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Abstract Large 3D meshes are emerging as the new media for various applications but are
still hard to use in mobile applications, due to the limited resources of mobile systems. This
paper introduces a large 3D mesh streaming framework which flexibly deals with the limited
resources of mobile systems and also provides a user with interactive controls and random
accessibilities. To reduce resource usage, our framework presents a uniform mesh partitioning
algorithm, in which each partition of a large mesh has the same number of vertices. Our
uniform partitioning is based on a k-d tree clustering and extended for out-of-core meshes. A
median search with heaps in the main memory is designed for faster external sorting. Large 3D
meshes are transformed into a set of partitioned and simplified meshes in the server. For
interactive 3D browsing, on mobile devices, our framework presents a mobile 3D viewer
which is hierarchically designed with intuitive interfaces. A user can experience rapid 3D
searches with 3D previews of simplified meshes. Multi touch inputs can control zooming and
the level of detail in meshes automatically. Double tap touches enable a user to randomly select
a region of a large mesh, and a set of partitions for the selected region will be streamed and
displayed on a mobile client. As a result, our framework enables a user to browse large 3D
meshes on a mobile system interactively, while optimizing system resource usage and
protecting the original data in the server.

Keywords Mobile 3D . 3Dmesh streaming . Vertex clustering . Out-of-core mesh partitioning

1 Introduction

As a result of the rapid spread of mobile systems and cloud computing, various media such as
texts, images, sounds, or videos are widely used in many mobile applications. 3D meshes are
being widely utilized in mobile applications such as 3D games, however, there are challenges
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to be overcome. Unlike PCs, mobile systems have relatively limited resources such as low
power, low memory, slow CPU, and small screens. The advance in 3D mesh processing
technologies now enables us to create large sophisticated 3D meshes. 3D meshes utilized in
medical imaging and cultural heritage preservation, usually include up to millions of vertices.
Therefore, browsing large 3D meshes is still difficult on mobile systems with the limited
resources.

The large size of 3D meshes has inspired various studies such as mesh compressions [1, 5,
17], simplifications [6, 22], chartifications [5], and out-of-core methods [5, 6, 22]. These
previous methods were developed for PCs with more resources. Progressive mesh streaming
techniques [4, 13, 15, 23, 25] have also been suggested for 3D applications mostly on PCs.
Most previous streaming techniques transmit data for each vertex in a predefined order. The
transmission of vertex-based information takes too much time to process because of the
volume of information involved with millions of vertices in large 3D meshes. Furthermore,
no user interactions to control progressivity or accessibility are allowed, either.

3D visualizations on mobile devices have been actively studied recently. Generally they can
be classified into two categories: remote rendering and local rendering. Remote rendering [9,
16, 24] usually displays only images which are generated and transmitted by the remote server.
Local rendering [10, 11, 15, 20] receives 3D mesh data from the server and then renders it
directly on mobile systems. Generally remote rendering utilizes plentiful resources on the
server and protects the originality of the data and the copyright. Local rendering provides
interactive user controls. However, these previous visualization methods are hard to apply to
large 3D meshes. For local rendering, receiving all the mesh data on mobile systems may take
too much time, or be impossible due to insufficient memory. For remote rendering, images
may not fully display the fine details of large 3D meshes, or require too much time for dynamic
view changes, due to repeating procedures of rendering a large 3D mesh on the server, and
then transmitting and displaying the images on the client.

Therefore, in this paper, we propose a new framework for streaming large 3Dmeshes on mobile
systems.We propose to consider the fact that users cannot see every detailed part of a large 3Dmesh
at one time. As shown in Fig. 1, we suggest that a large 3Dmesh should be transformed into a set of
small meshes partitioned and simplified in the server. A mobile 3D viewer should also be created
allowing a user to interactively control models, levels of detail, and random streaming.

Generally, a mesh partitioning algorithm performs vertex or face clustering. Previous
partitioning methods concentrated on functional or visual qualities [3, 5, 22] and resulted in
non-uniform partitioning where each partition mesh has various numbers of vertices in non-
compact shapes [12, 18]. Our research suggests that a uniform partitioning, where each partition
has the same number of vertices is more effective [14]. The shape of each partition should also be
as compact as possible to facilitate good visual quality of streamed meshes. Our method builds a
k-d tree structure of a large 3D mesh. Our k-d tree is constructed recursively by dividing a mesh
into two sub-meshes, each having half the vertices of the original mesh and consequently results
in uniform partitions of a large mesh. The k-d tree is used for multi-resolution simplifications and
is also used as an index to find a set of partitions to be streamed in the server for a part of the
mesh, which a user randomly selects on the client. Our uniform partitioning will help to create a
standard processing time for each partition, utilize cache memory efficiently, minimize I/O or
power usage, and ultimately optimize the usage of the limited resources on mobile systems.With
our mobile 3D viewer, a user can start rapid 3D searches from a small preview of a mesh,
simplified in a low resolution and then select a mesh to see in a full screen.Multi touch inputs can
naturally control a hierarchy in multi-resolution simplifications. When requested by a user’s
double tap on a random part of the simplified mesh, a set of small partitions of a large 3Dmesh is
streamed from the server to a mobile client and rendered locally.
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As a result, our framework enables a user to interactively browse large 3D meshes on a
mobile client and also protects the original data while optimizing system resource usage. We
have published a short paper of our work presented at a conference [14]. In this paper, we
present the details of our method and extend our partitioning to utilize out-of-core memory for
large 3D meshes. We also elaborate on our mobile viewer extensively, primarily with the goal
of designing its intuitive interfaces.

The rest of the paper is organized as follows. In Section 2, the related works are explained.
Section 3 presents an overview of our mesh streaming framework. Our mesh partitioning
algorithm is explained in detail in Section 4. Our mobile 3D viewer is introduced in Section 5.
Finally, Section 6 concludes this paper with future works.

2 Related works

Our 3D mesh streaming framework is closely related to two research areas: 3D mesh
partitioning and 3D visualizations on mobile systems.

2.1 3D mesh partitioning algorithms

Most mesh segmentation methods have focused on visual or functional qualities. A benchmark
study, on mesh segmentations has already been published [3]. However, mesh segmentations

Fig. 1 An example of our 3D mesh streaming with a mesh Buddha
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cannot be applied to large 3D meshes on mobile systems because they usually require: (a)
many user interactions, (b) complex computations to determine where a vertex or a face
belongs, or (c) repetition for optimization. Mesh partitioning has been performed by clustering
vertices or faces. Previous methods can be classified into two categories: space divisions and
incremental additions.

Space division methods first define a bounding box for a mesh. The bounding box is then
recursively subdivided until user-specified conditions are satisfied. Various tree structures with
a hierarchy have been presented for space divisions. Octree is widely used for various mesh
processing algorithms, such as mesh simplification [6, 22] and compression [11, 15, 17], since
it can provide fast space subdivision.

Incremental clustering methods which use cost functions, have been published [5, 12, 18].
The most widely used algorithm is k-means clustering illustrated by Lloyd [18]. The algorithm
starts with k vertices or k faces randomly selected as seeds. A user specifies the cost function to
be used by selecting the next vertex or face to add among neighboring vertices or faces. After
every vertex or face is grouped to the k partitions, new seeds are recalculated and incremental
clustering is repeated again to the user’s specifications. K-means clustering has also been used
for mesh simplifications [21] and compressions [5].

The octree method guarantees fast clustering due to simple subdivisions of the given region.
However, the numbers of vertices in sub-regions or partitions are not the same because the
division is performed, not by the number of vertices, but by the size of the regions. The k-
means clustering method cannot generate uniform partitions either [14]. K-means clustering
may take a great deal of time, perhaps many hours, due to optimization requiring many
repetitions for large 3D meshes. They cannot provide progressivity in resulting partitions, and
require a separate index mesh to allow random accessibility [5].

2.2 3D visualizations on mobile systems

3D applications, such as games, have recently inspired many studies on 3D visualizations on
mobile devices. Generally previous studies have focused on remote rendering or local
rendering.

Local rendering techniques [10, 11, 15, 20] require mesh data to be placed on mobile
clients. The server simply sends the mesh data to mobile clients and the mobile clients are
responsible for displaying the mesh itself. Previous local rendering studies have suggested
various ways to send the mesh data to deal with the limited resources. A point-based rendering
method [11] proposed that the server should progressively send vertex data. This method
determined it was best to omit sending face data to mobile clients. The progressive local
rendering method [15] suggested that the server should send compressed vertex data only
during intermediate levels and later add face data at the last level. These previous methods
build an octree of the mesh for compression, simplification, and progressivity. For a 3D tree
model, a shape-based progressivity was proposed as incrementing the number of branches and
leaves on mobile clients [10]. Simplified and compressed mesh data is transmitted to a mobile
device with preview images [20]. For preview images, pre-defined viewpoints are stored with
the related view matrix in the server for image-based navigation. Progressive mesh streaming
techniques [4, 23, 25] can also be considered for local rendering if the client is a mobile device.
These streaming methods send codes to split a vertex for refinement in a pre-computed order to
the client [13]. They mainly try to resolve network related problems such as congestion or lost
packets. In local rendering, after mobile clients finish receiving all of the data required, users
can interactively manipulate the camera view or the model with local 3D viewers. But users
cannot control the progressivity or the view during downloading because the order of
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streaming was predetermined with a fixed camera view. For large 3D meshes, receiving all the
data may be impossible due to insufficient memory (i.e. 14,027,867 vertices and 28,055,742
faces in a model Lucy) or take too much time (i.e., about 2 min for progressive transmission of
a model Horse having about 20,000 vertices [13]). It may also be hard to protect the copyright
since mobile clients should store all the data locally.

Remote rendering techniques [9, 16, 24] allow mobile devices to receive images or videos
from a server. The server stores the mesh data and generates images for mobile clients. Remote
rendering also protects the originality and the copyright of the mesh data. There is usually no
need for separate viewers for images or videos on mobile clients. In [9], large 3D scenes of a
city are rendered in the server and the clients use these images for cube maps as backgrounds of
a simulation game. However, remote rendering usually cannot provide dynamic view changes
or sophisticated details of 3D meshes in images. To change views, user requests should be
transferred to the server, and then the server re-renders the mesh, and generates images which
are later transmitted and displayed on mobile clients. Repeating these procedures for large 3D
meshes takes a lot of time resulting in slow responses. Network bandwidth and the number of
concurrent clients may also be bottlenecks for interactivity in remote rendering.

Mobile systems usually provide touch-based interactions. Various multi-touch interfaces
have been studied and presented [7, 19, 20]. Our mobile viewer provides an intuitive interface
such as double tap touch for selection or multi-touch for zooming.

3 An overview of our hierarchical mesh streaming framework

3D meshes created by 3D scanning are usually very large. For example, the model Xyzrgb_dragon
in Fig. 2 has 3,609,405 vertices and 7,218,906 faces. The model Lucy is composed of 14,027,867
vertices and 28,055,742 faces (See Table 1). For many applications such as games, cultural heritage
preservation, andmedical imaging, meshmodificationmay not be permitted to protect the copyright
and the originality of the created meshes. With previous methods, it is still difficult to interactively
experience the exquisite details of these large 3D meshes on mobile systems which have limited
resources. Therefore a new mesh streaming framework is presented in this paper. The goals of our
framework are as follows: we wish to

① Reduce resource usage on mobile systems.

(a) 3D preview (b) less simplified (c) more refined (d) original partitions

Fig. 2 An example of our hierarchical 3D viewer browsing a large 3D mesh Xyzrgb_dragon
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② Provide mobile users with interactive 3D browsing.
③ Allow mobile users to experience the sophisticated originality of large 3D meshes.
④ Protect copyright and preserve the original data.

We noted the fact that users cannot see every detail of a large 3D mesh at one time on the
small screen of a mobile device. Therefore, our framework is first designed to divide large 3D
meshes into a set of equally sized partition meshes in compact shapes and perform simplifi-
cations in multi-resolutions in the server. Original 3D mesh data is protected in the server. Only
when requested by a mobile user, simplified or partitioned meshes are to be transmitted and
rendered locally. Our framework provides a mobile 3D viewer which allows users to interac-
tively control local rendering and random streaming on mobile clients. As a result, when using
our framework a mobile user can start fast 3D browsing with 3D preview of a simplified mesh
in a small window, as shown in Fig. 2(a). Users can also rotate or translate the mesh to
facilitate the display of a mesh with more detail. A mesh can be displayed in detail as shown in
Fig. 2(b), (c), and (d). The level of detail in simplified meshes is automatically determined by

Level 1 Level 2

Level 3
Level 4

Fig. 3 An example of our k-d tree construction in 2D

Table 1 Large 3D meshes tested in our experiments

3D mesh # of vertices # of faces

Buddha 541,336 1,087,716

Xyzrgb_dragon 3,609,405 7,218,906

Lucy 14,027,867 28,055,742
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multi touch inputs. The final level of detail rendered displays a set of partitions for a region of a
large mesh, randomly specified by a mobile user. The mesh streaming order is therefore
determined by a mobile user.

4 Uniform mesh partitioning

Our mesh streaming framework proposes to divide a large 3D mesh into a set of equally sized
small partitions. This uniform partitioning reduces mobile resource usage and also provides
users with random accessibility in mesh streaming. Our algorithm uses a vertex clustering
since it requires less space for data structures and less computational overhead than face
clustering, which has duplicate vertices in faces on the boundary of partitions. Our algorithm
constructs a k-d tree for the mesh in which each cell represents a vertex cluster and subse-
quently forms a single partition of the mesh. Our uniform partitioning algorithm was already
presented and showed better performance than previous k-means clustering and octree method
[14]. In this paper, out-of-core mesh partitioning is newly presented with mobile interfaces for
large 3D meshes.

4.1 Adaptive k-d tree construction for vertex clustering

As introduced in our previous paper [14], our k-d tree divides a cell into two sub-
cells each having half the vertices of the original cell. Instead of regular cycling from
the x, to the y, to the z-axis, our k-d tree flexibly determines the longest axis of a
bounding box as the axis for a perpendicular splitting plane. The five steps for
building our k-d tree are as follows:

a. Find the bounding box BM for all the vertices VM of the mesh M.
b. Determine the longest axis AM among three axes in BM.
c. Find a median MVM, from VM sorted by the order of AM

d. Divide VM with MVM into two halves for two partitions ML and MR .
e. Repeat steps a through d for ML or MR if the half VML of ML or VMR of MR is bigger than

N, the user-specified number of vertices in a partition.

As presented in [14], Fig. 3 shows an example of the above steps from level 1 to level 4 of
the k-d tree in a simplified 2D format. The dotted-line is the bounding box of vertices in a cell.
The solid dividing lines are perpendicular to the longer of the x-axis or the y-axis of

Fig. 4 An example of the adaptive selection of splitting axes in each level of our k-d tree built in Fig. 3
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the bounding box. The dividing axes are colored red for 2 cells in level 1, blue for 4
cells in level 2, green for 8 cells in level 3, and yellow for 16 cells in level 4. The
axes for cells at the same level may be chosen differently depending on the shape of
the bounding boxes as depicted in Fig. 4. Median values are computed to split
vertices in half. Finally, 16 uniform partitions of the mesh are created from 16
clusters of vertices in 16 leaf-cells in the k-d tree.

Our k-d tree is designed to create uniform partitions. If there are an odd number of
vertices in a mesh, the numerical difference between partitions is one. The octree
divides a cell into eight sub-cells including empty cells. As the level of the octree
goes higher, the cells are rapidly increased. Therefore, it is hard to control when to
stop subdividing cells to generate a user-specified number of partitions. However our
k-d tree divides a cell into two sub-cells without empty cells. Moreover, it is
relatively easy to control how many partitions are being generated. Our k-d tree
selects a splitting plane dynamically for the compactness of the partition shapes.
Compactness is a quantity which measures the degree to which a shape is compact. A shape
having a smaller surface perimeter is more compact if the areas of all the shapes are the same
[2]. Given a partition with area w and perimeter p, we use the compactness c as a ratio of its
squared perimeter p2 to its areas w [12].

c ¼ p2

4πw
ð1Þ

A square figure has better compactness than a long thin rectangular figure. To
avoid long thin shaped partitions, our algorithm considers compactness when deter-
mining an axis for perpendicular splitting planes to subdivide cells in the k-d tree.
The lower the quantity is the better the compactness is. Moreover, a k-d tree is
intrinsically a hierarchical structure in which leaf cells provide clusters of vertices.
Non-leaf cells can provide clusters of vertices which are grouped from child cell
vertices. Also the number of partitions and the number of vertices in a partition can
easily be controlled by a user.

(a) K-means clustering (b) Octree method (c) Our k-d tree method

Fig. 5 Examples of mesh partitioning
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4.1.1 Experimental results of our k-d tree clustering

A computer with a 2GHz CPU and 3GB RAM was used to test algorithms with relatively
small 3D meshes. We implemented two leading methods, octree-based clustering [22] and k-
means clustering [5].

Our k-d tree can split cells into two sub cells of different sizes with the same number of vertices.
The octree method splits cells into eight sub cells of the same size but with different numbers of
vertices, possibly creating empty cells [22]. K-means clustering starts with a user-specified number
of random seeds, which is also the number of partitions. The number of vertices in each partition is
dynamically determined depending on the positions of seeds and the number of iterations. If two
seeds happen to be too close with no faces between them, then no face is added to one of the two
seeds resulting in a single face forming a partition. Therefore our version of k-means clustering, adds
a hierarchical face clustering [14] as preprocess to spread out the positions of random seeds. This
preprocess contributes to the generation of partitions with narrower ranges of variance in the number
of vertices, than the octree method [5]. The cost function is designed to consider the compactness
based on the geodesic distance [5] and the number of vertices in a cluster. Five repetitions were
executed for optimization. K-means clustering requires the most processing time. For each seed,
every vertex should be accessed to determine whether it satisfies the cost function. Since k seeds
create k partitions, basically nk times to process vertices are required per iteration, where n is the
number of vertices in a mesh. Octree and k-d tree methods process n vertices in each level so n*d
times are neededwhere d is the depth of the tree. The depth of octree is shorter than k-d tree so octree
requires less time than k-d treemethod.On average, our k-d treemethod takes 5.73 swhile the octree
method takes 5.68 s and k-means clustering takes 9.21 s for 3D meshes tested as listed in Table 2.
For the compactness measure using (1), partitions made by the octree are the most compact since
cells of the octree are all cubic figures. Our adaptive choice of an axis in the k-d tree construction
helps provide better compactness than k-means clustering. In Fig. 5, examples of mesh partitioning
are presented. A mesh horse is divided into 64 partitions using k-means clustering in (a), octree
method in (b), and our k-d tree method in (c). Each partition in a mesh is colored differently. Shapes
and the number of vertices in each partition are irregular with k-means clustering and octreemethod.
Only our k-d tree based clustering creates uniform mesh partitions relatively quickly. It also enables
users to control both the number of partitions and the number of vertices in each partition. The visual
results of our partitioning are depicted in Fig. 6.

4.2 Out-of-core vertex clustering

Our k-d tree construction requires sorting vertices to find median values. For out-of-core
meshes which cannot be loaded into the main memory, external sorting needs to be applied;

Table 2 Processing time and compactness of mesh partitioning algorithms

Model Number of
vertices

Compactness Processing Time (seconds)

k-d tree octree k-means k-d tree octree k-means

Bunny 35,947 2.068 1.856 2.358 3.18 3.15 4.10

Feline 49,864 2.938 2.299 2.440 4.43 4.38 5.85

Igea 67,180 1.787 1.816 2.435 6.16 6.12 9.27

Skull 98,306 1.857 1.761 2.331 9.12 9.08 13.14

Average 2.163 1.933 3.049 5.73 5.68 9.21
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however, external sorting takes a lot of time. Therefore, we introduce a new selective sorting to
reduce I/O and iterations during external sorting.

4.2.1 Median search for out-of-core data

Supposing that data A of n elements is already sorted, the median value m is defined as
follows:

m ¼
A

n

2

h i
þ A

n

2
þ 1

h i� �

2
ð2Þ

A median can easily be found from a sorted set of data. For out-of-core meshes, vertex data
cannot bemaintained in themainmemory andmust be kept in external files. Therefore, the third
and fourth steps c and d in our k-d tree construction of Section 4.1 must be modified as follows:

c. Find a median of MVM, from VM in an external file in the order of AM.
d. Divide VM with MVM into two halves and save them to two external files for two

partitions ML and MR.

External sorting generally takes extensive amounts of time. However, there is no need to
sort all the data since we only need to divide VM into ML and MR, two files of unsorted
vertices before and after a median MVM. Many algorithms utilized for a median search which
do not require sorting have been introduced in [8]. Among them, only Torben’s method is
capable of handling such large amounts of data. The process can be summarized as follows:

a. Find the minimum (min) and the maximum (max) of the input data.
b. Calculate an average of min and max to set a pivot value.
c. Classify values lower (L) than the pivot value and values greater (G) than the pivot value.
d. Find the total number of values in L, numLT, and the maximum value in L, maxLT; find

the total number of values in G, numGT, and the minimum value in G, minGT.
e. If numLT is equal to half of the total input data, then the median is the average of maxLT

and minGT.
else if numLT > numGT, then set max to maxLT and repeat steps b through d.
else if numGT > numLT, then set min to minGT and repeat steps b through d.

Torben’s method compares each element with the pivot value while counting the number of
elements that are bigger and smaller than the pivot. When the number of smaller elements is

Fig. 6 Uniformly partitioned meshes using our k-d tree clustering with the number of partitions in a parenthesis
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half the input data, the average of the minimum of the bigger elements and the maximum of
the smaller elements is set to the median of the input data. The number of iterations is O(log
N), so it may require extensive time if there are many I/O’s. In this paper, in order to improve
the performance of the out-of-core median search, our method alters the setting of the pivot
and introduces a minimized sorting technique with the use of heaps.

4.2.2 New pivot for median search

The choice of the pivot is critical to the performance of our algorithm. The closer the pivot is
set to the real median of the input data, the fewer the number of iterations are required. In our
method, the average of all the input data is used for the pivot. With this pivot, the number of
iterations is reduced since the average of the data is always closer to the real median than
Torben’s average of the minimum and the maximum. For example, when most vertices are
skewed to the right maximum, as shown in Fig. 7, our average of the vertices is closer to the
real median on the right while Torben’s average is in the middle, away from the real median.
Notice that I2<I1 in the Fig. 7. When finding the bounding box BM of the mesh initially, the
average of the vertices can also be calculated so that no additional I/O is required.

4.2.3 Selective sorting with min and max heaps

For a faster median search, our method introduces new selective sorting through the
utilization of main memory. Our data structure is illustrated in Fig. 8a. The left and right
files are stored as external files with min and max heaps in the main memory. Our
method finds the position of the average by classifying the vertices into two groups, the

Fig. 8 Data structures for our out-of-core selective sorting

Fig. 7 Our average of all the data is closer to the real median than Torben’s average as I2 < I1
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left, L, if smaller than the average and the right, G, if bigger than the average. Then, only
vertices located in the interval, between the positions of the average and the median are
selected and subsequently sorted for the purpose of finding the median value. These
vertices are stored in the min heap and the max heap and later form a minimized set of
vertices to be sorted. As a result, our method reduces the number of I/O operations and
iterations.

Our method is described as follows:

1. Classify vertices to find the position of the average.
For a vertex v from the input file,
If v ≤ the average,

go to the left.
If v ≤ the minimum of the min heap,

save v to the left file.
else if v > the minimum of the min heap,

If themin heap is full, remove theminimumof themin heap and save it to the left file.
Save v to the min heap.

else if v > the average,
go to the right.
If v ≥ the maximum of the max heap,

save v to the right file.
else if v < the maximum of the max heap,

If themax heap is full, remove themaximumof themaxheap and save it to the right file.
Save v to the max heap.

2. Calculate the interval.
After finishing classifying vertices, the position of the average can be found from the

number of elements in the two groups. Then the interval I is calculated as follows with the
position of the median from (2):

I ¼ position of the median� position of the average

3. Find the median from a reduced number of vertices.
If I <0, the median is in the left.
else if I >0, the median is in the right.
If I < the size of the heap, the median is instantly found in the sorted min heap or

max heap.
If I > the size of the heap, the median is in the left file or the right file.
So for the left file or the right file, repeat steps 1) through 3).

(a) A set of 13 partitions using our k-d tree method. (b) A set of 27 partitions using the octree method

Fig. 9 Captured images of partitions of a mesh Buddha on a mobile client
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Figure 8(b) illustrates the median in the left min heap in blue. Figure 8(c) shows the median
in the left file in red. Generally it is enough to repeat steps 1) through 3) for the left data. When
the median is in the left file and the interval is bigger than the memory size, such as the red area
in Fig. 8(c), the heap size can be adjusted to the interval. The size of the heaps
determines the performance time. The bigger the heap is, the faster our method finds
the median. Our algorithm is designed to adjust the memory allocated to heaps. From
our experiments, statistically the median is located in the range of −5 % to +5 % of
the average of all the vertices. Therefore, the median can be found in one cycle
without repetition when the size of the heap is set to about 10 % of the total number
of all vertices. The results of our out-of-core algorithm are presented and also
compared to other methods in Table 3.

4.2.4 Performance evaluation of our out-of-core mesh partitioning

The computer with a 2GHz CPU and 3GB RAM was also used to test our out-of-core mesh
partitioning. The size of the heaps was set to 256 MB for all tests. We only implemented
octree-based clustering [22] to compare the performance of our out-of-core method. We did
not implement k-means clustering for out-of-core meshes because this previous method cannot
generate uniform partitioning [14], progressivity, and requires too much time up to several
hours [5]. Processing times of k-means clustering for out-of-core meshes were simply cited
from [5], which were tested on a system with a 2.4 GHz Dual CPU and 2GB RAM. Similar to
previous experimental results with relatively small 3D meshes, for out-of-core meshes the time
required for our k-d tree method is a little more than the octree method but much less than the
k-means clustering. For example, for partitioning a large mesh of Lucy consisting of
14,027,867 vertices, our k-d tree took about 33 min or 2.04 s per partition, while the octree
took about 21 min or 1.07 s and k-means clustering required about 6 h or 17.07 s per partition
as shown in Table 3. Our selective sorting contributed to reduce processing time which may

Table 3 Processing times for out-of-core mesh partitioning (s for seconds, m for minutes, and h for hours)

Method Model Buddha Xyzrgb_dragon Lucy

# of vertices 541,336 3,609,455 14,027,867

K-means clustering [5] # of partitions 584 576 1,195

Initial chartification 410 s 6,900 s 11,700 s

Chart update 390 s 2,220 s 8,700 s

Total time 13 m 20 s 2 h 32 m 5 h 40 m

Sec./partition 1.37 s 15.83 s 17.07 s

Octree clustering # of partitions 587 571 1,196

Initialization 65 s 453 s 1,187 s

Partitioning 10s 15 s 95 s

Total time 1 m 15 s 7 m 48 s 21 m 22 s

Sec./partition 0.13 s 0.82 s 1.07 s

Our k-d tree clustering # of partitions 512 512 1,024

Initialization 65 s 453 s 1,887 s

Partitioning 12 s 42 s 205 s

Total time 1 m 17 s 8 m 15 s 34 m 52 s

Sec./partition 0.15 s 0.97 s 2.04 s
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take hours for recursive external sorting. Note that the octree clustering cannot produce
uniform partitions even if the processing time is faster than our k-d tree method.

Mesh partitioning is executed only once in the server. Frequent events are streaming
partitions to satisfy user requests. We examined streaming times for partitions of a mesh
Buddha using our k-d tree method and the octree method. In Fig 9a, 13 uniform partitions
using our k-d tree clustering are rendered with a total 16,600 vertices on a mobile device. 27
non-uniform partitions using the octree clustering are rendered, with a total 15,295 vertices on
the same mobile client in Fig 9b. The blue rectangle is the region a user touched and the red
rectangle is the rendering region on a mobile screen. The size of each partition file is charted in
Fig. 10. The blue line displays the size of 13 uniform partitions using our k-d tree method. The
red line shows the size of 27 non-uniform partitions using the octree method. For face
reconstruction, we added vertices on the boundary to both partitions sharing the same
boundary so the actual file size of our partition is not exactly the same. Even if the total
number of vertices in the set of octree partitions is less than our k-d tree partitions (See
Fig. 10), the total streaming time for our 13 uniform partitions took 0.6 s while 0.8 s for 27
octree partitions as charted in Fig. 11. As a result, our k-d tree clustering generates uniform
partitions relatively quickly. Our method provides uniform processing times, critical for
responsive and scalable mobile interactions.

4.3 Mesh simplification using our k-d tree clustering

In our mesh streaming framework, simplified meshes are to be used as 3D previews so they should
reflect the original shape as much as possible. A uniform number of vertices in a partition play a key
role in the quality of the mesh simplification. The octree based simplification [22] was implemented
along with our kd-tree based simplification for comparison. A single representative vertex was
calculated for a cluster of vertices in a partition. Triangulations were performed with representative
vertices according to the original connectivity. The simplified mesh by our method preserves the
original shape better than the simplified mesh created by the octree method [14]. As illustrated in
Fig. 12, a red vertex represents each partition. In our k-d tree simplification, 16 red vertices represent
16 uniform partitions at the top of Fig. 12. Even if 16 cells in octree are the same size, 11 non-
uniform partitions are generated with various numbers of vertices. In Fig. 13, a 3D mesh Venus is
hierarchically simplified by our kd-tree method and the octree method. Our kd-tree method
illustrated at the top of Fig. 13 produces better feature-preserving results. With the smaller number
of partitions our method presents better visual qualities than the octree method. In Fig. 14, two
simplified faces of a meshDavid are presented. The result of our simplification with 2,048 partitions
is on the left and the result of the octree method with 2,052 partitions is on the right. In our method,
simplified vertices are averages of uniform number of vertices in partitions, while in octree method,
simplified vertices are calculatedwith varied number of vertices in non-uniform partitions. Therefore
our simplification generates more regular triangle faces and better visual quality.

 KB

50 KB

100 KB

150 KB

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Octree

Kd-tree

Fig. 10 Comparison of the size in KB of 13 partitions using our k-d tree and 27 partitions using octree
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5 Mobile 3D viewer with an intuitive user interface

Our mobile 3D visualization has been designed to provide users with the advantages of
previous local and remote rendering: interactive controls and original data protection. For data
protection, original mesh data is kept in the server; and simplified or partitioned data will be
transmitted to mobile clients. For interactive controls, a mobile 3D viewer is presented. Our
mobile 3D viewer is hierarchically designed so that users on mobile clients can interactively
select levels of detail and specify random streaming. Therefore our mobile 3D viewer
eventually minimizes mobile resource usage by avoiding excessive downloading and render-
ing unwanted parts.

5.1 3D preview for fast 3D searches

Since previews are usually provided for 2D images, fast image searches are possible. However,
it is still hard to find 3D previews in mobile viewers. Therefore, our mobile viewer is designed
to provide 3D previews as well as filenames for rapid 3D searches. A simplified mesh with a
low resolution will be transmitted and rendered instantly as shown in Fig. 15. 3D previews in
our experiments required 0.1 to 0.8 s. This has been shown in Tables 4, 5, and 6. A user can
interactively control the view by rotating or moving a mesh, or zooming. A fixed window on
the bottom of the screen can automatically display previews when a user browses filenames.

0.00sec

0.02sec

0.04sec

0.06sec

0.08sec

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Octree

Kd-tree

Fig. 11 Comparison of transmission times for 13 partitions using our k-d tree and 27 partitions using octree

Original mesh Space division Simplified mesh

Our k-d tree

Simplification

Octree

simplification

Fig. 12 Examples of simplifying meshes in 2D
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To save mobile resource more, a user can choose a pop-up window to see 3D previews when
requested without a constant rendering in a fixed window at the bottom.

5.2 Simplified meshes in full screen

When a user selects a mesh from a list of filenames or a 3D preview, simplified meshes in
multi resolutions will be transmitted and rendered locally in full screen on mobile systems as
described in Fig. 16. Our interface is designed to be intuitive to enable a user to control levels
of detail in simplified meshes through multi touches with the thumb and index finger together.
The interval between the thumb and index finger automatically determines zooming in or out
and controls the hierarchy or the resolution in simplified meshes. In Fig. 16, the left two
images are captured from a mobile device. They display simplified meshes of Lucy and the
right two images display simplified meshes of Buddha. We can choose a simplified mesh in a
single file, so that the transmission and rendering would take about 0.3 to 2.6 s depending on
the resolution as listed in Tables 4, 5, and 6. Once a file is received from the server, the file is
saved on a sd memory card on mobile systems, avoiding retransmitting the same file. If the
mesh is uploaded, a user can control the view interactively.

Our 

k-d tree

simplifi-

cation

Octree

simplifi-

cation

Fig. 13 Hierarchical simplifications of a mesh Venus

Fig. 14 Simplified faces of David (our method on the left and the octree method on the right)
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5.3 Original partitions of large 3D meshes

In previous mesh streaming methods, a user was passive since the streaming order was
predetermined. Our framework allows a user to randomly specify streaming order with our mobile
viewer. A double tap on a random part of a simplified mesh will trigger the streaming of a set of
partitions of a large 3D mesh. The original 3D mesh data is protected in the server and only
partitioned files covering the part a user selected are rendered on mobile clients. The k-d tree is kept
both in the server and the client for indexing partitions to be streamed. Our mobile viewer requests
partitions as needed from the server so resource usage can be reduced by avoiding streaming
unnecessary partitions. As a result, a mobile user can see the sophisticated original mesh. In Fig. 17,
partitions for the belly of Buddha and the face of Lucy are streamed and rendered. Mobile resource
usage and transmission times are determined according to the number of partitions required. The
rendering range focuses around the part a user selects and can be determined adaptively according to
computing environments. When the rendering range is small, the number of partitions is also small,
so resource usage can be reduced but the resultmay be visually unsatisfying rendering. If the range is
large, many partitions requiring more resource usage will be streamed; even so, the results will be
visually satisfying.

Fig. 15 Examples of 3D previews in our mobile viewer

Fig. 16 Examples of simplified meshes in multi resolutions (Lucy on the left and Buddha on the right)
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5.4 Experimental results of our mobile 3D viewer

This section explains in detail the experimental results of our mobile 3D viewer. We used a
Pantech smartphone. The model is IM-A850K. It has Qualcom Quad Core 1.5GHz
(APQ8064). Android 4.04, OpenGLES 1.0, JNI, and Android-NDK are used to program
our mobile 3D viewer. Our network specification is 802.11b/g Wi-Fi.

After large 3D meshes are transformed into a set of small files in the server, a smartphone
user can browse large 3D meshes with our mobile viewer as shown in Figs. 1, 2, and 18. The
number of partitions of a large 3D mesh can be determined adaptively according to the number
of vertices in each partition. When a partition includes many vertices, the size of the partition is
larger. When the rendering region is covered by a small number of partitions, the visual quality
may be low. For example, we experimented rendering two sets of partitions of a mesh of Lucy.
In Fig. 19(a), each partition has about 2,000 vertices. A set of 11 partitions are rendered having
about 20,000 vertices in total. In Fig. 19(b), each partition has about 4,000 vertices and 6
partitions are rendered having about 20,000 vertices in total. Even if the total vertices are
similar, the size of a partition determines visual quality displayed. The smaller the size of each
partition, the easier it is to control the density in the rendering region. The hexagon is the cell a
user specified by double tap touches. 11 partitions in Fig. 19(a) can result in more dense visual
quality, than the 6 partitions in Fig. 19(b). Therefore, we set 2,000 to be the number of vertices
in a partition in our experimental environment.

When a user specifies an arbitrary part of a mesh to see in more detail, the cell of the k-d
tree is identified and sent to the server so that the server can identify the same cell. The region
of 1-ring neighbors is an extended region. It is extended by adding the averaging length of the
x, y, and z-axis of the cell to the region of the cell. In Fig. 9(a) the blue region is the selected
cell and the red region is the extended 1-ring neighboring region. A set of partitions belonging
to the extended region will be streamed and rendered on mobile clients. For better visual
quality, as depicted in Fig. 17, partitions in 2-ring or 3-ring neighbors can be selected even if
they require more time and resources. The results of our 1-ring region are displayed in Figs. 1,
2, and 18.

Table 4 Processing times in our mobile 3D viewer for a mesh Buddha

Buddha # of
vertices

# of
faces

Transmission
(seconds)

Parsing
(seconds)

Rendering
(seconds)

Total
(seconds)

Low-resolution simplification 690 1348 0.06 0.04 0.03 0.13

Mid-resolution simplification 2651 5188 0.10 0.12 0.12 0.34

High-resolution simplification 9751 19,332 0.34 0.52 0.43 1.28

11 partitions of the original 26,544 45,933 1.19 0.98 1.00 3.17

Table 5 Processing times in our mobile 3D viewer for a mesh Xyzrgb_dragon

Xyzrgb_dragon # of
vertices

# of
faces

Transmission
(seconds)

Parsing
(seconds)

Rendering
(seconds)

Total
(seconds)

Low-resolution simplification 690 1348 0.05 0.04 0.03 0.12

Mid-resolution simplification 2455 4778 0.10 0.11 0.11 0.32

High-resolution simplification 9168 18,176 0.36 0.52 0.41 1.29

20 partitions of the original 42,816 70,784 2.05 1.57 0.70 4.33
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Tested meshes and processing times are listed in Tables 1, 4, 5 and 6. Transmission times
are variable according to network environments. These variances include network bandwidth
and the number of concurrent users. The averaged time of 10 trials is listed in Tables 4, 5, and
6. AWRL file format is used for a mesh which is composed of vertex and face data. Normal
vectors and texture data are excluded in our experiments to reduce the size of files. Parsing is a
process to read vertex and face data from a file, build a mesh, and calculate normal vectors for
every face. Rendering is a process which allows the display of a mesh on the screen. We tried
to avoid high resolution simplification and use each simplified file as a small single file so that
processing times for simplified meshes were 0.85 s on average for fast responses to user
requests. For streaming partitions, processing time is dependent on the number of partitions. A
single partition having about 2,000 vertices needs 0.26 s on average to process. The number of
partitions in 1-ring neighbors is dependent on the complexity of the original mesh. A
part of Lucy is less complex than a part of Xyzrgb_dragon: 20 partitions in 1-ring of
Xyzrgb_dragon are equal to 9 partitions in 1-ring of Lucy. Our current coding is not
an optimized version, so processing times for parsing and rendering can be reduced
further if optimized with the GPU later.

Table 6 Processing times in our mobile 3D viewer for a mesh Lucy

Buddha # of
vertices

# of
faces

Transmission
(seconds)

Parsing
(seconds)

Rendering
(seconds)

Total
(seconds)

Low-resolution simplification 5161 11,856 0.21 0.31 0.24 0.77

Mid-resolution simplification 9770 19,386 0.32 0.54 0.43 1.29

High-resolution simplification 18,625 36,984 0.72 1.06 0.84 2.62

9 partitions of the original 18,166 30,824 0.97 0.69 0.77 2.43

Fig. 17 Examples of streaming sets of partitions of large 3D meshes, Buddha on the left and Lucy on the right
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6 Conclusion and future work

Mobile systems have relatively limited resources; such as low memory, low power, small
screens, or slow CPU. Large 3D meshes require a lot of resources. This paper introduces a
hierarchical framework to stream large 3D meshes into a mobile system. In our framework, a
3D mesh is divided into uniform partitions which have an equal number of vertices in compact
shapes, using k-d tree clustering. For an out-of-core mesh, min-heap and max-heap in main
memory are newly created and select a minimized set of vertices for faster external sorting.
Our uniform mesh partitioning also results in better simplification than the previous octree
method, since representative vertices for clusters of vertices in uniform partitions preserve the
original shape better than those in non-uniform partitions. Our mobile 3D viewer has been
designed with an intuitive interface. Our viewer provides 3D preview on mobile clients
facilitating rapid 3D searches. Automatic transitions in zooming using multi touches also
enable a user to control the level of detail in meshes rendered. Double tap touches on a random
part of a mesh allow a user to experience the sophisticated large 3D mesh on a mobile client by
triggering partition mesh streaming. As a result, our framework enables a user to browse large
3D meshes interactively on mobile devices while optimizing resource usage and simultaneous-
ly protecting the original data. Our future research will include a user study on our mobile 3D
viewer. Our research will also focus on the study of how to optimize our programming with the
GPU and extend our framework to include more mesh data such as texture information.

Fig. 18 An example of a hierarchical browsing with a mesh Lucy in our mobile 3D viewer

(a) 11 partitions with a partition having 2,000 vertices (b) 6 partitions with a partition having 4,000 vertices

Fig. 19 Comparisons of rendering sets of partitions, having about 20,000 vertices in total
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Moreover, texture mapping for simplified meshes could also be studied since we are interested
in creating systems which render better visual quality.
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