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Abstract The reception of multimedia applications often depends on the quality of pro-
cessed and displayed visual content. This is the main reason for the development of
automatic image quality assessment (IQA) techniques which try to mimic properties of
human visual system and produce objective scores for evaluated images. Most of them
require a training step in which subjective scores, obtained in tests with human subjects, are
used for parameters tuning. In this paper, it is shown that pairwise score differences (PSD)
can be successfully used for training a full-reference hybrid IQA measure based on the least
absolute shrinkage and selection operator (lasso) regression. The results of extensive exper-
imental evaluation on four largest IQA benchmarks show that the proposed IQA technique
is statistically better than its version trained using raw scores, and both approaches are sta-
tistically better than state-of-the-art full-reference IQA measures. They are also better than
other hybrid approaches. In the paper, the evaluation protocol is extended with tests using
PSD.

Keywords Image quality assessment · Full-reference · Lasso regression · Evaluation

1 Introduction

With the rapid development of different image processing methods, a considerable attention
is given to techniques which are trying to mimic human visual perception [9, 46]. Image
quality assessment (IQA) techniques measure the quality of presented images, and often
support, or compare, image enhancement, restoration, or denoising techniques [3, 5, 29, 32].
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According to the availability of a reference image, IQA measures are divided into full-
reference, reduced-reference, and no-reference techniques [4, 19, 31, 47].

This paper focuses on the full-reference IQA measures. Over the last decade, many dif-
ferent full-reference IQA approaches have been introduced [4], starting from simple peak
signal-to-noise ratio (PSNR), or noise quality measure (NQM) [8] in which a linear fre-
quency distortion and an additive noise injection are used for the distorted image modelling.
The popular structural similarity (SSIM) measure [41], being the extension of universal
image quality index (UQI) [39], uses loss of correlation, luminance distortion, and con-
trast distortion. SSIM was further extended using a multi-scale approach (MSSIM) [41]
or statistical models of natural scenes, as it can be seen in information content weighted
SSIM (IWSSIM) [40]. Such statistical models are also utilised in information fidelity
criterion (IFC) [33] and visual information fidelity (VIF) [34]. Feature similarity index
(FSIM) [51] and its version for colour images (FSIMc) employ phase congruency and
image gradient magnitude. In Riesz-transform based feature similarity measure (RFSIM)
[50] Riesz-transform features at key locations between the distorted image and its refer-
ence image are used. SURF-SIM [38], in turn, uses Speed Up Robust Features (SURF) in
order to detect multiscale differences between features. Spectral residual based similarity
measure (SRSIM) [49] and visual saliency-induced index (VSI) [52] use visual saliency
maps. Contrast changes and luminance distortions are used in gradient similarity (GSM)
measure [16], and inter-patch and intra-patch similarities were modelled in [54] using mod-
ified normalised correlation coefficient and image curvature. The edge based image quality
assessments (EBIQA) measure is based on different edge features extracted from distorted
image and its pristine equivalent [1]. In [11], a novel pooling strategy based on the harmonic
mean was proposed.

In the literature, there are also approaches in which several IQA techniques are combined
into a hybrid, or a fusion, measure. For example, in the most apparent distortion algorithm
(MAD) [14] local luminance and contrast masking evaluate high-quality images, while
changes in the local statistics of spatial-frequency components are used for images with a
low quality. Information obtained using saliency maps, gradient and contrast information
was fused in [30]. In [21, 22], scores of MSSIM, VIF and R-SVD were non-linearly com-
bined. A preliminary work with non-linear combination of several IQA measures selected
by a genetic algorithm was shown in [23]. In [17], SNR, SSIM, VIF, and VSNR were
combined using canonical correlation analysis, and a regularised regression was used to
combine up to seven IQA models in [13]. In [25], a support vector machines classifier used
for predicting of the distortion followed by a fusion of SSIM, VSNR, and VIF using k-
nearest-neighbour regression, was proposed. An adaptive combination of IQA approaches
with an edge-quality based on preservation of edge direction was introduced in [26]. In [18],
a fusion measure using a support vector regression approach was proposed. Lukin et al. [20]
introduced a fusion measure which combines six IQA measures using a neural network. In
[48], kernel ridge regression was used to combine found perceptually meaningful structures
and local distortion measurements. In other approaches, adaptive weighting [2] or internal
generative mechanism [43] were considered in order to obtain hybrid measures.

For evaluation of IQA approaches, specific IQA benchmark databases have been intro-
duced [14, 27, 28, 42]. They contain pristine images, their distorted equivalents and
subjective human evaluations in the form of mean opinion scores (MOS) or differential
MOS (DMOS). Some images from these benchmarks with subjective scores are often used
for tuning parameters of many developed methods, e.g., [13, 20, 44, 52, 54]. Here, the
number of used images should be small in order to obtain the benchmark-independent solu-
tion. In this paper, a novel full-reference hybrid IQA measure is proposed which employs
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regularized least-squares regression using the least absolute shrinkage and selection oper-
ator (lasso) [36, 37]. This technique combines objective scores produced by up to 16
full-reference IQA measures. The lasso regression was applied since it performs selec-
tion of the most important predictors, what makes the usage of such combined measure
more practical. Finally, only several IQA measures take part in the fusion. In the proposed
approach, the regression coefficients are determined using part of images and their scores
from benchmark databases. It is shown that the proposed hybrid measure is significantly
better if pairwise score differences (PSD) are used instead of raw scores. These differences
can be also used for performance evaluation of IQA measures. The application of PSD can
be motivated by the organisation of some IQA tests with human subjects [28], where the
observer compares distorted images with each other, taking into account the pristine image.
It can be assumed that PSD can also be used in the development of IQA measures that
require supervised learning. The hybrid measures developed using raw scores or PSD in
the lasso regression are compared with the state-of-the-art techniques on four largest IQA
benchmark image datasets using well-established evaluation protocol, as well as statistical
significance tests.

The rest of this paper is organised as follows. Section 2 presents the proposed hybrid
IQA measure. In Section 3, the approach is compared with state-of-the-art measures using
four IQA benchmarks, and, finally concluding remarks are presented in Section 4.

2 Proposed approach

Let Q1, . . . , QM be the objective scores of M IQA measures seen as predictor variables
in multiple linear regression model [36]. In the model, So is the estimated response, or
objective score, of the resulted hybrid IQA measure. It can be written as follows:

So = B0 +
M∑

m=1

QmBm + ε, (1)

where B contains fitted coefficients estimated by minimising the mean squared difference
between the outcome, i.e., the vector of subjective scores Ss , and predicted outcome, So; ε
represents a relationship between Q and Ss which is rejected from the equation.

For large number of predictors, it would be desirable to select those which are the most
informative. This also leads to a more practical IQA hybrid approach, consisting of only
several IQA measures. One of possible approaches to the problem of predictor selection is
to use a penalised regression in the lasso form [36]. In the regression, for a given λ, the lasso
determines B solving the following optimisation problem:

min
B

( 12

N∑
n=1

(So
n − B0 −

M∑
m=1

QnmBm)2+ λ
M∑

m=1
|Bm|), (2)

where N is the number of objective scores, and λ is a regularization parameter. In other
words, the lasso minimises the residual sum of squares with the constant α:

M∑

m=1

|Bm| ≤ α. (3)

In the approach, λ value which minimises the mean squared error was used to determine
coefficients.
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In experiments, the following M = 16 publicly available full-reference IQA measures
were used: VSI [52], FSIM [51], FSIMc [51], GSM [16], IFC [33], IW-SSIM [40], MAD
[14], MSSIM [41], NQM [8], PSNR [35], RFSIM [50], SR-SIM [49], SSIM [42], VIF
[34], IFS [7], and SFF [6]. They were used for assessment of processed images and then
PSD were obtained. Most of these approaches present state-of-the-art performance, and
their inclusion was mainly influenced by the need of achieving a broad sample of various
approaches mimicking human visual system. It is assumed that the lasso regression would
be able to select several IQA measures and develop the well-performing hybrid measure.

The proposed approach uses first 20 % images and their subjective scores from a given
benchmark dataset, in order to obtain the regression coefficients. There are four largest IQA
benchmark image datasets; therefore, four hybrid measures are introduced. In the literature,
different numbers of images with scores were used for this purpose, ranging from 20 %
[38], through 30 % [52], 50 % [48], and 100 % [13, 26, 44], to several datasets jointly [54].

In experiments, the following four largest IQA benchmarks were used: TID2013 [28],
TID2008 [27], CSIQ [14], and LIVE [42]. The number of images in each benchmark, as
well as the number of distortions and their levels are shown in Table 1. Since the number of
learning images in the subset is small, the number of scores used in the regression can be
considerably increased by employing PSD. To the best knowledge of the author, PSD have
not been used for training of IQA measures. In this paper, the lasso regression produces
the hybrid IQA measure trained with the small subset of images and scores obtained for
M = 16 IQA measures, as well as trained with pairwise differences of these scores. The
obtained fitted coefficients,B, indicate the number and contribution of the most informative
IQA measures. Only these measures were used in the quality assessment of the test images.
For a selected reference image, all score differences between its distorted equivalents are
calculated. For example, for 5 images with 24 distortions and 5 distortion levels, 600 images
and scores are available in the typical learning scenario, or, as it is introduced in this paper,
∑5

k=1

(
120

2

)
= 7140 pairwise score differences for these images can be used. It is assumed

that only scores of distorted images that have the same reference image are compared. The
usage of PSD can be also motivated by the tristimulus methodology for performing tests
with human observers [28], in which two distorted images are presented with their pristine
equivalent at the same time. Then, the observer selects which distorted image has the better
quality, what requires evaluation of each distorted image separately, looking at the pristine
image, and jointly, while making the decision on their relative quality. Such pairwise image
comparison is used to determine subjective opinions for assessed images [28].

In the experiments, images from a given benchmark dataset were divided into five dis-
joint subsets. There are 20 % of all images in each subset, and each image was evaluated by
16 IQA measures. Finally, after the application of the proposed approach, 40 hybrid IQA

Table 1 IQA benchmark image datasets

Benchmark No. of No. of No. of

reference images distorted images distortions

TID2013 [28] 25 3000 24

TID2008 [27] 25 1700 17

CSIQ [14] 30 866 6

LIVE [42] 29 779 5
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measures were obtained; half of them was trained on PSD. For convenience of presentation,
only measures, namely lasso regression SImilarity Measures (lrSIMs), obtained for the first
20 % of benchmark images are written as follows:

lrSIM1a
1 = 10.214V SI − 1.5221MAD − 0.5705PSNR

+0.7827RFSIM + 0.5723V IF + 1.9253IFS (4)

lrSIM2a
1 = 8.2432V SI − 2.9136MAD − 1.0000PSNR

+1.0432V IF + 1.8354IFS (5)

lrSIM1a
2 = 0.5107V SI − 1.5079MAD + 0.5439PSNR

+1.1451RFSIM + 0.3124SRSIM + 1.0850V IF

+0.6202IFS + 5.7429SFF (6)

lrSIM2a
2 = −2.5348MAD + 0.6056RFSIM + 1.6761SRSIM

+1.3234V IF + 0.8086IFS + 3.8507SFF (7)

lrSIM1a
3 = 0.3887MAD − 0.1408RFSIM − 0.1969V IF (8)

lrSIM2a
3 = 0.5193MAD − 0.2754V IF − 0.0543IFS (9)

lrSIM1a
4 = 14.913IFC + 72.26MAD + 1.5549NQM

+2.5175PSNR + 20.989SRSIM

−36.315SSIM − 43.421V IF (10)

lrSIM2a
4 = 11.906GSM + 6.8190IWSSIM + 71.034MAD

+6.0730MSSIM − 38.154V IF − 15.709IFS (11)

In the (4)–(11), the number in the subscript denotes the benchmark whose part of images
were used for the development of the measure, 1 for TID2013, 2, 3, 4 for TID2008, CSIQ,
and LIVE, respectively; the number in superscript, in turn, indicates that the measure was
developed using scores ”1” or PSD ”2”; the letter in the subscript denotes which subset
of training images was used (five letters: a-e). In the evaluation (see Section 3), results
for the a subset or for all subsets together in the form of the mean value are reported.
Taking into account all obtained hybrid measures, it can be said that one hybrid measure
uses 5.725 single IQA measures, on average. Among the mostly used IQA measures, VIF
was selected 40 times, MAD 39, IFS 29, FSIM 25, RFSIM 22, PSNR 20, SFF 19, and
VSI 17. The remaining IQA measures were used less than 15 times each. Interestingly,
FSIMc was not used at all, and NQM, SSIM, or MSSIM were used less than five times,
what can indicate that their features were replaced by the remaining IQA measures. Some
measures contributed more than others, what is reflected by the weights. For example, in
hybrid measures (4)–(5) VSI was the most contributing technique, in (6)–(7) MAD with
SFF contributed more than other techniques, and in (8)–(11) MAD with VIF. The sign the
weight mostly depends on the sign of correlation between the objective scores produced by
the measure and the subjective scores in the benchmark. Experiments were performed using
Matlab 7.14 with Statistics Toolbox.

3 Experimental evaluation

According to the widely-used protocol [10, 35], IQA measures are compared with each
other using the following performance indices: Spearman Rank order Correlation Coef-
ficient (SRCC), Kendall Rank order Correlation Coefficient (KRCC), Pearson linear
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Correlation Coefficient (PCC) and Root Mean Square Error (RMSE). The prediction mono-
tonicity is evaluated by SRCC and KRCC, and the prediction accuracy by PCC and RMSE.
These performance indices are calculated after a non-linear mapping between a vector of
objective scores, So, and subjective scores, MOS or DMOS, denoted here by Ss , using the
following mapping function for the non-linear regression [35]:

So
m = β1(

1

2
− 1

exp(β2(So − β3))
) + β4S

o + β5, (12)

where β = [β1, β2, . . . , β5] are parameters of the non-linear regression model [35], and So
m

is the non-linearly mapped So. PCC and RMSE use So:

PCC(So
m,Ss) = S̄o

m

T
S̄s

√
S̄o

m

T
S̄o

mS̄sT
S̄s

, (13)

where S̄o
m and S̄s denote the mean-removed vectors.

RMSE(So
m,Ss) =

√
(So

m − Ss)T (So
m − Ss)

m
. (14)

SRCC is calculated as:

SRCC(So, Ss) = 1 − 6
∑m

i=1 d2
i

m(m2 − 1)
, (15)

where di is the difference between ith image in Ŝ and S, m is the total number of images.
In KRCC, the number of concordant pairs in the dataset, mc, is used, as well as the number
of discordant pairs, md :

KRCC(So, Ss) = mc − md

0.5m(m − 1)
. (16)

The values of RMSE closer to 0 are considered better, in contrary to SRCC, KRCC, and
PCC whose values should be close to 1.

Table 2 contains mean values of evaluation indices for all developed hybrid measures on
four benchmarks. There are 178500 values of PSD for TID2013, 56950, 12068, and 10081,
for TID2008, CSIQ, and LIVE, respectively. It can be seen that within the benchmark,
mean values for hybrid measures trained with PSD, indicated with ”2” in the superscript
(e.g., lrSIM2

1-4), were in almost all cases better than hybrid measures learned using images
from the benchmark and their raw scores, lrSIM1

1-4. This indicates that PSD carry more
information than raw scores.

Extension of the typical testing protocol with results obtained using PSD may lead to
more quantitative conclusions about the performance of evaluated IQA measures. There-
fore, the proposed hybrid measures, trained using PSD and represented by lrSIM2a

1−4, are
compared with state-of-the-art IQA measures using four performance indices calculated
with raw scores, and with PSD. The results of comparison are shown in Tables 3 and 4.
The overall results for RMSE do not take into account LIVE dataset due to the range dif-
ference, and weighted results were obtained using the number of images in the benchmark
as its weight. The tables contain the six best IQA measures that were considered in the
regression, out of 16, and lrSIM2a

1−4, the four best performing measures for each evalua-
tion index are written in bold. The obtained results reveal that all presented lrSIMs clearly
outperformed compared IQA measures. For TID2013, where VSI was the best performing
non-hybrid measure, hybrid measures trained on images from benchmark with considerably
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Table 2 Comparison of mean values of RMSE for developed hybrid measures on four IQA benchmark
datasets using raw scores or PSD

lrSIM1
1 lrSIM2

1 lrSIM1
2 lrSIM2

2 lrSIM1
3 lrSIM2

3 lrSIM1
4 lrSIM2

4

TID2013

0.5266 0.5225 0.6092 0.6056 0.6203 0.6333 0.6709 0.6412

TID2013, PSD

0.7150 0.6910 0.8487 0.8252 0.9412 0.8899 0.9845 0.9090

TID2008

0.5794 0.5794 0.5532 0.5518 0.5994 0.5917 0.6677 0.6190

TID2008, PSD

0.8015 0.7813 0.7467 0.7385 0.8158 0.7856 0.9116 0.8187

CSIQ

0.0735 0.0690 0.0659 0.0638 0.0679 0.0605 0.0766 0.0639

CSIQ, PSD

0.1133 0.1041 0.0912 0.0892 0.0887 0.0767 0.1003 0.0807

LIVE

7.1739 6.9237 6.7223 6.5120 6.6943 6.2567 6.9266 6.1925

LIVE, PSD

13.835 13.142 11.040 10.951 9.1425 8.9324 9.8535 8.1755

The measures developed with PSD (lrSIM2
1-4) are better than measures developed using raw scores (lrSIM1

1-4)

less number of distortions that are present in TID2013, i.e., on CSIQ and LIVE, performed
worse than measures trained on TID benchmarks. IQA measures that can be seen in mod-
els trained on CSIQ and LIVE, which share most of distortion types, are performing worse
on newly introduced TID benchmarks, and that can explain worse results for lrSIM2a

3 and
lrSIM2a

4 . However, these results are still better, taking into account overall performance,
than for other non-hybrid IQA measures. Weighted results seem to favour IQA approaches
performing better on TID2013 due to large number of images used as its weight. However,
weighted results for tests with PSD show superior performance of all introduced hybrid
measures. Interestingly, evaluation results on benchmarks with PSD, seen in Table 4, allow
further assessment of the performance of compared non-hybrid IQA measures. There are
cases in which some measures were better in this test than it was shown in the typical
evaluation with raw scores. For example, for TID2008 with PSD, SFF was better than IFS
and VSI, while in the previous evaluation, their precedence was reversed, with VSI as the
leading technique. Interestingly, SFF was introduced before IFS by the same authors. Fur-
thermore, for the results on CSIQ with PSD, MAD clearly outperformed newly introduced
SFF and IFS, what was not evident in the known evaluation. MAD’s performance was also
confirmed in tests on LIVE with PSD, where it was the fourth best IQA measure.

The evaluation results on benchmark datasets showed superior performance of intro-
duced family of hybrid IQA measures, lrSIMs. However, it would be desirable to prove that
the approach is statistically better. In statistical significance tests, hypothesis tests based on
the prediction residuals of each measure after non-linear mapping were conducted using F-
test [14], where the smaller residual variance denoted the better prediction. The results of
statistical significance tests on LIVE benchmark are presented in Fig. 1. The tests cover
all 16 IQA measures that were considered in the regression. In the figure, the number ”1”,
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Table 3 Comparison of hybrid measures with the six best state-of-the-art IQA measures on four benchmark
datasets

VSI FSIM MAD SRSIM IFS SFF lrSIM2a
1 lrSIM2a

2 lrSIM2a
3 lrSIM2a

4

TID2013

SRCC 0.8965 0.8015 0.7807 0.7999 0.8697 0.8513 0.8850 0.8211 0.8070 0.8082

KRCC 0.7183 0.6289 0.6035 0.6314 0.6785 0.6581 0.7060 0.6463 0.6298 0.6307

PCC 0.9000 0.8589 0.8267 0.8590 0.8791 0.8706 0.9012 0.8676 0.8604 0.8604

RMSE 0.5404 0.6349 0.6975 0.6347 0.5909 0.6099 0.5372 0.6164 0.6318 0.6317

TID2008

SRCC 0.8979 0.8805 0.8340 0.8913 0.8903 0.8767 0.9013 0.9073 0.8916 0.8923

KRCC 0.7123 0.6946 0.6445 0.7149 0.7009 0.6882 0.7217 0.7332 0.7083 0.7089

PCC 0.8762 0.8738 0.8306 0.8866 0.8810 0.8817 0.9009 0.9100 0.8943 0.8917

RMSE 0.6466 0.6525 0.7473 0.6206 0.6349 0.6333 0.5824 0.5563 0.6005 0.6073

CSIQ

SRCC 0.9423 0.9242 0.9466 0.9319 0.9582 0.9627 0.9630 0.9688 0.9670 0.9681

KRCC 0.7857 0.7567 0.7970 0.7725 0.8165 0.8288 0.8302 0.8449 0.8423 0.8456

PCC 0.9279 0.9120 0.9500 0.9250 0.9576 0.9643 0.9680 0.9722 0.9720 0.9727

RMSE 0.0979 0.1077 0.0820 0.0997 0.0757 0.0695 0.0659 0.0615 0.0616 0.0610

LIVE

SRCC 0.9524 0.9634 0.9669 0.9618 0.9599 0.9649 0.9691 0.9730 0.9732 0.9735

KRCC 0.8058 0.8337 0.8421 0.8299 0.8254 0.8365 0.8432 0.8546 0.8554 0.8567

PCC 0.9482 0.9597 0.9675 0.9553 0.9586 0.9632 0.9690 0.9723 0.9735 0.9741

RMSE 8.6816 7.6781 6.9073 8.0813 7.7765 7.3461 6.7458 6.3846 6.2452 6.1742

Overall direct

SRCC 0.9223 0.8924 0.8821 0.8962 0.9195 0.9139 0.9296 0.9176 0.9097 0.9105

KRCC 0.7555 0.7285 0.7218 0.7372 0.7553 0.7529 0.7753 0.7697 0.7590 0.7605

PCC 0.9131 0.9011 0.8937 0.9065 0.9191 0.9200 0.9348 0.9305 0.9251 0.9247

RMSE 0.4283 0.4650 0.5089 0.4517 0.4338 0.4376 0.3952 0.4114 0.4313 0.4333

Overall weighted

SRCC 0.9102 0.8598 0.8412 0.8628 0.8988 0.8877 0.9107 0.8836 0.8725 0.8735

KRCC 0.7370 0.6898 0.6711 0.6981 0.7220 0.7121 0.7446 0.7231 0.7084 0.7096

PCC 0.9036 0.8828 0.8625 0.8876 0.9004 0.8981 0.9189 0.9065 0.8991 0.8986

RMSE 0.5025 0.5566 0.6150 0.5456 0.5226 0.5313 0.4762 0.5101 0.5319 0.5337

In the table, raw subjective scores were used

The four best IQA measures for each evaluation index are written in bold. Overall results for RMSE do not
take into account LIVE benchmark, since they are ranged differently than for the other benchmarks. For
weighted results, the number of images in the benchmark was used as its weight

”0” or ”-1” in the cell denotes that the measure in the row is statistically better with the
confidence greater than 95 %, indistinguishable, or worse than the measure in the column,
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Table 4 Comparison of hybrid measures with the six best state-of-the-art IQA measures on four benchmark
datasets

VSI FSIM MAD SRSIM IFS SFF lrSIM2a
1 lrSIM2a

2 lrSIM2a
3 lrSIM2a

4

TID2013

SRCC 0.8885 0.8489 0.8203 0.8447 0.8685 0.8651 0.9116 0.8604 0.8420 0.8423

KRCC 0.7100 0.6660 0.6459 0.6616 0.6834 0.6786 0.7487 0.6893 0.6694 0.6689

PCC 0.8801 0.8585 0.8314 0.8530 0.8658 0.8673 0.9185 0.8770 0.8557 0.8557

RMSE 0.8350 0.9017 0.9771 0.9177 0.8799 0.8753 0.6952 0.8451 0.9099 0.9101

TID2008

SRCC 0.8655 0.8695 0.8535 0.8786 0.8684 0.8756 0.9155 0.9193 0.9060 0.9059

KRCC 0.6780 0.6829 0.6718 0.6948 0.6812 0.6896 0.7506 0.7575 0.7364 0.7358

PCC 0.8492 0.8629 0.8550 0.8714 0.8632 0.8761 0.9160 0.9221 0.9082 0.9077

RMSE 1.0086 0.9650 0.9904 0.9369 0.9641 0.9206 0.7659 0.7388 0.7991 0.8014

CSIQ

SRCC 0.8853 0.8544 0.9543 0.8478 0.9348 0.9408 0.9665 0.9735 0.9761 0.9773

KRCC 0.7188 0.6837 0.8167 0.6750 0.7811 0.7897 0.8438 0.8607 0.8669 0.8704

PCC 0.8874 0.8652 0.9573 0.8664 0.9316 0.9346 0.9672 0.9743 0.9766 0.9775

RMSE 0.1674 0.1821 0.1050 0.1814 0.1320 0.1292 0.0923 0.0818 0.0781 0.0766

LIVE

SRCC 0.9031 0.9273 0.9675 0.9182 0.9361 0.9378 0.9603 0.9711 0.9768 0.9778

KRCC 0.7266 0.7605 0.8424 0.7467 0.7744 0.7793 0.8249 0.8511 0.8677 0.8708

PCC 0.8902 0.9159 0.9646 0.9030 0.9254 0.9244 0.9522 0.9662 0.9762 0.9773

RMSE 17.748 15.637 10.268 16.735 14.764 14.858 11.904 10.048 8.4550 8.2480

Overall direct

SRCC 0.8856 0.8750 0.8989 0.8723 0.9019 0.9048 0.9385 0.9311 0.9252 0.9258

KRCC 0.7084 0.6983 0.7442 0.6945 0.7300 0.7343 0.7920 0.7897 0.7851 0.7865

PCC 0.8767 0.8756 0.9021 0.8734 0.8965 0.9006 0.9385 0.9349 0.9292 0.9295

RMSE 0.6703 0.6830 0.6909 0.6787 0.6587 0.6417 0.5178 0.5552 0.5957 0.5960

Overall weighted

SRCC 0.8838 0.8649 0.8662 0.8633 0.8861 0.8875 0.9263 0.9056 0.8945 0.8949

KRCC 0.7048 0.6848 0.7011 0.6830 0.7078 0.7096 0.7719 0.7515 0.7394 0.7400

PCC 0.8741 0.8678 0.8718 0.8660 0.8817 0.8861 0.9288 0.9137 0.9016 0.9016

RMSE 0.7819 0.8068 0.8429 0.8068 0.7869 0.7708 0.6211 0.6917 0.7442 0.7448

In the table, pairwise score differences were used

he four best IQA measures for each evaluation index are written in bold. Overall results for RMSE do not
take into account LIVE benchmark

respectively. The test revealed that lrSIMs are statistically better than other IQA measures,
and in many cases, hybrid measures trained with PSD are better than hybrid measures
trained with raw scores. Figure 2 presents summary of significance tests covering all bench-
marks, including tests with PSD. For each benchmark, the numbers in cells were added.
Since there are eight benchmarks, the number in the cell denotes the number of benchmarks
in which the measure in the row is significantly better, or worse in case of the negative value,
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Fig. 1 Significance tests on LIVE benchmark using raw scores (a) and PSD (b). The number ”1”, ”0” or
”-1” in the cell denotes that the measure in the row is statistically better with the confidence greater than
95 %, indistinguishable, or worse than the measure in the column, respectively. It can be seen that lrSIMs are
statistically better than state-of-the-art IQA measures on this dataset
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Fig. 2 Summary of significance tests on four benchmarks, including tests with PSD (eight benchmarks in
total). For each test, the number ”1”, ”0” or ”-1” in the cell denotes that the measure in the row is statistically
better with the confidence greater than 95 %, indistinguishable, or worse than the measure in the column,
respectively. The values in cells for eight tests were added in order to form this summary. The higher value
in the cell indicates the better IQA measure in the row

than the measure in the column. Taking into account the summary of significance tests, it
can be seen that lrSIM2a

2 is the best performing measure, with non-negative values in cells.
It is worth noticing that lrSIM2a

2 is worse that lrSIM2a
1 if only significance tests with non-

hybrid measures are taken into account. All lrSIMs have non-negative values in cells shared
with non-hybrid measures, where they are in rows, and hybrid IQA measures developed
with PSD, lrSIM2a

1−4, are at the top of the ranking. Among non-hybrid approaches, SFF is
the leading IQA measure, followed by FSIMc, MAD and VSI.

The experimental evaluation showed that it is worth using PSD in training of the pro-
posed hybrid IQA measure family. This can also be seen on scatter plots with subjective
opinion scores against objective scores of the two best IQA measures and lrSIM2a

1 on four
benchmarks (see Fig. 3). Here, lrSIM2a

1 is better correlated with subjective scores than
compared measures.

Since in this paper the hybrid approach is presented, it should be compared with other
similar approaches that are present in the literature. Therefore, Table 5 contains comparison
with such approaches on the basis of published SRCC values. This also gives the opportu-
nity to compare the results with non-hybrid IQA measures, which also can be found in the
literature. The table contains results for TID2008, CSIQ and LIVE benchmarks, since most
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Fig. 3 Scatter plots of subjective opinion scores against subjective scores of the two best IQA measures and
lrSIM2a

1 on four benchmarks. Plots also contain curves fitted with logistic functions, names of benchmark
datasets (vertical axis) and IQA measures (horizontal axis). Colours represent different distortions; each
dataset has its own set of colours

of the compared measures were not evaluated on TID2013. Here, the best three results for
a given benchmark are written in boldface, results not reported are denoted by ”-”. Further-
more, ”-” denotes overall results for IQA measures that were not evaluated on these three
benchmarks or are not independent, i.e., authors developed a separate measure for each
benchmark without providing cross-benchmark results ([13, 18, 20, 22, 25, 48]).

The results of comparison based on SRCC are presented in Table 5. They reveal that
lrSIMs outperformed other measures, being in most cases among the three best IQA
techniques. For TID2008, SM-HM-FSIM [11] was the second best technique. However,
SM-HM-FSIM is non-hybrid approach, what makes all lrSIMs better than other compared
hybrid approaches. The presented lrSIM family, together with the approach introduced by
Barri et al. [2] outperformed other techniques on CSIQ. Overall results, as well as tests on
LIVE, showed superior performance of lrSIMs over the other measures. More specifically,
lrSIM2a

1 and lrSIM2a
2 were clearly better than other measures, what was indicated in the

previous experiments.



Multimed Tools Appl (2017) 76:13255–13270 13267

Table 5 Comparison of the approach with other IQA approaches and hybrid measures based on SRCC
values reported in the literature

IQA TID2008 CSIQ LIVE Overall Overall

measure direct weighted

Other IQA measures

ESSIM [53] 0.8843 0.9326 0.9622 0.9264 0.9151

GMSD [45] 0.8910 0.9570 0.9600 0.9360 0.9244

SURF-SIM [38] 0.8910 0.9460 0.9440 0.9270 0.9178

[44] 0.9080 0.9650 0.9640 – –

[54] 0.8952 0.9640 0.9737 – –

SM-HM-FSIM [11] 0.8960 0.9530 0.9640 0.9377 0.9241

Other hybrid measures

ADM [15] 0.8617 0.9333 0.9460 0.9137 0.9001

[2] 0.8100 0.9630 0.9570 0.9100 0.8843

BME [25] 0.8882 0.9573 0.9711 – –

BMMF [12] 0.9471 – – – –

CNNM [20] – – – – –

CQM [21] 0.8720 – – – –

DOG-SSIM [24] 0.9259 0.9204 0.9423 0.9295 0.9282

EHIS [22] 0.9098 0.9498 0.9622 – –

ESIM [23] 0.9026 0.9620 0.9420 0.9420 0.9300

GLD-PFT [30] 0.8849 0.9549 0.9631 0.9343 0.9186

IGM [43] 0.8902 0.9401 0.9580 0.9294 0.9190

[13] – – 0.9500 – –

MAD [14] 0.8340 0.9466 0.9669 0.9158 0.8944

MMF [18] 0.9487 0.9755 0.9732 – –

RMSSIM [26] 0.8569 0.9453 0.9633 – –

[48] 0.8865 0.9141 0.9574 – –

lrSIM2a
1 0.9013 0.9630 0.9691 0.9445 0.9309

lrSIM2a
2 0.9073 0.9688 0.9730 0.9497 0.9365

lrSIM2a
3 0.8916 0.9670 0.9732 0.9439 0.9275

lrSIM2a
4 0.8923 0.9681 0.9735 0.9447 0.9283

The result for the measure that was trained using images from the dataset indicated in the column is italicised
in order to show the lack of the dataset-independence. Overall results exclude IQA measures for which cross-
dataset results were not reported in the literature. The three best measures for each benchmark are shown in
boldface

4 Conclusions

In this paper, a hybrid full-reference IQA was introduced. The measure was obtained using
the lasso regression and pairwise score differences of up to 16 IQA measures seen as pre-
dictors. The lasso was able to select the most important several IQA measures. This resulted
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in the family of hybrid measures, lrSIMs, which was extensively evaluated on four largest
IQA image benchmarks employing SRCC, KRCC, PCC, and RMSE. The evaluation was
also based on PSD. The introduced approach outperformed widely used full reference IQA
measures, as well as other hybrid techniques. It can be assumed that the usage of PSD will
support the development of other IQA measures based on supervised learning.

The Matlab code of the approach that allows adding other IQA measures, scripts per-
forming pairwise score differences on used benchmarks, as well as the evaluation of
compared approaches, are available to download at: http://marosz.kia.prz.edu.pl/lrSIMpsd.
html.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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