
Multimed Tools Appl (2017) 76:24549–24567
DOI 10.1007/s11042-016-4185-5

Learning string distance with smoothing for OCR
spelling correction

Daniel Hládek1 · Ján Staš1 · Stanislav Ondáš1 ·
Jozef Juhár1 · Lászlo Kovács2

Received: 30 June 2016 / Revised: 11 November 2016 / Accepted: 18 November 2016 /
Published online: 7
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Large databases of scanned documents (medical records, legal texts, historical
documents) require natural language processing for retrieval and structured information
extraction. Errors caused by the optical character recognition (OCR) system increase ambi-
guity of recognized text and decrease performance of natural language processing. The
paper proposes OCR post correction system with parametrized string distance metric.
The correction system learns specific error patterns from incorrect words and common
sequences of correct words. A smoothing technique is proposed to assign non-zero proba-
bility to edit operations not present in the training corpus. Spelling correction accuracy is
measured on database of OCR legal documents in English language. Language model and
learning string metric with smoothing improves Viterbi-based search for the best sequence
of corrections and increases performance of the spelling correction system.

Keywords OCR · Spelling correction · Learning string distance · Hidden Markov model

� Daniel Hládek
daniel.hladek@tuke.sk
http://nlp.web.tuke.sk

Ján Staš
jan.stas@tuke.sk

Stanislav Ondáš
stanislav.ondas@tuke.sk

Jozef Juhár
jozef.juhar@tuke.sk

Lászlo Kovács
kovacs@iit.uni-miskolc.hu

1 Department of Electronics and Multimedia Communications, Technical University of Košice,
Letná 9, 042 00, Košice, Slovakia

2 Institute of Information Technology, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary

 December 2016

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-016-4185-5&domain=pdf
http://nlp.web.tuke.sk
mailto:
mailto:jan.stas@tuke.sk
mailto:stanislav.ondas@tuke.sk
mailto:jozef.juhar@tuke.sk
mailto:kovacs@iit.uni-miskolc.hu


24550 Multimed Tools Appl (2017) 76:24549–24567

1 Introduction

Optical character recognition (OCR) is the process of converting a digitized image into text.
Its main areas of application are automatic processing of hand-written business documents
entries and forms, converting text from hardcopy, such as books or documents, into elec-
tronic form, and multimedia database searching for letter sequences, such as license plates
in security systems.

OCR assists multimedia database processing – multimedia information retrieval and
extraction from video or static digitized images. Additional information about improving
its precision is presented in paper [12]. Examples of application for OCR in multimedia
databases are:

– spelling correction system in scientific databases [19];
– recognition of characters in Chinese calligraphy [20];
– text extraction from video databases [36];
– preservation and processing of cultural heritage in digital humanities [28, 34];
– management of medical texts [13].

Natural language processing of digitized texts requires error correction for improved
searching in digitized document databases, document indexing, document sorting into cat-
egories, and business data acquisition. Correction of OCR spelling errors improves the
precision of information retrieval [8].

Spelling correction recovers the original form of the word in consideration of surround-
ing words and typographical errors in the word without taking the original image of the page
into account. OCR errors create error patterns characteristic to the recognition algorithm,
print format, paper, font, and language of the document. Any error correction method must
be adapted to individual cases.

This paper proposes a correction system automatically adjustable for OCR errors. The
learning algorithm adapts a parametrized string metric to specific error types manually
corrected in the past. The language model improves suggestions for correction candidates
taking context of the word into account. The Viterbi approach uses dynamic programming to find
the best matching sequence of correct words according to the available problem information.

The algorithm operates if it is not possible to prepare each statistical component. The
correction system functions if it is not possible to train a learning string metric or to work
only with the language model without losing much precision.

Section 2 gives a brief overview of the current literature on the task after the problem
statement in the introductory section. Common components for better disambiguation con-
sistent with context are language models or more advanced machine-learning techniques,
such as a maximum entropy classifier or hidden Markov model. Custom string distance is
present in some cases.

Components of the proposed system are described in Section 3. The presented approach
contains an error detection and spelling suggestion component, a language model, a learning
string metric with parameter smoothing, and a Viterbi algorithm for the best correct word
sequence search. Each component is described in its own subsection.

Section 4 describes the experimental evaluation. The proposed system is evaluated on
aligned sequences from a database of OCR scanned images in the TREC-5 Confusion
Track [10]. String distance with calculated parameters is used as observation probability for
the hidden Markov model of the spelling correction system. The language model of a train-
ing set is used as state-transition probability. The best sequence of correction is found using
the Viterbi algorithm.

Section 5 gives summary of the paper.



Multimed Tools Appl (2017) 76:24549–24567 24551

2 State of the art of spelling correction for OCR

Spelling correction has a long history of research. Theoretical foundations of spelling cor-
rection were presented in [11]. Spelling error types can be divided according to vocabulary
into:

– non-word errors, where tokens are a sequence of characters not present in vocabulary;
– real-word errors, where the error is a valid word, but not the one that was meant.

A dictionary of valid words or a formal grammar of language morphology can detect
non-word errors. However, real-word errors can be detected with deeper context analysis or
word sense disambiguation.

Spelling correction is identifying incorrect words and sorting the set of correction
candidates. The best candidate for correction is selected interactively or non-interactively.

Common use of spelling correction is in interactive mode, where the system identi-
fies possibly incorrect parts of text and the user selects the best matching correction.
The paper [34] describes an interactive post-correction system for historical OCR texts.
Authors in [14] propose a crowd-sourcing, web based interface for spelling sugges-
tions. The paper [28] evaluates the precision of common OCR for recognizing historical
documents.

This paper is focused on non-interactive spelling correction of text produced by an OCR
system, where the best correction candidates are selected automatically, taking context and
string distance of the correction candidate into account. A non-interactive spelling correc-
tion system can be part of a multimedia database, a security system, or an information
retrieval system.

One of the most recent contributions in the field of OCR spelling is correction of Chi-
nese medical records in [13]. A morphological analyzer and named entity recognizer are
important parts of this system because words in Chinese are not separated by spaces. Pres-
ence of a word in a medical dictionary and n-gram language model is used as a feature for
the Maximum Entropy classifier to determine the best possible correction.

The method [8] improves information retrieval from OCR documents in Indian languages
with a data-driven (unsupervised) approach. This paper proposes a novel method for iden-
tifying erroneous variants of words in the absence of a clean text. It uses string distance
and contextual information to multiple variants of the same word in text distorted by OCR.
Identical terms are identified by classical string distance with fixed parameters and term
co-occurrence in documents.

The paper [6] applies an n-gram language model, trie, and A* search for correction
candidate proposal, word similarity weights, and manual sentence alignment. The method
estimates the probability of an edit operation from a training corpus. A* search provides a
weighted list of correction candidates. The language model reorders correction candidates
to find the best correction. The paper concludes that information about context has a bigger
impact on classification precision than the weight of edit operation.

A method in [23] discovers the typical errors of an OCR system in scanned historical Ger-
man texts and provides list of possible original and modern word forms. It uses approximate
string matching from a lexicon and the Bayes rule to identify possible corrections.

OCR systems for printed Tamil texts are compared in [22] and a post-processing error
correction technique for the tested OCR system is proposed.

The approach in [15] uses a language model and custom string metric. An old style of
writing is seen as a distorted current form. A machine translation system, language model,



24552 Multimed Tools Appl (2017) 76:24549–24567

and string distance is used to transform a 17th century English historical text into current
language.

The paper [26] improves segmentation of paragraphs and words by correcting the skew
angle of a document. The method in [30] uses a combination of the longest common
subsequences (LCS) and Bayesian estimates for a string metric to automatically pick the
correction candidate from Google search. The method in [5] uses a bigram language model
and WordNet for better spelling correction. The paper [31] proposes a hidden Markov model
for identification and correction. The approach [7] uses morphological analysis of suffixes
for candidate word proposal. The paper [21] incorporates a language model of errors into
the weighted finite state transducer of OCR.

2.1 String distance in spelling correction

It is necessary to determine the similarity of two strings to solve the problem of spelling
correction. A widely-used concept of string similarity is the edit distance: the minimum
number of insertions, deletions, and substitutions required to transform the string into the
other string [24]. According to edit operations, spelling errors are divided into:

– substitution with one letter changed into another;
– deletion with one letter missing;
– insertion with one letter extra.

Edit operation z is an ordered pair of symbols from source and target alphabet or the
termination symbol #,#.

E ∈ (A × B) ∪ {#, #}, (1)
A zero string ε in edit operation z means insertion of a character from the target alphabet

B or deletion of a character from the source alphabet A.
The minimum number of these edit operations necessary to transform a string is called

the Levenshtein string distance. Each edit operation has a value of 1 and the sum of edit
operations is the Levenshtein edit distance.

The distance between between two strings xT with length T and yV with length V

dc(x
T , yV ), is defined recursively as [24]:

dc(x
t , yv) = min

⎧
⎨

⎩

δ(xt , yv) + dc(x
t−1, yv−1)

δ(xt , ε) + dc(x
t−1, yv)

δ(ε, yv) + dc(x
t , yv−1)

⎫
⎬

⎭
, (2)

xt is the prefix of string xT with length t , yv is the prefix of string yV with length v. δ

are parameters of the string metric. If values δ of edit operations are just zero or one, the
Levenshtein edit distance can be calculated using dynamic programming algorithm [35].

Weights δ in a letter similarity matrix express the probability of error types. [1] defines
the error model of spelling correction, where parameters of the model are weights of edit
operations. Parameters of the model can take both theoretical expectations and experimental
observation of human behavior. Real values of the string distance parameters, where each
edit operation can have different weight δ, are a generalization of the Levenshtein distance.

3 The proposed system

Each spelling correction system (and natural language processing system) is based estab-
lished on human knowledge. Performance and quality of the system depends on the quality



Multimed Tools Appl (2017) 76:24549–24567 24553

and methods of its processing. Some systems have decision rules encoded directly into
the source codes, others can learn from human-annotated corpora, transform examples into
parameters of a statistical model and generalize a model for events not seen in the training
data.

This knowledge can be divided according to its form into:

– implicit (latent, hidden) knowledge - based on examples in the form of annotated data;
– explicit knowledge - expressed in the form of rules, programs or equations.

Implicit knowledge, hidden in the corpus of manually annotated examples, requires sta-
tistical processing or machine learning techniques to estimate the parameters of the model.
Explicit knowledge can be used directly by the processing system.

Our correction system uses both types of knowledge. The proposed system continues
from our previous paper [9], where an HMM-based correction system was presented.

The spelling correction system consists of these components:

1. Error detection and correction suggestion describes how ”incorrect” words look and
proposes correction candidates.

2. A parametrized string metric reorders correction candidates according to the error
model.

3. A language model expresses ”correct” language and the common contexts of correct
words.

4. A disambiguator uses evaluated correction candidates and their probability according
to context to find the best sequence of correct words for the current sentence.

Components of the systems and respective knowledge sources are depicted in Fig. 1.

3.1 Error detection and correction suggestion

The problem of spelling correction distinguishes two types of words: correct and incorrect.
The first part of spelling correction is identifying the incorrect word boundaries according
to a dictionary of given language. Explicit rules are necessary to omit correct parts of the
text not in the dictionary, but are considered correct, such as numbers or acronyms. The
second part of this problem is creating a list of possible corrections. A finite state acceptor
or Levenshtein automaton [27] searches the correction lexicon in the form of a suffix trie.
Correction candidates form a list of correct words in a given Levenshtein distance from the
incorrect word. The best correction candidate can be selected interactively (in text editors
or office systems) or in a non-interactively (information retrieval or extraction).

Fig. 1 Knowledge sources for
the proposed system



24554 Multimed Tools Appl (2017) 76:24549–24567

The common spelling error detection and correction suggestion systems in use are Hun-
spell1 and the older library Aspell.2 Both libraries are used and evaluated in this paper. These
error detection and error suggestion systems use explicit knowledge about correct words in
the form of a correct word lexicon. Knowledge about incorrect words is encoded into the
string metric. Correction candidates are sorted according to the Levenstein edit distance to
the incorrect word.

3.2 Language model

The Levenshtein edit distance is, in most cases, a sufficient suggestion of correction candi-
dates. The language model of the spelling correction system represents implicit knowledge
about correct language. The context of the correction candidate helps distinguish better
matching candidates by sorting them according to fitness with surrounding words.

The language model assigns the probability of occurrence of a word given a list of pre-
ceding words. It is estimated from a large set of training sequences. It is assumed that
common word sequences are correct.

The n-gram model approximates the probability of a sequence of words y with length m:

P(y1, y2..ym) =
m∏

i

P (yi |yn−(i−1)...yi−1), (3)

n means the size of the context - in the case of n = 3, the language model is called a trigram
and takes the current word and two words from history, n = 2 is bigram model with only
one word from history. A unigram model gives the probability of a word with no history. In
the case of a spelling correction problem, the language model estimates the probability of a
correction candidate according to a given history P(x|yi−1..yi−(n−1)).

Even if the training corpus for the language model is large, it does not contain enough
valid sequences of language. Language model smoothing techniques are required to move
part of the probability mass from events in the training corpus to events not present. Unseen
events will have a non-zero probability. Common smoothing techniques for language
models are summarized in [4].

The quality of a language model is expressed as perplexity. More on language modelling
and how the perplexity of a language model depends on the theme of a text can be found
in [29].

3.3 Learning string distance

The learning string distance is a generalization of the classic Levenshtein distance. The dis-
tance between two strings is calculated as the minimal sum of edit operations that transform
the first string to the second string. The learning edit distance uses different weights for
each possible edit operation – deletion, substitution, and insertion.

The weights of edit operations are stored in a letter similarity matrix. Each letter and
zero length string ε has a row and column in the matrix. The weight of two letters express
the probability of replacement, ε and a letter express the probability of insertion or deletion.
The letter similarity matrix fully describes the learning string distance.

1https://hunspell.github.io
2http://aspell.net

https://hunspell.github.io
http://aspell.net


Multimed Tools Appl (2017) 76:24549–24567 24555

Different parameters of the metric can be adjusted to specific problems. If an OCR
system often replaces i and l or misses f, this feature can be expressed in the matrix.
Parameters of the metric that express specific error patterns can be learned from a set of
given examples of correct and distorted text.

The process of learning is a variant of an expectation-maximization algorithm. Firstly,
the letter similarity matrix is assigned some initial values. A forward-backward algorithm
is used to calculate the weight of each edit operation present in the training set with respect
to the current distance parameters (letter similarity matrix). New parameters are the calcu-
lated weights of edit operations from the forward-backward algorithm. A smoothing step
moves part of the probability mass to edit operations that were not observed in the training
set.

The rest of this section describes in more detail how the string distance is calculated using
a forward-backward algorithm and letter similarity matrix estimation using expectation
maximization.

3.3.1 Distance calculation

The learning string edit distance is presented in papers [3, 32]. This method for estimat-
ing parameters of the string distance from a corpus of examples was first presented in
[24]. Parameters of the string metric are seen as parameters of a memoryless stochastic
transducer.

Weighted transducers are automata in which each transition in addition to its usual
input label is augmented with an output label from a possibly new alphabet, and
carries some weight element of a semiring. Transducers are used to define map-
ping between two different types of information sources, e.g., word and phoneme
sequences [16].

The distance between two strings is the negative log value of transduction probability
from a target to a source string:

dφ = − log p(xT , yV |φ), (4)

xT is a source string of length T , yV is a target string of length V . φ(A, B, δ) is a memory-
less stochastic transducer with parameters δ, where A is the source alphabet, B is the target
alphabet. Zero length string ε is a part of both source and target alphabets.

The letter similarity matrix δ gives the probability of an edit operation z from a list of
possible edit operations Z. Matrix δ consists of positive values less than or equal to one and
their sum is one:

∑

z∈Z

δ(z) = 1. (5)

The probability of transduction p(xT , yV |φ) can be calculated as a forward probability
αT,V :

p(xT , yV |φ) = αT,V . (6)



24556 Multimed Tools Appl (2017) 76:24549–24567

The forward probability matrix αt,v for each prefix xt , yv of lengths t and v, t ∈ {0...T },
v ∈ {0...V } of source and target strings xT , yV by a sequence of calculations is calculated
using the forward algorithm [24]:

αt,v = 1
αt,v = 0 if (v > 1 ∨ t > 1)

αt,v + = δ(ε, yv)αt,v−1 if (v > 1)

αt,v + = δ(xt , ε)αt−1,v if (t > 1)

αt,v + = δ(xt , yv)αt−1,v−1 if (v > 1 ∧ t > 1)

(7)

The last character of each input sequence (incorrect word and correction candidate) is
a termination symbol #. The resulting transduction probability p(xT , yV |φ) is normalized
with the inverse of the training sequence count δ(#, #).

p(xT , yV |φ) = αT,V δ(#, #) (8)

3.3.2 Parameter estimation

Parameters δ are estimated using forward-backward algorithm that is a variant of
expectation-maximization approach.

The backward probability βt,v contains the probability p(xT
t+1, y

V
v+1|φ) of generating

terminated suffix pair xT
t+1, y

V
v+1 [24]. t, v start from T , V to zero.

βt,v = δ(#, #)

βt,v = 0 if (v > V ∨ t > T )

βt,v + = δ(ε, yv+1)βt,v+1 if (v > V )

βt,v + = δ(xt+1, ε)βt+1,v if (t > T )

βt,v + = δ(xt+1, yv+1)βt+1,v+1 if (v > V ∧ t > T )

(9)

The results of forward and backward algorithms are matrices α, β of dimension T +
1, V + 1 with forward and backward probabilities of transduction for each pair of string
prefixes xT , yV .

Future transducer parameters γ are calculated from matrices α, β for each training
sentence with learning parameter λ in the expectation step of the learning algorithm.

The following update of γ is performed for each pair of training sequences in the training
corpus.

Parameters γ are updated with the calculated α and β for each edit operation correspond-
ing to a pair of prefixes xt , yv in the training sample:

γxt ,ε + = αt−1,vδ(xt , ε)βt,v/αT,V if (v > 1)

γε,yv + = αt,v−1δ(ε, yv)βt,v/αT,V if (t > 1)

γxt ,yv + = αt−1,v−1δ(xt , yv)βt,v/αT,V if (v > 1 ∧ t > 1)

(10)

The final step is normalization of γ to fulfill constraint in the (5). The value for each edit
operation γ (z) is divided by the sum of γ . Calculated γ is set as a new set of parameters δ

in the maximization step of the learning algorithm.

δ(z) = γ (z)
∑

e∈Z γ (e)
(11)



Multimed Tools Appl (2017) 76:24549–24567 24557

Learning continues for a fixed number of steps or until the difference between γ and δ is
low. The result of the training are parameters δ of the stochastic transducer and parameters
of the string distance metric.

3.4 Smoothing of LSM

Learning of the probabilistic string metric suffers from over-training [2]. The training
database is always sparse - possible edit operations are not present in the training set. This
kind of training assigns zero probability to unseen events, even if letter transduction is prob-
able. If the number of edit operations in the training corpus is low, matrix γ of learned
metric parameters is sparse. Some corrections will have infinite distance if it is used as a
metric for spelling correction problem.

Part of the probability mass δ is moved from seen events (non-zero elements of the
matrix) to unseen events in the training corpus in the process of smoothing. If unseen edit
operations have non-zero probability, the distance of correction candidates cannot be infinite
and may be included in the classification.

A linear interpolation with a matrix of constants and an interpolation parameter lambda
is proposed for improving the learned parameters of string metric.

According to the maximum entropy principle, a general stochastic transducer that does
not take any training data into account is a transducer with uniform distribution. Parameters
of transducer with uniform distribution is a constant matrix δc. Its values are estimated as
inverse square of each letter’s transduction count Cl in the training corpus:

δc(z) = 1

C2
l

. (12)

The learned transducer is interpolated with a transducer with uniform distribution to
consider operations not in the training set (assign them non-zero probability). Smoothed
parameters δs are equal to:

δs(z) = λδc(z) + (1 − λ)δl(z). (13)

The linear interpolation parameter λ can be interpreted as the amount of purely random
stochastic transducer behaviour.

The complete learning algorithm can be summarized as:

set delta = zero matrix
while Converegence:

set gamma = zero matrix
for each training sequence pair:

calculate alpha using delta
calculate beta using delta
update gamma using alpha and beta

normalize gamma
smooth gamma
set delta = gamma



24558 Multimed Tools Appl (2017) 76:24549–24567

Fig. 2 Example of Viterbi value calculation from three previous correction candidates

3.5 Viterbi search

All these components compose a second order hidden Markov model [31], where state
transition probability is the language model component and observation probability is the
parametrized string metric.

The best sequence of output states (corrections or correct words) to the given hidden
Markov model can be found using the Viterbi algorithm. Input of the algorithm is a sentence
containing some incorrectly spelled words. Output is a sequence of best corrections for the
given sentence.

The first part of the algorithm starts with the first word. Each possible correction is
evaluated by a Viterbi value. The following word and its correction candidates are evaluated
next. This procedure also determines the best previous state for each proposed correction
candidate.

The best sequence of corrections is determined from evaluated words and corrections
by a procedure called backtracking. It selects the correction with the best Viterbi value for
the last word in the sentence. The best and last correction then determines the sequence of
preceding corrections. Each correction candidate has its best predecessor calculated in the
previous (forward) step.

Fig. 3 The proposed system



Multimed Tools Appl (2017) 76:24549–24567 24559

Fig. 4 Sample original and distorted documents

The Viterbi value is calculated recursively from previous words. The best product of
state-transition probability and the previous Viterbi value is used to determine the next
Viterbi value.

Each i-th correction candidate xij from a set of correction candidates X(yj ) for the pos-
sibly j -th incorrect word yj is evaluated by the value v(xij , yj ) that is calculated recursively
from v of the last word’s correction candidates. The value v is the maximum of the prod-
uct of transition probability p(xij |xk(j−1)) and the previous Viterbi value v(xk(j−1), yj−1)

weighted by the observation probability p(xij , yj |φ).

v(xij , yj ) = p(xij , yj |φ) max
xk(j−1)∈X(yj−1)

p(xij |xk(j−1))v(xk(j−1), yj−1) (14)

Correction candidates X(yj ) are determined by a error detection system (Hunspell or
Aspell). The set of correction candidates X(yj ) has a preliminary order defined by the sys-
tem. The transition probability p(xij |xk(j−1)) of two succeeding correct words is given by
the language model. The observation probability p(xij , xj |φ) is the probability of trans-
duction from the correction candidate xij to an incorrect word yj , when transducer φ has
parameters δ.

An example of calculating the Viterbi value v(x32, y3) of correction candidate x32 for
words y1, y2, y3 is depicted in Fig. 2. A block scheme of the whole correction system is
depicted in Fig. 3.

In the case of a second-order HMM, a trigram language model can be used. The transition
probability p(xij |xk(j−1), xb(j−2)) now depends on correction xb(j−2) of the word yj−2 with
the best Viterbi value that is constant for each previous correction candidate for word yj−1.

b = arg max
xk(j−2)∈X(yj−1)

v(xk(j−2), yj−2) (15)

Using this technique the second-order HMM has the same computational complexity as
the first order HMM.

Fig. 5 Sample aligned document



24560 Multimed Tools Appl (2017) 76:24549–24567

Table 1 Evaluation Corpus
Characteristics Test Set Train Set

Tokens 297 230 2 661 804

Sentences 22 920 206 275

Size (B) 3 491 924 31 346 181

4 Experiments

Data from the TREC-5 Confusion Track [10] were selected to evaluate the proposed
approach. Other evaluation corpora are described in [18]. The TREC-5 Confusion corpus
contains 55,600 legal documents from U.S. Federal Register, original electronic documents,
and two sets degraded by an OCR system. This set is freely available and has already been
used to evaluate OCR spelling correction system (e.g. in [8, 25]). The database contains
original text document and text output degraded by an OCR system. Authors of the database
did not make scanned images a part of the evaluation set, because the OCR process is not a
part of the evaluation task.

These degraded documents were printed and the scanned from paper. The first run of
OCR was performed on images of documents in high resolution with a character error rate
(ratio of incorrect characters to all characters) of approximately 5 %. This set is marked
Deg5 in experiments. The second run of OCR was performed on documents with low res-
olution and has a character error rate of approximately 20 %. This set is marked Deg20.
Example of the original and distorted document is in Fig. 4.

4.1 Evaluation methodology

Performance of automatic OCR is word error rate, defined as the ratio of incorrect words to
all words.

WER = incorrect words

all words
.100 % (16)

Table 2 Effect of smoothing on
WER Interpolation Parameter λ Deg5 WER [%] Deg20 WER [%]

0 18.13 44.31

0.02 17.44 43.59

0.05 17.32 43.56

0.07 17.32 43.57

0.12 17.31 43.62

0.1 17.31 43.62

0.15 17.31 43.64

0.2 17.37 43.70



Multimed Tools Appl (2017) 76:24549–24567 24561

Table 3 Effect of Commponents
of the Spelling Correction on
WER

Setup Deg5 WER [%] Deg20 WER [%]

None 20.74 52.31

Aspell 21.44 51.80

Aspell+LM 17.02 42.18

Aspell+LD 17.64 44.00

Aspell+LD+LM 16.61 40.70

Hunspell 21.35 51.96

Hunspell+LM 17.37 41.98

Hunspell+LD 17.93 44.24

Hunspell+LD+LM 17.05 41.05

4.2 Experimental data preparation

Original and distorted versions of the document are aligned using the Needleman-Wunsch
dynamic programming algorithm [17]. The result is pairs of incorrect and correct words.
Figure 5 depicts aligned sequences of correct and incorrect words. Token boundaries are
identified according to spaces.

Preliminary alignment is required, because using documents as training sequences is not
computationally feasible. The size of matrices α and β calculated for each training sample
depends on the size of the correct and incorrect part. Token alignment reduces computa-
tional complexity. Incorrect-correct pairs are training samples for the learning string metric.
It is possible to train the system using unaligned documents, but it is computationally com-
plex. The complexity of training is dependent on the length of input strings (correct and
incorrect).

The training and evaluation set is constructed from aligned samples. The size of training
and testing sets is summarized in Table 1.

The parameters of the learning string metric and the language model are estimated from
the training set. String distance is trained using the forward-backward algorithm described
in Section 3 in 5 iterations. The trigram language model is estimated using the SRILM
Toolkit.3 Witten-Bell smoothing method is used for unigrams, bigrams and trigrams.
Experiments were performed using GNU Parallel script [33].

4.3 Effect of smoothing on the learning distance metric

The effect of smoothing on the learning string distance was examined in the first experiment.
The learning string distance was learned with values of the interpolation parameter λ from
(13) in Section 3.4. The correction system was run without a language model with Aspell
detection and correction suggestion. Results of the experiment are in Table 2.

The best performance for the Deg5 set was reached with value λ = 0.12. Experiment
with λ = 0 demonstrates performance of the system with a learning string distance without
smoothing. The results in Table 2 show that smoothing of the learning string metric has a
positive impact on performance of spelling correction using a learning string metric.

3http://www.speech.sri.com/projects/srilm/.

http://www.speech.sri.com/projects/srilm/


24562 Multimed Tools Appl (2017) 76:24549–24567

4.4 Effect of individual components on performance

The effect on performance of system components is evaluated in the second experiment.
The spelling correction system was run in different configurations:

– None: CC. Shows word error rate of the document without any correction.
– Hunspell or Aspell: Hunspell error detection and spelling suggestion is used. The first

proposed correction candidate is selected as the best.
– Hunspell or Aspell + LD: Each suggested correction candidate is evaluated by a learn-

ing sting distance with smoothing. The candidate with the best string distance is
selected as a candidate for correction. The first proposed correction candidate is the
best.

– Hunspell or Aspell + LM: The best sequence of corrections is found with a Viterbi
search. Observation probability of the correction candidate is determined only by its
transition probability given by the language model.

– Hunspell or Aspell + LD + LM: A full Viterbi-based search is performed in this config-
uration as it is described in Section 3.5. The probability of transduction of an erroneous
word and the correction candidate is used as an observation probability, and a language
model is used as a state-transition probability.

Experiments in Table 3 show that based on explicit rules, the classic spelling correction
systems Aspell and Hunspell cannot be used for the task of OCR correction. However,
the proposed correction candidates are feasible for classification according to context, edit
distance, or both.

The context of a word impacts strongly on the word error rate of OCR spelling correction.
The effect of a language model is comparable to the effect of the learning string distance
with smoothing. If they are used together, they bring even more improvement of WER.
A stronger, positive effect of the language model compared with the parametrized string
distance is consistent with findings in [6].

5 Conclusion

The approach presented in this paper uses state-of-the art spelling correction (Hunspell,
Aspell) and can handle additional knowledge sources. Along with the learning string dis-
tance, the proposed correction system can use a language model and correction lexicon,
if they are available. Experiments show that learning string distance and language model
improve the spelling correction precision.

5.1 Contribution summary

The novelty of the approach is designing and evaluating the system performance with
both language model and learning string distance (*spell4+LM+LD in experiment 2).
Two independent knowledge sources are incorporated into a hidden Markov model as
observation and transition probabilities. Their impact on correction system is measured in
Table 3. Approaches where only a language model is used (*spell+LM) for better correction

4Hunspell or Aspell.



Multimed Tools Appl (2017) 76:24549–24567 24563

candidate disambiguation have been presented in previous papers [6, 21, 33] (and others)
and evaluated in terms of other problems.

The other innovation of this paper is proposing and evaluating the smoothing technique
for learning string distance. Its single parameter is described as an amount of random
stochastic transducer behavior and can be easily estimated. It is shown that this kind of
smoothing has a positive effect on accuracy.

5.2 Discussion of experiments

Performance of Hunspell and Aspell in the problem of automatic correction is measured in
experiments (*spell). Experiments show that these correction systems based on a lexicon
and Levenshtein string distance do not have satisfactory performance. Their negative impact
on word error rate is caused by false positives in error detection, where correct parts of text
are falsely marked as incorrect and changed. These values can be considered as a baseline
for comparison.

It is interesting that the effects of context (*spell+LM) are comparable to the effect of
a sole error model (learning string distance, *spell+LD). These two implicit knowledge
sources are different and uncorrelated. It is possible that using another method of dis-
ambiguation, such as conditional random fields or maximum entropy, can produce better
performance than the presented Viterbi algorithm (*spell+LM+LD).

Acknowledgements The work presented in this paper was supported by the Ministry of Education, Sci-
ence, Research and Sport of the Slovak Republic under research project VEGA 1/0075/15 and by the Slovak
Research and Development Agency under research project APVV-15-0517 and by the Technical University
of Košice under research project DIALab.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ahmad F, Kondrak G (2005) Learning a spelling error model from search query logs. In: Proceed-
ings of the Conference on Human Language Technology and Empirical Methods in Natural Language
Processing, HLT ’05, pp. 955–962. Association for Computational Linguistics, Stroudsburg, PA, USA.
doi:10.3115/1220575.1220695

2. Bellet A, Habrard A, Sebban M (2012) Good edit similarity learning by loss minimization. Mach Learn
89(1-2):5–35. doi:10.1007/s10994-012-5293-8

3. Bilenko M, Mooney R (2003) Adaptive duplicate detection using learnable string similarity
measures:39–48. doi:10.1145/956750.956759

4. Chen SF, Goodman J (1999) An empirical study of smoothing techniques for language modeling.
Comput Speech Lang 13(4):359–394. doi:10.1006/csla.1999.0128

5. Eutamene A, Kholladi M, Belhadef H (2015) Ontologies and bigram-based approach for isolated non-
word errors correction in OCR system. International Journal of Electrical and Computer Engineering
5(6):1458–1467

6. Evershed J, Fitch K (2014) Correcting Noisy OCR: Context Beats Confusion. In: Proceedings of the
First International Conference on Digital Access to Textual Cultural Heritage, DATeCH ’14, pp. 45–51.
ACM, New York, NY, USA. doi:10.1145/2595188.2595200

7. Gerdjikov S, Mihov S, Nenchev V (2013) Extraction of spelling variations from language structure for
noisy text correction. doi:10.1109/ICDAR.2013.72

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3115/1220575.1220695
http://dx.doi.org/10.1007/s10994-012-5293-8
http://dx.doi.org/10.1145/956750.956759
http://dx.doi.org/10.1006/csla.1999.0128
http://dx.doi.org/10.1145/2595188.2595200
http://dx.doi.org/10.1109/ICDAR.2013.72


24564 Multimed Tools Appl (2017) 76:24549–24567

8. Ghosh K, Chakraborty A, Parui SK, Majumder P (2016) Improving Information Retrieval Per-
formance on OCRed Text in the Absence of Clean Text Ground Truth. Inf Process Manag.
doi:10.1016/j.ipm.2016.03.006. Artice in press

9. Hládek D., Staš J., Juhár J. (2013) Unsupervised spelling correction for Slovak. Adv Electr Electron Eng
Ser 11(5):392–397. doi:10.15598/aeee.v11i5.898

10. Kantor P, Voorhees E (2000) The TREC-5 confusion track: Comparing retrieval methods for scanned
text. Inf Retr 2(2-3):165–176

11. Kukich K (1992) Techniques for automatically correcting words in text. ACM Comput Surv 24(4):377–439
12. Lin Y, Song Y, Li Y, Wang F, He K (2015) Multilingual corpus construction based on printed and hand-

written character separation. Multimedia Tools and Applications:1–17. doi:10.1007/s11042-015-2995-5
13. Lv YY, Deng YI, Liu ML, Lu QY (2016) Automatic error checking and correction of

electronic medical records. Frontiers in Artificial Intelligence and Applications 281:32–40.
doi:10.3233/978-1-61499-619-4-32

14. Mühlberger G., Zelger J, Sagmeister D (2014) User-driven correction of OCR errors. Combing
crowdsourcing and information retrieval technology:53–56. doi:10.1145/2595188.2595212

15. Mitankin P, Gerdjikov S, Mihov S (2014) An Approach to Unsupervised Historical Text Normalisation.
In: Proceedings of the First International Conference on Digital Access to Textual Cultural Heritage,
DATeCH ’14, pp. 29–34. ACM, New York, NY, USA. doi:10.1145/2595188.2595191

16. Mohri M (2004) Weighted Finite-State Transducer Algorithms. An Overview. In: D.C. Martı́n-Vide,
D.V. Mitrana, D.G. Păun (eds.) Formal Languages and Applications, no. 148 in Studies in Fuzziness and
Soft Computing, pp. 551–563. Springer Berlin Heidelberg

17. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the
amino acid sequence of two proteins. J Mol Biol 48(3):443–453. doi:10.1016/0022-2836(70)90057-4

18. Oard DW, Baron JR, Hedin B, Lewis DD, Tomlinson S (2010) Evaluation of information retrieval for
E-discovery. Artif Intell Law 18(4):347–386. doi:10.1007/s10506-010-9093-9

19. Park JH, Park HH, Kwon YB (2014) Error correction of reference indexing system including multimedia
journals. Multimedia Tools and Applications 74(7):2359–2370. doi:10.1007/s11042-014-1971-9

20. Pengcheng G, Jiangqin W, Yuan L, Yang X, Tianjiao M (2014) Fast Chinese calligraphic char-
acter recognition with large-scale data. Multimedia Tools and Applications 74(17):7221–7238.
doi:10.1007/s11042-014-1969-3

21. Perez-Cortes JC, Llobet R, Navarro-Cerdan J, Arlandis J (2010) Using field interdepen-
dence to improve correction performance in a transducer-based OCR post-processing system.
doi:10.1109/ICFHR.2010.99

22. Ramanan M, Ramanan A, Charles E (2015) A performance comparison and post-processing error
correction technique to OCRs for printed Tamil texts. doi:10.1109/ICIINFS.2014.7036474

23. Reffle U, Ringlstetter C (2013) Unsupervised profiling of OCRed historical documents. Pattern Recog
46(5):1346–1357. doi:10.1016/j.patcog.2012.10.002

24. Ristad E, Yianilos P (1998) Learning string-edit distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence 20(5):522–532

25. Sariev A, Nenchev V, Gerdjikov S, Mitankin P, Ganchev H, Mihov S, Tinchev T (2014) Flexible Noisy
Text Correction. In: 2014 11th IAPR International Workshop on Document Analysis Systems (DAS),
pp. 31–35. doi:10.1109/DAS.2014.12

26. Sawant A, Chougule D (2015) Script independent text pre-processing and segmentation for OCR.
doi:10.1109/EESCO.2015.7253643

27. Schulz KU, Mihov S (2002) Fast string correction with Levenshtein automata. Int J Doc Anal Recognit
5(1):67–85. doi:10.1007/s10032-002-0082-8

28. Springmann U, Najock D, Morgenroth H, Schmid H, Gotscharek A, Fink F (2014) OCR of Histori-
cal Printings of Latin Texts: Problems, Prospects, Progress. In: Proceedings of the First International
Conference on Digital Access to Textual Cultural Heritage, DATeCH ’14. ACM, New York, NY, USA,
pp 71–75. doi:10.1145/2595188.2595205

29. Staš J, Juhár J, Hládek D (2014) Classification of heterogeneous text data for robust domain-
specific language modeling. EURASIP Journal on Audio, Speech, and Music Processing 2014(1):14.
doi:10.1186/1687-4722-2014-14

30. Taghva K, Agarwal S (2013) Utilizing web data in identification and correction of OCR errors. In: Proc.
SPIE 9021, Document Recognition and Retrieval XXI, 902109. doi:10.1117/12.2042403

31. Taghva K, Poudel S, Malreddy S (2013) Post processing with first- and second-order hidden Markov
models. doi:10.1117/12.2006500

32. Takasu A (2009) Bayesian similarity model estimation for approximate recognized text search.
doi:10.1109/ICDAR.2009.193

33. Tange O (2011) Gnu parallel - the command-line power tool. ;login: The USENIX Magazine 36(1):42–
47. doi:10.5281/zenodo.16303

http://dx.doi.org/10.1016/j.ipm.2016.03.006
http://dx.doi.org/10.15598/aeee.v11i5.898
http://dx.doi.org/10.1007/s11042-015-2995-5
http://dx.doi.org/10.3233/978-1-61499-619-4-32
http://dx.doi.org/10.1145/2595188.2595212
http://dx.doi.org/10.1145/2595188.2595191
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1007/s10506-010-9093-9
http://dx.doi.org/10.1007/s11042-014-1971-9
http://dx.doi.org/10.1007/s11042-014-1969-3
http://dx.doi.org/10.1109/ICFHR.2010.99
http://dx.doi.org/10.1109/ICIINFS.2014.7036474
http://dx.doi.org/10.1016/j.patcog.2012.10.002
http://dx.doi.org/10.1109/DAS.2014.12
http://dx.doi.org/10.1109/EESCO.2015.7253643
http://dx.doi.org/10.1007/s10032-002-0082-8
http://dx.doi.org/10.1145/2595188.2595205
http://dx.doi.org/10.1186/1687-4722-2014-14
http://dx.doi.org/10.1117/12.2042403
http://dx.doi.org/10.1117/12.2006500
http://dx.doi.org/10.1109/ICDAR.2009.193
http://dx.doi.org/10.5281/zenodo.16303


Multimed Tools Appl (2017) 76:24549–24567 24565

34. Vobl T, Gotscharek A, Reffle U, Ringlstetter C, Schulz KU (2014) PoCoTo - an Open Source System for
Efficient Interactive Postcorrection of OCRed Historical Texts. In: Proceedings of the First International
Conference on Digital Access to Textual Cultural Heritage, DATeCH ’14. ACM, New York, NY, USA,
pp 57–61. doi:10.1145/2595188.2595197

35. Wagner RA, Fischer MJ (1974) The String-to-String Correction Problem. J ACM 21(1):168–173.
doi:10.1145/321796.321811

36. Yang H, Quehl B, Sack H (2012) A framework for improved video text detection and recognition.
Multimedia Tools and Applications 69(1):217–245. doi:10.1007/s11042-012-1250-6

Daniel Hládek was born in Košice, Slovakia in 1982. He graduated in 2008 at the Department of Cybernetics
and Artificial Intelligence at the Technical University of Košice. He finished his PhD. focused on fuzzy logic
and reinforcement learning with applications in robotics at the same department. He is currently working as
Assistant Professor at the Department of Electronics and Multimedia Communications, Faculty of Electrical
Engineering and Informatics, Technical University of Košice. His research is focused on natural language
processing of Slovak language with focus on information retrieval systems and content analysis.

Ján Staš was born in Bardejov, Slovakia in 1984. In 2007 he graduated M.Sc. (Ing.) at the Department
of Electronics and Multimedia Communications of the Faculty of Electrical Engineering and Informatics
at the Technical University of Košice. He received his Ph.D. degree at the same department in the field of
Telecommunications in 2011. He is currently working as an Assistant Professor in the Laboratory of Speech
and Mobile Technologies at the same department. He is a specialist in the field of computational linguistics,
natural language processing and statistical language modeling.

http://dx.doi.org/10.1145/2595188.2595197
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1007/s11042-012-1250-6


24566 Multimed Tools Appl (2017) 76:24549–24567

Stanislav Ondáš was born in Prešov, Slovakia in 1981. In 2004 he graduated M.Sc. (Ing.) at the Department
of Electronics and Multimedia Communications of the Faculty of Electrical Engineering and Informatics
at the Technical University of Košice. He received his Ph.D. degree at the same department in the field of
Telecommunications in 2008. He is currently working as an Assistant Professor in the Laboratory of Speech
and Mobile Technologies at the same department. He is a specialist in the field of human-machine interaction,
dialogue modeling and management, natural language processing and semantic analysis.

Jozef Juhár was born in Poproc, Slovakia in 1956. He graduated from the Technical University of Košice
in 1980. He received Ph.D. degree in Radioelectronics from Technical University of Košice in 1991, where
he works as full Professor at the Department of Electronics and Multimedia Communications. His research
interests include digital speech and audio processing, speech/speaker identification, speech synthesis, devel-
opment in spoken dialogue and speech recognition systems in telecommunication networks. Prof. Juhár is a
member of ISCA, AES and IEEE. He is a member of the editorial boards and reviewer of several international
scientific journals.



Multimed Tools Appl (2017) 76:24549–24567 24567

Lászlo Kovács (1961) studied mathematics and physics at the University of Kossuth Lajos, Debrecen, Hun-
gary. He obtained a PhD degree in technical sciences from University of Miskolc in 1998. Dr Kovács is an
assistant professor at the Department of Information Technology of the University of Miskolc. He actively
participates in the teaching and research activities of the department. He held or holds courses in the fol-
lowing subjects: Software Development, Programming Foundations, Database Systems, WEB-Technologies,
OLAP and Data Mining, XMLdata management. He participated in several mobility programs on the field of
software engineering and database management. The research interest of Dr. Kovács involves the following
areas: soft computing, heuristic optimizations, ontology modeling in database systems and software engi-
neering. He is a project leader of a Department-level research group on ontology-based reverse engineering
at University of Miskolc.


	Learning string distance with smoothing for OCR spelling correction
	Abstract
	Introduction
	State of the art of spelling correction for OCR
	String distance in spelling correction

	The proposed system
	Error detection and correction suggestion
	Language model
	Learning string distance
	Distance calculation
	Parameter estimation

	Smoothing of LSM
	Viterbi search

	Experiments
	Evaluation methodology
	Experimental data preparation
	Effect of smoothing on the learning distance metric
	Effect of individual components on performance

	Conclusion
	Contribution summary
	Discussion of experiments

	Acknowledgements
	Open Access
	References


