k] ∈ R
N×K is the Lagrange multipliers for the non-negative constraints

V ≥ 0. The partial derivatives of L(V ) with respect to Vj,k is below:

∂L(V )

∂Vj,k

= −2(XT U)j,k + 2(V UT U)j,k + 2
nv∑

t=1

λtVj,k

−2
nv∑

t=1

λtV
(t)
j,k − σV ∗

j,k + ψj,k (12)
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Setting (12) to zero and utilizing the KKT conditions ψj,kVj,k = 0, we can get following
equation for Vj,k:

(−2(XT U)j,k+2(V UT U)j,k+2
nv∑

t=1

λtVj,k−2
nv∑

t=1

λtV
(t)
j,k −σV ∗

j,k + ψj,k)Vj,k = 0 (13)

Thus, the update rules for Vj,k can be shown below:

Vj,k ← Vj,k

2(XT U)j,k + 2
∑nv

t=1 λtV
(t)
j,k + σV ∗

j,k

2(V UT U)j,k + 2
∑nv

t=1 λtVj,k

(14)

4.2 Optimize V ∗ for given U(v) and V (v)

Taking the derivative of the objective function (6) with respect to V ∗, we obtain

∂R

∂V ∗ =
nv∑

v=1

2σvV
∗ −

nv∑

v=1

σvV
(v)Q(v), (15)

where R = ∑nv

v=1 σvT r
[

V ∗(V ∗)T − V (v)Q(v)(V ∗)T
]

. Setting (15) to 0, we get the closed
solution for V ∗:

V ∗ =
∑nv

v=1 σvV
(v)Q(v)

∑nv

v=1 2σv

(16)

U(v), V (v)and V ∗ are updated alternatively via (10), (14) and (16). It can be seen that U(v),
V (v)and V ∗ are non-negative after each update. Moreover, it is provable that the objective
function is non-increasing under the above iterative updating rules, and the convergence is
guaranteed. The proof can be demonstrated by constructing the auxiliary function similar
to [8]. This procedure repeats until convergence. The complete algorithm is summarized in
Algorithm 1.

Algorithm 1 Robust multiview nonnegative representation learning

Input:
Multiview data 1, regularization parameters , and
dimensionality of subspace

Output:
Basis matrix and the coefficients matrix , and the
consensus matrix

1: Normalize each view such that 1.
2: Initialize and
3: repeat
4: for 1 to do
5: repeat
6: Fixing and , update by (10);
7: Fixing and , update by (14);
8: until The terminated condition is satisfied.
9: end for
10: Fixing and , update by (16);
11: until The objective function converges.
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4.3 Complexity analysis

We adopt the standard NMF as baseline to analyse the time complexity of the proposed
method. It can be seen that the proposed method is essentially an extension of NMF for mul-
tiple view data. The complexity of basic NMF’s update rules in each iteration is O(mKN ),
where big O is the notation for complexity. For each update of U in our proposed method,
its cost is O(nvmKN ). For each update of V , the additional cost in the proposed method
is the second term in the numerator and denominator, whose time complexity is O(nvKN ).
Therefore the time complexity of the proposed method for each view is O(nvmK). Then,
the total complexity of the proposed method in each iteration is O(nvmKN ), where nv is
the number of the views.

5 Experimental results

In this section, we conduct experiments on four datasets to evaluate the performance of the
proposed method compared to the following algorithms.

– Single view. This method runs each view separately using the NMF. Both the best
and the worst single view results are reported, which are denoted by BSV and WSV
respectively.

– Feature concatenation (FC). This method runs NMF directly on the concatenated
features from all views.

– Multi-view NMF (Multi-NMF) [12]. This method requires all the representation of
different views to share a common latent one, i.e.,

∑nv

v=1 λv‖V (v) − V ∗‖2F . As the
authors provided a NMF-based initialization, we use the same initialization method and
set the regularization parameters as 0.01.

– Multi-view RNMF (Multi-RNMF) [35]. This method learns the common latent rep-
resentation under the nonnegative patch alignment framework and considers the local
geometric structure for each view.

– Co-regularization NMF (CoNMF) [18]. This method learns the common latent space
via pair-wise co-regularization.

– Ourmethod. This method learns latent representation by simultaneously exploiting the
complementary and consistent information from all views through the co-regularization
and correlation constraint.

5.1 Data sets and evaluation

ORL dataset The ORL dataset consists of 40 subjects and 10 different images for each
subject with totally 400 images. The images are grayscale and have been normalized to
32 × 32 pixels, some of which are shown in Fig. 3a. We adopt two different views. The
first view is the raw pixel values, i.e., X1 ∈ R

1024×400+ , and the second view is the LBP(8,1)

feature, i.e., X2 ∈ R
59×400+ .

CMU-PIE dataset There are 41,368 images under 68 persons with 13 different poses, 43
different illumination, and 4 different expressions in the CMU-PIE dataset. In our experi-
ment, we chose 42 images at pose 27 for each person at different illumination conditions
with resolution 32 × 32 and add white random block occlusion with size 10 × 10. There
are 2856 images in all and some examples are shown in Fig. 3b. We consider two different
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(a) Samples from ORL dataset

(b) Samples from CMU-PIE dataset with random block occlusion

(c) Samples from hand written digit dataset

Fig. 3 a The samples from the ORL dataset. b The samples from CMU-PIE dataset with random block
occlusion. c The samples from handwritten digit dataset. It consists of original images and noisy images with
salt & pepper noise, in which the noise level is 25%

views: the first view is the raw pixel values X1 ∈ R
1024×2856+ , and the second view is the

local binary pattern X2 ∈ R
256×2856+ .

UCI handwritten digit dataset This handwritten digits (0–9) data is from the UCI repos-
itory, which consists of 2000 samples, with the first view being the 76 fourier coefficients
of the character shapes, the second view being the 240 pixel averages in 2 × 3 windows,
the third view being the 216 profile correlations, and the fourth view being the 47 Zernike
moments. In order to test the robustness of the proposed method, salt&pepper noises are
added with noise level varied as {5%, 10%, 15%, 20%, 25%}. Some examples are shown in
Fig. 3c.

OuluVS dataset Lipreading is a technology to interpret the utterance solely using the
visual information of lip movements. The OuluVS dataset records the lipreading video of
20 subjects, with a total of 817 videos. Each subject was asked to sit in front of a camera
and speaks 10 different sentences as shown in Table 1. The subjects are from four countries,
with different speech habit and accent. Usually, multivariate time series are used to model
the facial landmarks around mouth outer. Then, the extracted time series are formulated
as texture images with a modified recurrence plot. The recognition is based on the texture
images. In this dataset, we extract two different features as different views from the texture
images. The first view is the uniform local binary pattern operator LBP u2

p,r with p = 8 and
r = {1, 2, 3} to generate a 177-dimensional feature vector. For the second view is the grey

Table 1 The ten different sentences in OuluVS dataset

“Excuse me” “See you” “Good bye” “I am sorry” “Hello”

“Thank you” “How are you ” “Have a good time” “Nice to meet you” “You are welcome”
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Table 6 Clustering results on the handwritten digit dataset (K = 10)

Method BSV WSV FC Multi-NMF CoNMF Multi-RNMF Our method

ACC 0.819±0.02 0.711±0.07 0.841±0.02 0.868±0.01 0.875±0.01 0.843±0.02 0.880±0.01

NMI 0.713±0.02 0.634±0.04 0.751±0.03 0.770±0.03 0.801±0.01 0.760±0.02 0.804±0.01

level co-occurrence matrix (GLCM). We use four direction (0◦, 45◦, 90◦ and 135◦) and five
distances (d = {1, 2, 3, 4, 5}) to calculate 20 GLCMs. Thus, a 400-dimensional feature
vector is obtained.

Evaluation metrics For quantitative evaluation, the accuracy (ACC) and the normalized
mutual information metric (NMI) are used to measure the clustering performance [3, 54].
The detailed definitions are shown below.

– Clustering accuracy (ACC). ACC compares the generated clusters with the ground
truth. In details, given samples xi , let li and gi be the clusters label and ground truth
label. The definition of ACC is defined as below:

ACC = 1

n

n
∑

i=1

δ(gi,map(li)),

where n is the total number of samples, and δ(x, y) is the delta function that equals one
if x = y, else δ(x, y) = 0. And map(·) is the permutation mapping function, which
maps each cluster label to the real label. Here, we used the Kuhn-Mukres algorithm [9].
It is easy to see the range of ACC is [0, 1]. The more large of value ACC is, the better
of cluster results is.

– Normalized mutual information (NMI). Let C denote the set of clusters obtained
from the ground truth, and C ′ be the cluster results, the mutual information is defined
as below:

MI =
∑

ci∈C,c′j ∈C′
p(ci , c′

j )log
p(ci , c′

j )

p(ci )p(c′
j )

,

where p(ci ) and p(c′
j ) are the probabilities that a sample arbitrarily selected from the

data set belongs to the clusters ciand c′
j , respectively. p(ci , c′

j ) is the joint probability
density function of C and C ′. In our experiments ,the NMI is defined as below

NMI = MI(C, C ′)
max(H(C),H(C ′))

,

where H(C) and H(C ′) denote the correntropy of C and C ′, respectively. It is easy to
see that NMI ranges from 0 to 1. The more large value of NMI is, the better result of
clutering is.

Table 7 Clustering results on the OuluVS dataset (K = 10)

Method BSV WSV FC Multi-NMF CoNMF Multi-RNMF Our method

ACC 0.500±0.03 0.370±0.07 0.510±0.06 0.510±0.06 0.550±0.05 0.540±0.05 0.580±0.05

NMI 0.490±0.06 0.390±0.09 0.524±0.07 0.513±0.04 0.537±0.05 0.525±0.04 0.569±0.04
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5.2 Experimental results with two views

In this section, we conduct clustering on three real-word datasets with two views, respec-
tively. For handwritten digit dataset, we select the first and second view. In order to evaluate
the performance effectively, we runs each experiment 30 times, then the average clustering
results and standard variation are reported.

The clustering results with different number of clusters K on ORL dataset are shown in
Tables 2 and 3. From that, it can be seen the clustering performances of all algorithms get
better with the increase of K and the proposed method performs better than other multi-
view algorithms in most cases. It notes that only the best results are recorded in BSV, which
is not stable for clustering.

The clustering results with different number of clusters K on CMU-PIE dataset are
shown in Tables 4 and 5. It is obvious that the multi-view algorithms outperform the single
feature method, even for the best results. Among all the multiview methods, Multi-RNMF
and our method are better than that of all the other methods. Our method outperforms
Multiview-RNMF method slightly.

For the handwritten digit dataset and OuluVS dataset, we fix the cluster number K at 10.
Tables 6 and 7 show the comparison results of the average clustering performance on those
two datasets, respectively. It is clear that the clustering performance of Multi-NMF and
Multi-RNMF is better than that of single view NMF. Meanwhile, the performance of FC has
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Fig. 4 Clustering results of different methods on the handwritten digit dataset with four views in the presence
of salt&pepper noises varying from 5 to 10%
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obviously different on the different datasets because it only integrates multiple features by
concatenating of feature, which ignores the differences of statistical properties between dif-
ferent views. In addition, our method obtain impressive clustering performance in all cases
due to the utilization of both consistent and complementary information across different
views.

5.3 Experimental results with four views

In this section, we conduct clustering on the handwritten digit dataset with four views. To
test the robustness, the salt&pepper noises are added with noise level varying from 5 to
25%. The clustering results are shown in Figs. 4 and 5. It is obvious that the performance
of multi-view algorithms is better than that of single view NMF and FC. Both Multi-NMF
and Multi-RNMF achieve satisfactory clustering results, while Multi-RNMF performs bet-
ter than that of Multi-NMF with increase of noise level. Meanwhile, the proposed method
obtains the best clustering results compared to other algorithms. Specifically, the perfor-
mance of all algorithms drops down sharply with the increase of the noise level, but the
proposed method decreases slightly. This is mainly because we utilize the co-regularization
and correlation constraints to exploit the complementarity and consistent information across
different views.
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Fig. 5 Clustering results of different methods on the handwritten digit dataset with four views in the presence
of salt&pepper noises varying from 15 to 25%
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5.4 Visualization of clustering results

To visualize the clustering results, we randomly select three subjects from the ORL dataset
with two views. There are 10 samples for each subject and 30 samples in all. The hidden
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Fig. 7 The convergence curves of Multi-NMF and our method on handwritten digit dataset
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Fig. 8 The performance of different methods on three dataset with σv varying while fixing λvt = 0.001

factor k is set to 3. The learned common representation in the new space are shown
in Fig. 6. It is obvious to see that the proposed method obtains more discriminative
features.

5.5 Analysis of convergence

In this section, we demonstrate the convergence of our method by conducting experiment
on handwritten digit dataset with the same initialization. As shown in Fig. 7, the objective
function value is non-increasing under the proposed iterative update rules. Meanwhile, it is
easy to see that the proposed method converges faster than that of Multi-NMF. Compared
to Multi-NMF, the objective function value of the proposed method decreases fast within
5 iterations. This is because the co-regularization term and the correlation constraints lim-
ited the solution space. These also can be verified through the clustering results on the
handwritten digit dataset in Figs. 4 and 5.

5.6 Parameters selection

Two kinds of parameters σv and λvt are needed to set. The parameter σv balances the corre-
lation constraint and the latent representation, while λvt determines the importance of each
pair of view in co-regularization. In this section, we conduct experiments on three dataset
with two views to study the influence of them. Figures 8 and 9 show the performance of
the proposed method with one parameter varying while the others fixed. It is clear that our
method is relatively stable across a wide range of values, especially on the ORL dataset. For
the OuluVS dataset, they vary dramatically compared to other datasets. According to the
results the parameters are set to 0.001 and 0.05 respectively in our experiments.
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Fig. 9 The performance of different methods on three dataset with λvt varying while fixing σv = 0.05
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6 Conclusion

In this paper, we proposed a co-regularized multiview nonnegative matrix factorization
method with correlation constraint for nonnegative representation learning.We exploited the
complementary information through the co-regularization to deal with the imbalance views.
Thus, the latent representations were complemented to each other when one of views was
contaminated. Meanwhile, we imposed correlation constraint on the common latent sub-
space to obtain the latent representation shared by different views. The experimental results
show that the representation learned by proposed method is more compact and discrimina-
tive, especially for noisy view. In the future work, we will study the supervised multiview
nonnegative representation learning for classification.
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