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Abstract Evaluating quality of experience in video streaming services requires a quality
metric that works in real time and for a broad range of video types and network conditions.
This means that, subjective video quality assessment studies, or complex objective video
quality assessment metrics, which would be best suited from the accuracy perspective, can-
not be used for this tasks (due to their high requirements in terms of time and complexity, in
addition to their lack of scalability). In this paper we propose a light-weight No Reference
(NR) method that, by means of unsupervised machine learning techniques and measure-
ments on the client side is able to assess quality in real-time, accurately and in an adaptable
and scalable manner. Our method makes use of the excellent density estimation capabili-
ties of the unsupervised deep learning techniques, the restricted Boltzmann machines, and
light-weight video features computed just on the impaired video to provide a delta of quality
degradation. We have tested our approach in two network impaired video sets, the LIMP and
the ReTRiIEVED video quality databases, benchmarking the results of our method against
the well-known full reference metric VQM. We have obtained levels of accuracy of at least
85% in both datasets using all possible cases.
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1 Introduction

Video content delivery clients require having their instantaneous needs fulfilled in an
ever growing, ever-changing global network. Moreover, the exponential increase of video
streaming types, the appearance of new high quality compression standards, and the broad
variety of video content demand the use of scalable and general methods. This situation is
requiring service providers to perform video quality assessment not only in real-time [3,
18, 29] but also in an adaptable and scalable manner. However, it is not enough anymore to
assess the quality just on the network level, i.e. through Quality of Service (QoS) param-
eters. Packet losses, jitters or delays, while providing with a statistical representation of
the network behavior, cannot accurately assess how the unpredictable network fluctuations
may affect the perception of the final beneficiary of these services, i.e. the user’s Quality of
Experience (QoE) [1, 29, 30].

Video Quality Assessment (VQA) methods are drawn from human QoE [2, 21] and per-
ception. Thus, VQA has traditionally been done by means of subjective studies and objective
Full-Reference metrics (FR). However, the high requirements in terms of computation and
time needed by both subjective and accurate FR metrics, make these unfeasible for deploy-
ment in real-time scenarios, such as in the mobile or the network management context. In
these cases, Reduced-Reference (RR) and No-Reference (NR) metrics are the best suited
metrics, due to the fact that they assess quality by means of certain features extracted from
the received videos and the network conditions [34].

NR metrics aim to assess the quality of multimedia just by means of the received
impaired material and measurements of external factors. This is a highly difficult task; thus,
most NR metrics focus their attention on the specific behavior of certain distortions to make
their assessment. Examples of these are the frame freezing approach of Huynh-Thu and
Ghanbari [16], the blur tolerance analysis of Ferzli and Karam [11] or the generalized local
binary pattern approach for image quality assessment of Zhang et al. [50]. Due to their aim
to assess particular distortions, the accuracy of these metrics fails when other type of distor-
tions affect user perception of QoEs. RR metrics have appeared to provide a compromise
between FR and NR metrics.

Image or video statistics modeling have been considered for developing RR and NR
quality metrics [20]. In [49] temporal motion smoothness of a video sequence was proposed
to examine the temporal variations of the local phase structures in the complex wavelet
transform domain [48]. In [48] both interframe and intraframe RR features are calculated
based on statistical modeling of natural videos, which together with a robust watermarking
approach, conform a very strong and accurate RR metric. Other approaches have focused on
trying to model the distortion based on the encoding of the video sequences. Such examples
are the MPEG-2 spatial and temporal features extraction of Wolf and Pinson [44] or the
DCT measurement of Yang et al. [47], also for MPEG-2. Ma et al. presented in [20] a
method which, combining aspects of both the spatial and the temporal perspectives, reaches
high levels of accuracy for degradation derived from video compression in MPEG-2 and
H.264. Also focused on the compression, specifically for H.264, Oelbaum and Diepold [26]
proposed a method which, combining artifacts such as blur and blocking and making use of
learning techniques (multivariate data analysis), achieves better results than PSNR. These
last two methods although showing good results for degradations derived from compression,
fail to provide good accuracy when dealing with videos impaired by real networks, which
is the purpose of our method.

Prediction has been proposed to improve the accuracy of the assessment, without increas-
ing the complexity in the client (the training part of the predictive process takes place in the
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server provider in an offline manner). Promising examples of cognitive approaches are the
Adaboost approach for assessing artifacts levels in videos, by Vink and de Haan [43]; the
bitstream based artificial neural network, by Shahid et al. [35]; the artificial neural network
for jerkiness evaluation, by Xue et al. [46]; and the regression framework for estimating the
objective quality index (SSIM or PSNR), by Shanableh [36]. However, these approaches are
usually based on supervised learning techniques, thus requiring labelled data to perform the
offline training. Thus, they cannot be used when it comes to tackling the aforementioned
combined requirements of real timeliness, scalability and adaptability.

In this work, we present a novel method based on unsupervised machine learning for real-
time video quality assessment, which is sufficiently lightweight for mobile computing and
general enough to deal with varied video types streamed through a broad range of network
conditions. Making use of the outstanding density estimation characteristics of unsupervised
deep learning methods, i.e. the restricted Boltzmann machines, in combination with light-
weight NR features measured on the client side, our method is able to achieve accuracy
levels close to the FR benchmarks.

Our method also provides a flexible and adaptable solution to assess relative quality
degradation. It was tested on two large video-sets of network impaired videos, the LIMP
Video Quality Database [41, 42] and the ReTRiEVED Video Quality Database [4, 29].
These two videosets complement each other. While the ReTRIEVED video set provides
analysis on a broad range of conditions in four different categories (delay, jitter, throughput
and packet loss) in a lower scale (184 MPEG?2 videos), the LIMP database focuses on the
combined effect of packet-loss constrained and bit/bandwidth compression, on 960 MPEG4
videos. To benchmark our solution, we selected the Video Quality Metric (VQM) [32],
given its demonstrated good performance as a quality degradation assessment and its high
correlation to the human visual system [8]. We have obtained overall correlations higher
than 85% in both datasets.

The remainder of this paper is organized as follows. Section 2, provides background
information about unsupervised learning, deep learning and the technicalities of the
restricted Boltzmann machines. In Section 3, the proposed unsupervised-based video qual-
ity measurement method is presented. The two datasets under scrutiny are characterized in
terms of NR and FR metrics in Section 4. Evaluations are presented in Sections 5 and 6 for
the ReTRIEVED and the LIMP Video Quality Databases, respectively. Finally, Section 7
draws conclusions, highlighting our key contributions.

2 Unsupervised learning, deep learning and restricted Boltzmann
machines

Not only accuracy, but adaptability, scalability and real-timeliness are crucial character-
istics when video service provider decides among different quality assessment methods.
Fast adaptability of the model when new videos are made available is fundamental. If the
model used would belong to the supervised learning type (e.g. artificial neural networks,
regression models), any newly released video sample would need to be labeled (its ground
truth obtained) before inclusion in the model. This action would slow down the process
and the adaptability feature would not be achieved. For this reason, in our work, we turned
to focus on unsupervised learning (UL) methods. Second, to master the sheer scale of the
problem, we selected Deep Learning (DL) techniques. Within this type of techniques, the
Restricted Boltzmann Machines (RBMs) have demonstrated outstanding performance as
density estimators [25]. This characteristic made us chose them for still images quality
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estimation [22, 24]. In this work, we bring this notion to the highly complex video content
delivery arena.

UL is the Machine Learning task of inferring a function to describe the hidden struc-
ture from unlabeled data [5]. Due to the difficulty of the task at hand, enhancing the
predictive characteristics of these type of models has been a challenge addressed by
multiple researchers. Among them, Deep Learning [6] is actively used, especially to
address situations in which scalability is crucial. Deep learning methods attempt to model
high-level abstractions in data by using a deep graph with multiple processing layers,
composed of multiple linear and non-linear transformations. The estimation characteristics
of the Restricted Boltzmann Machines [37] make them the perfect combination between
unsupervised and deep learning (UDL).

RBMs are generative stochastic artificial neural networks that can learn a probability
distribution over its set of inputs by means of only interlayer connections. It distributes its
neurons in two layers: the visible (v = [v1, v2, .., v,, 1), Which corresponds to the input fea-
tures; and the hidden (h = [hy, k2, .., hy, ]), in which the hidden features are automatically
extracted by the RBM model from the input data. Each visible neuron (i) is thus connected
to any hidden neuron (j) by a weight (W; ;), which is modeled according to the input
(visible features). Both, the visible and the hidden neurons have associated a bias, a; for the
visible, and b; for the hidden. Biases (both visible and hidden) together with the interlayer
weights conform the RBM model Q2 = {W, a, b}.

ny np

ny np
E@.h)y == "% vhjWij— Y viaj— Y hjb; (1)
i=1 j=1

i=1 j=I

To formalize an RBM, three main ingredients are required: (1) an energy func-
tion providing scalar values for a given network configuration, which can be computed
by the sum over all possible interactions between neurons, weights and biases (1);
(2) the probabilistic inference, which aims to determine the conditional distribution of

nv . .
the visible <p(h =1V, Q) =1/ [1 +e‘<”f'+zi—1”’w”)]> and, the hidden neurons

N
(p(v,- =1h, Q) =1/ |:1 + ei(aﬁz j=1 w,])]); and (3) the learning rules required for

fitting the free parameters. Extensive research has been done on learning rules fit for
RBMs [10, 39, 40]. However, almost all of them derive from the Contrastive Divergence
(CD) method proposed by Hinton in [13]. Thus, in this research we make use of the CD
method which is an approximation of the maximum likelihood learning. In order to set the
learning rules, the update number, learning rate, momentum, and weights decay need to be
set as thoroughly discussed in [14].

In the case of the video service provider, the characteristics of the original server video
content are to act as visible neurons. Based on the video characteristics, the RBM is trained
in the server (offline process). From this training, €2 is generated and transferred to the
client. When the streaming session starts, the client can use the trained RBM model €2 to be
used as the real-time degradation estimator, as it will be explained in the next section.

3 Unsupervised learning-based video quality assessment method

In this section we present our UDL-based method. Figure 1 shows the processes taking
place both on the server (offline) and the client (in real-time).
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Fig. 1 Real-time UDL-based
video quality assessment method
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b) Video Client: Real-time video quality
assessment.

As for any prediction-based method, ours requires a training phase which takes place in
the server side in an offline manner. In it, the server trains an RBM model (£2) with the
original video sequences available in the content delivery service. The training samples are
video specific sets of NR features (V,r; = [NR1yi, ..., NRN,i]). These sets are com-
posed by in-frame, inter-frame and content type descriptors (Table 1). This model (£2) is
transmitted to the client device, to be then used when video sequences are streamed to the
client. adapted to the original available content in the content provider. On client session
start, the model is transmitted to the client device and used when videos are being streamed.
When a new video is made available in the content provider, the features of the video are
extracted, the model is retrained (adapted to this new video) and an update is sent to the
client. This is a process that requires very little overhead in the transmissions to the client,
as is completely de-coupled from the online transmissions. This characteristic makes the
method fully adaptable. Also, given the fact that the overhead required for training and
updating/sending a new model is very small, our methodology envisions the possibility of
individual video-trained models or even video and network condition trained models. This
possibility will be evaluated in Sections 5 and 6.

On the other end of the transmission chain, when a new video sequence is received,
the client performs a real-time extraction of the NR features ([NR1;yp, ..., NR10;y,,1])
required by the RBM model (€2, the set of the free parameters of the model). These features
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Table 1 Name, acronym and description of the ten NR features used in this method

Type Name Acronym  Descr.

INTRA Blur Mean BUM Average level of blur per video frame
Calculated following procedure of [9]
Blur Ratio BUR Ratio of blur per video frame.
Calculated following procedure of [9]
Noise Mean NOM Average level of noise per video frame
Calculated following the procedure of [9]
Noise Ratio NOR Ratio of noise per video frame
Calculated following the procedure of [9]
Blockiness BLO Level of blocks per video frame
Calculated following the procedure of [31]
Jerkiness JER Video level of Jerkiness:
temporal variations in the video display.

Calculated following the procedure of [7]

INTER Motion MOI Variation of intensity between adjecent frames.
Intensity Calculated following the procedure of [7]
Bitrate BIT Received bitstream bitrate

Obtained directly from the ffmpeg client

CONTENT TYPE SPI In-frame Spatial Information
Spatial Calculated following the procedure of [29]
Information COX Spatial complexity: level of detail or

intricacy contained within an image or frame

_ Bitsy
C= 2%10950.91271

Where Bits; are bits of coded Intra (I) frames and Q P;
represent the average I-Frames quantization parameter.

Values obtained from the ffmpeg client [19]

TEI Inter-frame Temporal Information
Temporal Calculated following the procedure of [29]
Information MOT Video Motion: Amount of movement in the video
M Bitsp

= 2¢109%0.8727P
Where Bitsp are bits of coded Inter (P) frames and QP p

represent the average P-Frames quantization parameter.

Values obtained directly from the ffmpeg client [19]

They are divided in three different categories: intraframe, inter-frame and content type descriptors

are set as input to the RBM model. The model outputs the estimated values correspond-
ing to the trained model, i.e. the estimated values for the impaired version of the video
(Vimp = [NR1imp, ..., NRN;pp]). Finally the quality degradation (A Q) is calculated as
the Root Mean Squared Error (RMSE) [17] of the impaired measured values (Vi) and
the RBM reconstructed values (\7,<mp). Through this procedure, our method provides a mea-
surement of the delta of degradation inflicted by the compression and transmission. Thus
our measurement follows the same trend as the RMSE, where ‘zero’ denotes no degradation
and ‘one’ full degradation.
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Depending on the type of videos, network conditions envisioned and characteristics of
the service, the RBM modeling and the NR metrics can be slightly changed and modified.
In addtion, given the low overhead that the transmission of a model to the client inflicts in
the network, our method allows to create condition or video dependent models. This charac-
teristic further improves the adaptability of our unsupervised learning-based methodology.
First, in order to formalize the RBM, it is crucial to choose appropriate learning rules to be
used for fitting the input values into the model [10, 39, 40]. The most used approach is the
Contrastive Divergence (CD) method proposed by Hinton [13], which performs an approxi-
mation of the maximum likelihood learning. The update number, learning rate, momentum,
and weights decay together determine the learning rules [14]. Our solution makes use of
this well-known learning method.

Second, the set of NR metrics used both for training the UDL model in the server and
assessing the quality of the received will depend on the type of video content in the server,
the network conditions to tackle and the compression and bandwidth constraints. In its
more general version, our method assesses a set of 10 NR features in the frame (blur, noise
and blockiness), inter frames (jerkiness and motion intensity) and video content descrip-
tors (bitrate, spatial and temporal information). Table 1 presents the name, acronym and
description of each of these 10 NR features.

In order to select the features to characterize the videos, we built on state-of-the-art
research on NR features and artifacts which can be measured in real-time and have been
demonstrated to show correlation to human perception. In order to characterize the videos
as accurately as possible, our method performs measurements on the bitstream, inter and
intra frame and on the content type. After a thorough research on the state-of-the-art and
also based on some of our prior research [41], we ended up with 10 NR features: one on the
bitstream, five on the frame, two on the inter-frame and two content characteristics.

Blur, noise, blockiness, ringing or temporal impairments have been quantified for mea-
suring the end-user’s quality [34]. For the NR feature selection we decided to measure
frame’s noise and blur (mean and ratio of both metrics) [9] and the level of blockiness [31,
45]. The temporal artifacts are measured by the video’s motion intensity (the movement
of video objects between frames by means of the compared level of intensity) and the
inter-frame jerkiness [7].

Intuitively, quality is related to the bitstream bitrate (i.e. the number of bits received per
time interval), whereby higher bitrates lead to better quality. However, this relation is highly
non-linear, following a psychometric curve [12]. Earlier studies (some from us [23]) have
shown how the parameters of the perception curve vary considerably across video types,
compression values, bitrate etc. Bitrate is therefore a critical input to derive the prediction
model.

Finally the content type can be expressed in terms of the spatial and temporal perceptual
information [29]. In [41], for MPEG4 videos we defined those two parameters in terms of
the scene complexity (spatial) of the frame and the motion (temporal) of the video. While
the spatial and temporal perception are calculated by means of frame and inter-frame mea-
surements [29], the complexity and motion are calculated on the bitstream based on the
numbers of I and B frames [15, 19]. Our method measures either complexity and motion
(for MPEG4 and other [,B, P frames based encoding) and in case that this is not possi-
ble (such as for MPEG2 and other older encoding), measurements of spatial and temporal
perceptual information are performed.

Depending on the complexity and variety of the videos, either the full set of features or
a clear subset of them can be used. Details on the selections of the subsets can be found in
Section 4. We believe our methodology represents a new way to perform learning-based
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real-time quality evaluation, in which prior data labelling is not required. This, in addition to
the low overhead of the transmission of the model through the network (enabling condition
and /or video based models), provides a compact, flexible and adaptable methodology for
real-time quality assessment. This type of assessing method is envisioned to be used as a
feedback loop for multimedia content providers or autonomic network management.

4 Video datasets characterization and benchmarking

The purpose of the evaluation of our UDL-based method is to assess its capabilities to mea-
sure the delta of degradation inflicted by the compression and network transmissions. Most
of the video datasets available in the literature have been distorted by means of synthetic
impairments (such as with network simulation tools or manually impairing the frames) [33].
However, for our assessment we had the aim to look for realistically network impaired video
sets, i.e. by means of network emulators or real test-beds. With this purpose, we found
the ReTRIEVED video quality database [4, 29]. This dataset is composed by 184 videos
encoded to MPEG?2 and impaired by delays, delay jitters, bandwidth and packet loss. From
it, we assessed the most affecting impairments, i.e. bandwidth compressions and packet
loss, but also got the trigger to start and develop our own dataset, the LIMP video quality
database [41, 42], which provided a more extensive analysis (693 MPEG4 videos) of the
effects of packet loss and bandwidth compression. The evaluation on both video set provides
a complete evaluation assessment, not only of the performance on the general conditions
(ReTRIEVED) but also with the extremely lossy networks cases (LIMP).

The video sets are characterized following the same procedure we presented in [41].
First, the quality is benchmarked. In order to benchmark the quality, our initial idea was to
use subjective studies. However, although these are the best methods to understand the sub-
ject’s absolute perception, their time and complexity requirements as well as their biased
nature, make them unfit as a benchmark to objectively assess the degradation of qual-
ity inflicted by compression and networks on real-time video services. For this reason we
turned our view to objective, FR metrics. Among them we selected VQM [32], given its
well-known correlation to subjective studies [8, 32] while keeping computational complex-
ity and time within certain boundaries. Second, the NR metrics are obtained in all the
impaired videos. Finally, the Pearson correlations (PCC) between NR assessments and the
benchmark quality are obtained. The correlations are evaluated both in terms of the overall
value as well as per video and impairment levels.

The purpose of this process was two-folded. First, we aimed to understand the accuracy
of NR metrics in detecting the delta of degradation inflicted by compressions and network
impairments. Second, we wanted to pre-select a set of NR metrics which could, in turn,
be used as input to the UDL-based method. Section 4.1 shows the characterization of the
ReTRIiEVED Video Quality Database [29]. Section 4.2 presents the same characterization
of the LIMP Video Quality Database [41].

4.1 ReTRIiEVED video quality database

The ReTRiEVED Video Quality database [4, 29] is composed by 184 test video-sequences
obtained from 8 different original sources. These videos (encoded to MPEG2, with a dura-
tion of 10 seconds) are characterized by a broad range of spatial and temporal information,
which allows drawing general conclusions out of the assessment. The 8 original videos are
subjected to practical transmission impairment scenarios generated by a Network Emulator
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(NETEM) and Video LAN [28]. Packet loss rate, jitter, delay, and throughput were the
considered distortions resulting from video transmission, whereas their values were chosen
based on ITU and ETSI recommendations [28, 29].

As we previously explained, the purpose of benchmarking the datasets is to understand
how well the low complexity real-time metrics (either deterministic or machine learning
based) correlated to the ground truth quality. For this reason, we picked VQM, an objective
FR metric, as our benchmark quality instead of dealing with individual scores. This is the
case, also for this video set, even if a small (40 subjects) subjective study was performed to
it. As an additional confirmation of the suitability of VQM as an alternative for the subjec-
tive studies, we performed a preliminary fit of the MOS of this set to the VQM indexes on
it (Table 2).

While each of the columns of the Table shows the PCC results for each of the videos
subjected to a particular impairment, the rows present the averaged PCC per video type.
Overall correlations across all network conditions and video types are shown in the last col-
umn and the last row, respectively. Looking at the Table, we can see that VQM shows an
overall correlation of more than 70% in all the dataset. However, the standard deviation is
close to 40%. Looking for a reason for this misbehavior, we looked at the impairments indi-
vidually. While the results on jitter (column 2), throughput (column 3) and PLR (column 4)
are very high, reaching values between 85 and 95%, the overall correlation in the case of the
delay barely reaches 20%. Now if we try to pinpoint the cause of it, we can find it in each of
the videos. The low correlation comes from videos 6 and 7, which show full anticorrelation
to the MOS in the case of delays (roughly —70% for both videos). In addition, video 2 also
shows heavy anticorrelation (—32%). The reason for this very low correlations with delay
comes from the fact that the perception of delays is a very subjective task, where some peo-
ple detect it faster than others. Thus, it becomes highly biased and with a very unpredictable
behaviour. Our conclusion form this analysis was that apart from the imperfect fit of the
delays. This imperfect correlation between objective (VQM) and subjective (MOS) metrics
is, however, well-known and certainly within the acceptability boundary. Our conclusion
from this study was that VQM could be confidently used as ground-truth benchmark for the
remainder of our study, i.e. to evaluate our method in the ReTRiIEVED dataset.

Table 2 PCC correlations of the FR metric VQM to the subjective MOS for all videos of the ReTRIEVED
data set averaged per video type and network condition

Network Impairment

Video Delay Jitter Throughput PLR ALL

Type

1 0.308 0.994 0.954 0.842 0.775+0.318
2 —0.32 0.747011 0.754 0.78 0.49+0.54

3 0.112 0.996 0.99 0.923 0.755+0.43
4 0.7553 0.971 0.974 —0.456 0.87110.69
5 0.7323 0.895 0.928 0.879 0.85940.087
6 —0.773 0.985 0.934 0.887 0.508+0.855
7 —0.42 0.98 0.98 0.828 0.59+0.68

8 0.507 0.95 0.99 0.86 0.83+0.23
All 0.113+£0.566 0.9398+0.084 0.939+0.078 0.84+0.05 0.709+0.4
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Table 3 PCC correlations of all the NR features to VQM for the ReTRIEVED video set, averaged for all
impairments per video type

Video BIT BUM BUR NOM NOR BLO MOT JER SPT TEI
Type
1 0.12 0.12 0.08 -0.1 0.03 0.4 Sl 031 0.47
2 0.02 0.74 0.11 0.58 0.69 -0.49 0.81 0.54
3 0.63 0.59 -0.09 0.76 -0.38 -0.44 0.6 0.47
4 -0.41 0.13 -0.06 0.84 [EOIGEEN 094 -0.55 -0.6 0.4
5 0.81 0.69 -0.26 0.07 0.83 0.69 -0.21 -0.16
6 0.47 0.45 -0.06 0.76 0.31 -0.04 [HEOESEEN -0.16 -0.1
7 0.26 -0.63 0.46 -0.65 -0.48 -0.37 -0.26 [EONEEN 063
8 0.71 0.47 0.57 -0.28 0.23 RO 043 -0.8 0.42
All

0.25 0.45 -0.038 0.15 0.28 -0.005 0.0643 0.33
+0.45 +0.28 +0.43 +0.54 +0.69 +0.52 +0.7 +0.29

Cell colors give qualitative correlation levels: green (best), and red (worst)

Having verified the validity of VQM as benchmark, we proceeded our experiments as
described in [41]. We performed an accuracy analysis of the 10 NR metrics, by means
of a PCC to the benchmark quality. Tables 3 and 4 provide with the overall correlation
values per video type and per impairment, respectively. Per video type (Table 3), the best
correlated is the bitrate (BIT). From the frame based features (BUM, BUR, NOM, NOR
and BLO), the two blurs (BUM, BUR) and the blockiness (BLO) provide better overall
performance (between 25 and 45%). Jerkiness (JER) and motion intensity (MOI) fail overall
and in most video types. Finally, the content types (SPI and TEI) while failing in an overall
measurement, provide good results in some of the cases, SPI is the best performer in the
video type 4. Per network impairment (Table 4), while the bitrate (BIT) still provides the
best correlations, it is interesting to point out that the accuracy of the metric for the delay
condition barely reaches a 35% with a variability close to the 80%, while still being best.
This situation made us reflect of the difficulty of the NR metrics to detect delay related
impairments.

To further explore the accuracies of each of the NR metrics, Figs. 2 and 3 show the
colormaps for each of the metrics. As expected the bitrate (BIT), Fig. 2a presents the best
performance (more blue over all the set). However, video types 4 and 7 provide an almost
anti-correlated pattern. These two videos follow quite an anti-correlated pattern for most of
the metrics meaning that their behavioral pattern is difficult to assess by traditional NR met-
rics. However, the blur mean (BUM, Fig. 2b) seems to provide a better assessment (while
far from perfect) of video type 7 (especially for the throughput and the PLR impairments).
Further on, the spatial perceptual information (SPI, Fig. 3d) correlates better for the video
type 4.

Table 4 PCC correlations of the NR features to VQM for the ReTRIEVED video set, averaged for all video
types per impairment

IMP. BIT BUM BUR NOM NOR BLO MOI JER SPI TEI
0.04 0.21 0.15 -0.046 0.12 0.03 0.008 -0.23
+0.7 40.58 40.39 +0.81 40.55 +0.74 +0.77 +0.67

0.35 0.46 0.26 0.26 0.37 -0.3 0.125 0.64
+0.73 +0.75 40.74 40.84 40.69 +0.56 +0.89 +0.39

Thr. 0.18 0.46 -0.32 0.11 0.47 0.23 -0.1 0.53

+0.67 +0.68 +0.58 +0.77 +0.64 +0.69 +0.74 +0.48

PLR 0.706 0.55 0.47 0.09 0.377 0.005 0.22 0.4

+0.41 +0.58 40.53 40.74 +0.82 40.67 +0.79 +0.45

All 0.25 0.44 -0.04 0.15 0.27 -0.005 0.06 0.33

+0.45 +0.28 40.43 40.54 +0.69 40.52 +0.7 +0.29

Cell colors give qualitative correlation levels: green (best), and red (worst)
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(e) Correlation maps for the NR feature noise ratio (NOR).

Fig. 2 Pearson correlation to VQM of 5 of the 10 NR metrics (BIT, BUM, BUR, NOM, NOR), considering
the whole ReTRiEVED Video Quality Database [29]
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(d) Correlation maps for the NR feature spatial perceptual information
(SPI).

Throughput

1.0

Video types
°
&

o
o
PCC [Tl to VQM]

|
°
o

o
o

Delay (s] Jitter (5] Throtle [Mbps] Packet loss [%]

(e) Correlation maps for the NR feature temporal perceptual information

(TEI).
Fig. 3 Pearson correlation to VQM of 5 of the 10 NR metrics (BLO, MOI, JER, SPI, TEI), considering the
whole ReTRIEVED Video Quality Database [29]
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With this knowledge we concluded to try to combine the measurement of BIT, BUM and
SPI for our general RBM model. However, given the variety of behavioral patterns among
the videos and network conditions, we also considered the possible need of generating video
based RBM models or even network condition and video based models. Section 5 presents
the results of applying this derived knowledge to our UDL-concept.

4.2 LIMP video quality database

The LIMP Video Quality database’s purpose is to further explore the effect of lossy net-
works (packet losses) and bandwidth constrains on video quality [42]. In [41] we used it to
present an in-depth analysis of the accuracy of NR metrics on videos impaired by compres-
sion and packet loss. In this paper, we use a subset of the LIMP video quality set to evaluate
our UDL-method’s performance. This Section provides a description, summary and analysis
of this subset of the LIMP video quality dataset.

The set consists of 9 high quality videos (bs1, mcl1, pal, prl, rbl, rhl, sfl, shl, trl) from
the Live Quality Video Database [33] (10 seconds, 25fps, 768 x432), encoded at MPEG-4
part 10/H.264 to 7 bitrates levels (640, 768, 1024, 2048, 3042, 4096, and 5120 kpbs). Each
of these 63 videos (9 videos, 7 bitrates) was streamed in a controlled network environment
(using the PacketStorm Hurricane II network emulator [27]) and subjected to 11 levels of
packet loss (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, and 10%). We focused on the effect of
packet loss due to its being the most impairing network condition [29, 38]. This makes a
total of 693 different videos impaired by packet loss on which to assess the accuracy of our
UDL-based quality method.

Table 5 presents the results of the correlations of the 10 NR measured features to VQM.
This video set encoding (MPEG-4 part 10) allows measuring the spatial and temporal per-
ception by means of the scene complexity and video motion as defined it in Section 3, i.e.
using the numbers of I and B frames of the decoder.

As in the case of the ReTRiEVED dataset, the bitrate (BIT) is the feature that better correlates
to the benchmark quality, although BIT cannot be used independently. Yet, the correlation is
far from perfect and some of the videos barely reach 60% correlation. Complexity (the con-
tent type regarding the spatial perception) obtains the second-best performance, with close
to a 50% overall correlation and a 10% standard deviation. All the other metrics have worst
overall performance, and show very large standard deviations. This can be explained by the
fact that some of them while performing poorly for some of the videos, show high levels of
correlation for others. Such as the case of the blur ratio (BUR), that while completely failing
for videos such as bs1 or mc1, outperforms the bitrate for rb1l and pal.

Table 5 PCC correlations to VQM of the ten NR metrics (BIT, BUM, BUR, NOM, NOR, BLO, MO], JER,

COX, MOT)

Video BIT BUM BUR NOM NOR BLO MOT JER COX MOT
Type

bs1 -0.009 -0.267 -0.577 0.062 0.131 -0.9 |EOGSEN 0.226 0.23
mecl -0.11 -0.74 [EONGEN 0412 0.325 -0.114 0.37 0.72 0.28
pal -0.021 0.88 0.48 0.312 0.542 0.602 0.19 0.552 [EOIEEIN
prl -0.045 -0.06 [EONEEN 03 0.348 -0.563 0.68 0.309 -0.5
rbl 0.63 0.575 [JONGI -0.006 0.59 -0.148 -0.68 -0.51 0.655 |[NEONEN
rhl 0.51 0.65 0.273 0.0544 [EOIGEEN -0.645 -0.65 0.6 0.426
sfl 0.72 0.7134 [IEOISGEM 0019 0.542 -0.795 -0.46 0.5 0.29
shil 0.13 [HEOISSEE -0.502 0.221 0.498 -0.359 0.444 0.231 -0.375
trl 0.489 0.721 0.2725 0.4554 -0.167 0.092 0.72 0.515 |EONEEI
Al 0.25 0.23 -0.27 0.2 0.16 |[ESEE ©0.015 0.479 -0.28

+0.3 +0.6 +0.5 +0.26 +0.375 +0.46 [EEONSENN +0.17 +0.38

Cell colors give qualitative correlation levels: green (best), and red (worst)
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In order to discover the working limits of the various NR metrics, we analyzed the dif-
ferent video types individually (Fig. 4, shows videos prl, rbl and shl as example), with
particular attention to compression level (Y axes) and packet loss (X axes). In Fig. 4, maxi-
mum correlation to VQM is shown in dark blue, while maximum anti-correlation is in dark
red. Again we see that, even if bitrate leads to the highest correlation of all the metrics, it
also fails for some videos and conditions. Regarding the other metrics, drill-down (instead
of being averaged across the whole dataset) has allowed us to understand the conditions
(and videos) under which the different metrics provide good performance. In this way, an
RBM based on the bitrate in combination with some of the other metrics (based on the video
under scrutiny) would make the perfect combination for our UDL-based method.
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(C) Correlation maps for the video shl.

Fig. 4 Pearson correlation to VQM of the 10 NR metrics (BIT,COX, MOT, NOM, NOR, BUM, BUR, BLO,
MOI, JER), considering bitrates between 640 and 5,120 Kbps and packet losses between 0.5 and 10%. Video
types: (a) Park run (prl); (b) River bed (rbl); and (¢) Shields (sh1). The original (unimpaired) videos were
obtained from the Live Quality Video Database [33]. Network impairments were incurred by streaming
videos through a network emulator (PacketStorm Hurricane II [27]) [41]
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5 Evaluation on the ReTRIiIEVED video set: assessment of four network
impairments

The purpose of this first evaluation was to understand the suitability of our method to
detect the relative quality degradation inflicted by networks to videos, for a broad variety of
network conditions. For this reason, we used the ReTRiIEVED video quality database.

The RBM is structured with as many visible neurons as features (depending on the case
studied) and 100 hidden neurons. Based on insights from previous works [13], the learning
rate is set to 0.01, the number of CD steps to 1, the weight decay to 0.0002, the momentum
to 0.9, and we trained to models for 100 epochs. For the evaluation, we considered three
learning methodologies, as detailed in the three following subsections.

5.1 Case 1: a single model for all video types and impairment conditions

This first experiment evaluates the case-scenario in which the system does not have any
prior information of the individual behavioural patterns of the videos. In such a situation,
one single RBM would be trained in the server using as inputs all 8 original videos. This
model could in turn be used to assess all the conditions (Table 6 row 1).

Table 7 shows the PCC correlations of our UDL-based method to VQM per video type
and network condition. This configuration of the method obtains an overall correlation
higher than the 90%. If we have a look at the accuracy of each of the network conditions
independently, three out of four conditions are detected with very high correlation to the
benchmark, accuracy values over 80%. Only for the delay, the assessment is worse. As we
saw in the dataset characterization (Section 4.1), the delay impairment is the most difficult
to assess. However, while the individual NR metrics were not able to achieve correlation
values higher than 35% for the videos affected by delay (Table 4), with our UDL-based
method, the performance reaches 67% overall correlation. However, the standard deviation,
while lower than in the case of the classical NR metrics (85% reported in Table 4), is still
far from good (70%).

In order to understand the reason behind the delay misbehavior and, to explore the per-
formance details of our method, we again performed a per-impairment level correlation that
can be seen in Fig. 5a. As it can be seen, the reason for the lower correlation on the delay

Table 6 Feature selection for

the different cases tested on the Case Features

ReTRIiEVED Video Quality

Database Case BIT-BUM-SPI (1 model for all)
Case II BIT-BUM-SPI (1 model per video type)
Case III Delay:

BIT-BUR-NOM (1 model per video type)
Jitter:

BIT-BUM-SPI (1 model per video type)
Throughput:

BIT-BUR-NOR (1 model per video type)
Video 4 BIT-BUM-BUR-NOR-BLO-JER
PLR:

BIT-BUR-BLO-MOI
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Table 7 PCC correlations of the -
UDL-based method in the case 1: Network Impairment
One model for the whole dataset

Video Delay Jitter Throughput PLR All

Type

1 0.9942 0.9854 0.99 0.992 0.9904+0.004

2 0.9999 0.9993  0.999 0.999 0.99940.0003

3 0.3774 0.9997  0.998 0.995 0.8425+0.31

4 —0.999 09995 0.992 0.9984  0.497+0.9978

5 0.999 0.9998 0.998 0.998 0.9987+0.0008
6 0.999 0.9996 0.9994 0.999 0.9993+0.0003
7 0.999 0.9995 0.9995 0.999 0.9993+0.00028
8 0.992  0.9998 0.999 0.999 0.9975+0.0037
All 0.67 0.99788 0.9974 0.998 0.9158

+0.7 +0.003  £0.0032 +0.0029 +0.1639

impairment comes from the low prediction on video type 4. Furthermore, this same video
seems to give prediction issues in two of the other three conditions (jitter and PLR). This
made us go one step further on the analysis and to put into practice the multiple RBM
approach.

5.2 Case 2: individual models for each video type, for all impairments

In this analysis we trained one RBM per video type (Table 6, column 2). All of the
RBMs are trained only on their own original video and tested on it as well. This means
we have a total of 8 RBMs, which are then selected in the client according to the video
streamed.

Table 8 shows the results of this evaluation. In this case, the overall correlation has
increased by 4% compared to the first case, while the variability is kept nearly to the same
values (under 20%). Most of the improvement corresponds to the better assessment of the
video type 4. By contrast, if we check the corresponding Fig. 5b, while the performance of
video type 4 has significantly improved on jitter and PLR, our method still shows full anti-
correlation in the presence of delay for video type 4. These results made us understand the
need for impairment-based models, which is the topic of the last evaluation.

5.3 Case 3: individual impairment based-models for each video type

Finally, this analysis puts into practice the concept of one RBM model per video type
and network impairment (Table 6, row 3). Table 9 shows the correlation results for this
approach. The overall correlation has again increased by 4%, compared to the previous case
(Table 8, last column and row), making this approach the best performer of the three anal-
yses. Furthermore, the overall standard deviation has decreased from the 20% shown in
the previous two cases to a final 9%). If we have a look at the colormaps of Fig. 5c, the
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(C) Case 3: One model per video type and network condition (32 models).

Fig. 5 PCC correlation to VQM of our UDL-based method for all the videos in the ReTRiEVED video set.
Three cases: (a) 1 RBM model for all videos; (b) 1 RBM model per video type (8 models for 8 video types);
and (¢) 1 RBM model per video type and network condition (32 models)

prediction of video type 4 has significantly improved. In addition, the red spots (anticorre-
lation) on other parts of the colormaps have completely disappeared and only lighter blue is
to be found, confined to the extreme conditions.

Encouraged by the performance of our UDL-method on the ReTRIEVED videoset, we
set to evaluate it in the presence of extremely lossy networks. This was done with the LIMP
database and the analysis is provided in the next section.
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Table 8 PCC correlations
of the UDL-based method

in the case 2: One model

for each video with the same
configuration (8 models)

Network Impairment

Video Delay Jitter Throughput PLR All
Type
1 0.974 0.4976 0.9232 0.8811  0.81940.2176
2 0.997 0.862 0.9955 0.8988  0.938+0.068
3 0.731 0.564 0.8843 0.748 0.73240.131
4 —0.999 0.624 —0.247 0.298 0.4188+0.5285
5 0.796  0.956 0.9824 0.8433  0.8944+0.089
6 0.997 0.237 0.7655 0.8296 0.7074%0.3286
7 0.882  0.9895 0.82 0.87 0.8906+0.0711
8 0.716  0.9987 0.8427 0.923 0.87£0.12
All 0.887 0.716 0.745 0.998 0.784

+0.123  £0.278 +04 +0.2 +0.194

6 Evaluation on the LIMP video quality database

The purpose of this evaluation was to analyse in depth, the working boundaries of our UDL-
method in the presence of lossy conditions in combination to bandwidth constrains. For this
reason we made use of the LIMP video set.

The RBMs are structured with as many visible neurons as features filtered (one per fea-
ture) and 50 hidden neurons (obtained through experimental analysis). Based on insights
from previous works [13], the learning rate is set to 0.01; the number of CD steps to 1; the
weight decay to 0.0002; the momentum to 0.9; and we trained to models for 100 epochs. As
for the ReTRiIEVED assessment (Section 5), we again considered three different learning

methodologies.

Table 9 PCC correlations
of the UDL-based method
in the case 3: One model
for each video and network
configuration (32 models)

@ Springer

Network Impairment

Video  Delay Jitter Throughput  PLR All
Type
1 0.974 0.4976 09189 0.88 0.8189+0.216
2 0.996 0.862 0.998 0.898 0.938+0.07
3 0.7312  0.564 0.8633 0.714 0.7188+0.121
4 0.999 0.624 0.8119 0.344 0.69540.279
5 0.7942  0.956 0.96 0.8346  0.8856+0.084
6 0.9988  0.237 0.79 0.742 0.6923+0.323
7 0.9978  0.9895 0.86 0.8 0.91240.097
8 0.616 0.9987 0.9 0.932 0.8626+0.17
All 0.888 0.716 0.888 0.998 0.815

+0.153 +0.07 +04 +0.2 +0.095




Multimed Tools Appl (2017) 76:22303-22327 22321

Table 10 Feature selection for
the different cases tested on the Case Features
LIMP Video Quality Database

Case I BIT-BUM-NOR-BLO-MOI-COX-MOT
(1 for all)

Case II BIT-BUM-NOR-BLO-MOI-COX-MOT
(1 per video type)

Case III BIT-BUM-NOR-BLO-MOI-COX-MOT

(3-fold cross-validation, 3 for 9)

6.1 Case 1: a single model for all video types

In this first set of experiments we focus on the simplest case in which the service provider
would choose to train one single model to be used across all video cases and conditions.
This corresponds to a theoretical worst-case scenario. Based on the dataset accuracy study
presented in Section 4.2, we selected the feature set shown in the first column of Table 10.
Table 11, first column presents the overall correlation results of our method to VQM for
this first approach. This case shows an 86% correlation to the benchmark FR quality with
a standard deviation of close to 2%. This is already an improvement, if we compared to
the values showed by the NR features presented in Section 4.2 (apart from the bitrate, the
NR metrics in Table 5 did not reach values higher than 50%). Furthermore, this method has
brought stability to the solution, as can be seen first by the standard deviation, which stays
in the area of 1% (the NR features of Table 5 showed variabilities of at least 10%). The
accuracies have also dramatically improved for all the particular videos (all of them show
values in the range of 82 to 87% while the NR metrics presented values from —75 to 90%).
In order to understand possible improvements on the feature selection and number of
RBMs, we performed the colormap analysis shown in Fig. 6a. The colormaps show a situa-
tion in which most of the results are full blue (full correlation). Only some of the assessments

Table 11 UDL-based method
PCC correlations to VQM for the ~ Video Casel Case2 Case3
LIMP Video Quality dataset in Type

each of the three cases evaluated

bsl 0.8192 0.88 0.8
mcl 0.8716 0.86 0.86
pal 0.8653 0.864 0.85
prl 0.8454 0.824 0.811
bl 0.8508 0.82 0.83
Results are averaged per video hi 0.8777 0.864 0.87
type. Column 1 presents the
method’s performance for Case sfl 0.8827 0.8 0.869
1, 1 model for the whole dataset shl 0.8633 0.87 0.873
(Section 6.1). Column 2 shows trl 0.8657 0.85 0.855
the results of Case 2, 1 video per
video type (Section 6.2). Column
3 provides the results of the All 0.86 0.85 0.8344
3-fold cross validation test 4+0.0194 4+0.0289 +0.0267

(Section 6.3)
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(c) Case 3: 3-fold crossvalidation (3 models for 9 video

types).
Fig. 6 PCC correlation to VQM of our UDL-based method on the LIMP Video Quality Dataset, considering

bitrates between 640 and 5,120 Kbps and packet losses between 0.5 and 10%. Three cases: (a) 1 model for
all videos; (b) 1 model per video type and (c) 3-fold crossvalidation (3 models for 9 video types)
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of certain videos tend to fail slightly. Such is the case of bs1 for high quality variants or cer-
tain bitrates of pal. This encouraged us to carry out a second set of experiments in which
each video type would be trained on its own RBM model.

6.2 Case 2: individual models for each video type

The purpose of this set of experiments is to explore the working possibilities of our method
by means of using video defined models. In this case the video server trains 9 different
RBMs, each of which is used on its own video type. As it can be seen in Table 10 column
2, the configuration of these RBMs is the same (same features) as the previous case and the
only difference being the independent training of each video type.

The results of this experiment are found in Table 11 column 2 and in Fig. 6b. The overall
correlation stays nearly on the same value as in the first evaluation (0.5% decrease). How-
ever, some of the videos show improved performance. This can be clearly seen in Fig. 6b,
where videos such as the pal show no sign of red, uncorrelated regions. Counter-intuitively,
this case shows a slightly worst performance than the first case and slightly higher variabil-
ity (deviation went from 2 to 3%). The reason for this behaviour can be derived from the
high lossy and very high compression conditions. When in the presence of high losses, the
video under-scrutiny might suffer such a degradation (compared to its original version) that
an RBM trained only on it provides less information than one trained on multiple types of
those original videos.

6.3 Case 3: three-fold cross-validation

In the situation that a new video type is added to the content provider after the RBM assess-
ment model has been computed, the service administrator can decide not to retrain a new
model, but to use the already trained to assess the unseen content type. Herein, we assess the
accuracy of the model on videos that have not been used in the training process, adopting a
3-fold cross-validation approach. In it, 3 RBMs are generated based on the original version
of 3 videos. Then, each of this models is tested on 3 videos on which it was not trained for.

The last column of Table 11 and Fig. 6¢ show the results of this analysis. The overall
correlation barely decreases (1% from the first case and 0.4% from the second), as it is
for the standard deviation (only 0.6% worse). However, considering this is the worst-case
scenario, the overall and per video accuracies are still within the acceptable limits (over
80%). These results demonstrate the strength of our method.

7 Conclusion

Clients of video streaming services require having their instantaneous needs fulfilled. In
turn, the network and service providers require effective processes for real-time quality
assessment that well align to human perception factors. Furthermore, given the increasing
number of the available video content, in addition to the timeliness, methods are required to
be adaptable to video content and scalable.

In this paper we have presented a novel approach for learning-based, real-time, adaptable,
and scalable video quality assessment. By means of the outstanding density estimation fea-
tures of the Unsupervised Deep Learning Restricted Boltzmann Machines and NR features,
our method assesses in real-time the delta of degradation of videos, achieving a performance
as accurate as the full-reference counter parts (VQM). In this paper we have presented
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the evaluation on two different, network-impaired video datasets, namely ReTRiIEVED
and LIMP. Accuracies higher than 85% to the benchmark have been demonstrated in
ReTRIiEVED (184 videos, 4 different network conditions) [29] and in LIMP (960 videos
under lossy conditions).

Adaptability is fulfilled by the unsupervised essence of our approach which, unlike other
learning-based approaches requiring labeled data for training (i.e. FR or subjective index),
does not need any labeling on the data and can adapt to new data, just as new samples arrive.
In addition, our methodology allows the generation of multiple RBM models adapted to dif-
ferent network conditions and videos, providing a scalable solution. Finally, the scalability
of our approach has also been demonstrated in the experimental evaluation, whereby only
the original videos were required to obtain overall correlations higher than 85%.

Our methods and the findings presented in this paper open a new research venue for
unsupervised deep learning-based, real-time quality assessment. Future work may follow
three directions. First, we will extend our analysis to other available network impaired
datasets. Second, we are currently researching for ways to improve the accuracy of our
method (now below 90%). Finally, we intend to demonstrate the applicability of our real-
time quality assessment to provide the feedback response in network management or real
networks.
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