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Abstract This paper proposes a system for the early automatic recognition of health
problems that manifest themselves in distinctive form of gait. Purpose of the system is to
prolong the autonomous living of the elderly at home. When the system identifies a health
problem, it automatically notifies a physician and provides an explanation of the automatic
diagnosis. The gait of the elderly user is captured using a motion-capture system, which
consists of body-worn tags and wall-mounted sensors. The positions of the tags are
acquired by the sensors and the resulting time series of position coordinates are analyzed
with machine-learning algorithms in order to recognize a specific health problem. Novel
semantic features based on medical knowledge for training a machine-learning classifier are
proposed in this paper. The classifier classifies the user’s gait into: 1) normal, 2) with
hemiplegia, 3) with Parkinson’s disease, 4) with pain in the back and 5) with pain in the leg.
The studies of 1) the feasibility of automatic recognition and 2) the impact of tag placement
and noise level on the accuracy of the recognition of health problems are presented. The
experimental results of the first study (12 tags, no noise) showed that the k-nearest
neighbors and neural network algorithms achieved classification accuracies of 100%. The
experimental results of the second study showed that classification accuracy of over 99% is
achievable using several machine-learning algorithms and 8 or more tags with up to 15 mm
standard deviation of noise. The results show that the proposed approach achieves high
classification accuracy and can be used as a guide for further studies in the increasingly
important area of Ambient Assisted Living. Since the system uses semantic features and an
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artificial-intelligence approach to interpret the health state, provides a natural explanation of the
hypothesis and is embedded in the domestic environment of the elderly person; it is an example
of the semantic ambient media for Ambient Assisted Living.

Keywords Health-problems detection . Human-motion analysis . Gait analysis . Machine
learning . Data mining . Temporal data mining . Time-series data mining . Human
locomotion . Elderly care . Ambient assisted living . Ambient media . Ambient intelligence .

Ubiquitous computing . Pervasive health

1 Introduction

Developed countries are dealing with the rapid aging of their populations. Consequently,
this could overwhelm a society’s capacity for taking care of its elderly members.
Projections show that the percentage of population aged over 65 in the developed countries
will rise from 7.5% in 2009 to 16% in 2050. In addition, the ratio of the working-age
population (between 15 and 64 years) to the population aged over 65 is predicted to decline
from 4.3 to 2.3 [26]. Typically, the elderly choose one of the following options for their
way of living:

Nursing homes The elderly usually wait for a long time to be accepted into nursing homes, and
living there is expensive (in some countries, the costs are higher than the average income of an
older adult). The elderly can be socially active in nursing homes, but they are less independent
than when in their own homes. If the employees of nursing homes are attentive enough, they
can manually detect changes in movement that indicate health problems in the elderly.

Elderly health care at home This type of living provides some independence and comfort for
the elderly, since they live in their own homes. However, it is also expensive and in most cases
the visits of nursing staff are rare. Therefore, it is possible that health problems develop during
the time when no medical staff or relatives are close by to the elderly to detect them.

Living in their own homes Most elderly people prefer this option for as long as possible if
they are healthy. The main reason is that this allows them to be independent. However, if
the elderly person gets some health problem, there is a possibility that nobody detects it and
medical help is not provided soon enough.

To prevent dangerous situations arising for the elderly when living alone in their homes,
a system for the automatic, ubiquitous health care of the elderly is proposed, for which
techniques for the early detection of common health problems manifested in the gait have
been developed in the presented study. In the event that the system was to recognize a
health problem, it would notify a physician and show him/her an explanation of the
automatic diagnosis in the form of a visualization of the kinematic model. Therefore, the
elderly would receive constant health monitoring in their homes and workload of the
physicians would be decreased; although they would still have the possibility to confirm or
reject the automatic diagnosis. In this case the elderly would have constant, ubiquitous
monitoring, providing them with more safety and confidence while living in their homes.

The target health problems for automatic recognition are: hemiplegia (usually the result
of a stroke), Parkinson’s disease, pain in the leg and pain in the back. The fifth health state
for recognition is a normal health state, used as a reference health state to the other four
health states, i.e., health problems.
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The gait of the user is captured with the motion-capture system, which consists of the tags
attached to the body. The positions of the tags are acquired by the sensors that are situated in the
apartment. The resulting time series of the position coordinates are analyzed with machine-
learning algorithms [13] in order to recognize the specific health problem. Due to the results of
several investigations concerning privacy issues, e.g., of the FP7 project Confidence [6, 16],
which showed that the elderly do not like being monitored by cameras that record video, only
time series of positions of the tags instead of the video from cameras were used in this study.

The objective of the presented research study is twofold:

& First, to discover to what extent the automatic recognition of health problems using a
motion-capture system and several machine-learning methods is feasible.

& Second, to investigate the classification accuracy achievable using various machine-learning
algorithms, various numbers and placements of tags on the user’s body and various amounts
of noise in the tag coordinates. The tag placement aims for a trade-off between the usability
and the technical requirements—the users prefer as few tags as possible, but too few tags
cannot ensure sufficient accuracy. Findings of this investigation can affect further development
of the care systems for the elderly, including the motion-capture system selection.

The paper is organized as follows. In Section 2, related work from the fields of
movement recognition and sensor appliances used for the task of movement recognition is
presented. In Section 3, the health-problems-recognition system, which is based on the
novel semantic features, described in the same section, is proposed. After defining the
machine-learning setting in Section 4, which is used for the prediction of the target health
problems, the performance of various classifiers is evaluated in the experimental Section 5.
In Section 6, a prototype application for the explanation of the interpreted health state is
presented. Section 7 concludes the paper and presents further work.

2 Related work

Motion capture In order to perform automatic recognition of health problems manifested in
the gait (or any type of movement), the movement must first be captured. There are several
approaches to motion capture; three most appropriate for the task will be mentioned here.
The first approach uses inertial system, normally composed of MEMS (Micro-Electro-
Mechanical Systems)-based accelerometers and/or gyro sensors [11, 23]. The second
commonly used approach is a computer vision, which uses video from cameras for the
reconstruction of the human-body movement [27, 30]. The third approach uses cameras in
combination with tags attached to the body. Usually, infra-red (IR) cameras are employed
and the body posture is reconstructed from the position of the retro-reflective tags [9], as in
the approach presented in this paper.

There are also some specific measurement devices for the capture of tremor – a symptom in
Parkinson’s disease – e.g., sensors for a measurement of the angle of the joint deflection in
tremor-type joint movements [22]. However, such a sensor system is too large and would
prevent users from carrying out the activities of daily living if the system was to be worn all
day. It has a major drawback in comparison to the approach presented in this paper, because it
cannot automatically recognize Parkinson’s disease or any other health problem.

Recognition of health problems In related work [7, 10, 20], physicians usually diagnose
health problems that are manifested in the gait by visually observing the user’s gait. If they
cannot decide on a certain diagnosis easily, they use a semi-automatic approach. In that
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approach, the capture of the movement using a motion-capture system is followed by a manual
observation of the time series of the movement (such as the time series of the angles of legs, etc.).

The same procedure is used for the pre-rehabilitation planning (e.g., physical therapy) and
the post-rehabilitation evaluation to quantify the difference in movement between those states.
Also some special medical tests, e.g., a test for the assessment of balance, are used. However,
none of those approaches can provide a constant real-time observation of the elderly at home,
for the early recognition of changes in movement that indicate a health problem or progress in
rehabilitation at home.

An example of the semi-automatic approach is [19], where a system for the long-term
monitoring of the gait in Parkinson’s disease is presented. The characteristics of every stride
taken were acquired using an ankle-mounted sensor array that saved the data to a pocket PC.
Also that approach cannot be used for the early automatic recognition of health problems, but
only for monitoring the progress of disease for a known Parkinson’s disease patient.

The automatic distinguishing between health problems such as hemiplegia and diplegia with
a classification accuracy of 92.5% is presented in [14]. This was achieved with self-organizing
maps, whose features were wavelet-transformed gait characteristics, such as walking speed
and stride length. The study used similar motion-capture system as the approach presented in
this paper but more tags and less noise, which makes it difficult to apply in real cases.

In order to present the motion-recognition field more generally, fall detection and
activity recognition will also be mentioned here. The studies are broken down by the choice
of motion-capture system.

Fall detection and activity recognition using inertial sensors Fall detection with
accelerometers and gyro sensors is relatively common, particularly when using simple
threshold algorithms [1, 12]. Several reports claim to achieve classification accuracies close
to 100%, but only in specific tests. With a more advanced approach using the one-class
support vector machines, whose features were accelerations, changes in acceleration, etc.,
usable for more general set of falls, an accuracy of 96.7% was reported [29].

Accelerometers can also be used for activity recognition. Five tri-axial accelerometers
distinguished 30 physical activities of various intensities with an accuracy of 94.9% [25]. This
was achieved with C4.5 decision trees using various time- and frequency-domain features.

Fall detection and activity recognition from video Fall detection and activity recognition from
video are also relatively common. In an example of fall detection [27], objects in the video were
first identified and then rules were applied to the aspect ratios of their bounding boxes, their
horizontal and vertical gradients and angles, achieving an average accuracy of 83%. In an example
of activity recognition [30], ten states related to the activities of daily living were distinguished
with an average accuracy of 74.1%. This was achieved by first reconstructing the human body in
the video and then matching its state to models defined using a specialized language. The
problem with video is that it violates a user’s privacy and thus its use is restricted in real life.

Fall detection and activity recognition from video and tags Authors of the paper [24] were
using similar motion-capture system to the one in this paper, consisting of 43 body tags
sampled with 30 Hz. For distinguishing between seven activities related to military
operations an accuracy of 76.9% was reported. This was achieved with the support vector
machines, whose features were the tag coordinates belonging to two postures separated by
1/3 of a second, reduced in number to 20 using principal component analysis.

Another paper on activity recognition [21] used 41 body tags sampled with 120 Hz to
distinguish between 21 dance gestures, reporting an accuracy of 99.3%. The gestures were
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represented with Gaussian mixture models of the joint angles. The high accuracy can in part
be attributed to the high quality of the input data, the strictly defined gestures and the fact
that the testing was always conducted on the same dancer as the training. It is questionable
whether such a large number of tags is applicable in real life.

Investigation of the optimal placement of motion-capture devices An important part of the
research presented in this paper is the study of the impact of the placement of the tags on the
user’s body and the amount of noise in the tag coordinates on the classification accuracy. The
closest works found in the literature investigated the placement of accelerometers for fall
detection [2, 12]. Their finding was that the head provides the optimal accuracy, but is
impractical; the wrist is not appropriate; and the waist is a good option.

The review of the related work has revealed numerous research studies performed
in the fields of fall detection and activity recognition (also [6, 8, 15]); however, there is
still a large amount of research needed in the related field of automatic recognition of
health problems manifested in the movement. Therefore, the work presented in this paper
is addressing the latter.

3 Movement-based health-problem recognition system

3.1 Targeted health problems

The proposed health-problem recognition system was developed with focus on four health
problems and a normal walking as a reference in accordance with the suggestions received
from the collaborating medical expert. The specific health problems for recognition were
suggested on the basis of occurrence in the elderly aged over 65, the medical significance
and the feasibility of their recognition from movement. The following four health problems
were chosen as the most appropriate [7, 10, 20]:

& Parkinson’s disease: Is a degenerative disease of the brain (central nervous system)
that often impairs motor skills, speech, and other functions. The symptoms are
frequently tremor, rigidity and postural instability. The rate of the tremor is
approximately 4–6 Hz. The tremor is present when the involved part(s), usually the
arms or neck, are at rest. It is absent, or diminished with sleep, sedation, and when
performing skilled acts.

& Hemiplegia: Is the paralysis of the arm, leg and torso on the same side of the body. It is
typically the result of a stroke, although diseases affecting the spinal cord and the brain
are also known to cause this state. The paralysis hampers movement, especially
walking, and can thus cause falls.

& Pain in the leg: It resembles hemiplegia in that the step with one leg is different from
the step with the other. In the elderly this usually means pain in the hip or in the knee.

& Pain in the back: It is also similar to hemiplegia and pain in the leg in the inequality of
steps; however, the inequality is not as pronounced as in walking with pain in the leg.

3.2 Construction of the features for machine learning

A physician usually diagnoses the target health problems while observing a patient’s gait
(i.e., the walking pattern) [7, 10, 20]. For the proposed automatic recognition system to
perform the same task, the relevant gait characteristics have been transformed into
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computable features. Since the walking patterns of patients with the observed four health
problems and normal gait look similar to each other, a physician must pay attention to many
details that need to be considered also in the features. Because the features are based on
medical knowledge for the specific health problems, they are semantic features. Thirteen
semantic features were proposed and tested in the presented study. They are based on the
tag locations, placed on a person’s body, as shown in Fig. 1.

Before the definition of the features the measures used in more than one feature are defined:

& The magnitude of the vector v is defined as:

vk ¼k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

j¼1

vj
� �2

v
u
u
t ; ð1Þ

where j is the number of the current coordinate and n is the quantity of all coordinates
(n=3 for (x,y,z)-coordinate system).

& The subscripts a, b and d denote the tag labels as shown in Fig. 1 (e.g., a=5 denotes the
right elbow).

& Each recording consists of k time samples.
& Average distance between the tag a and the tag b is defined as:

da;b ¼

Pk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

j¼1
ma ið Þð Þj � mb ið Þð Þj

� �2
s !

k
; ð2Þ

where ma(i) and mb(i) denote the i-th time samples of the positions of the tags (in (x,y,z)
coordinates), j is the number of the current coordinate and n is the quantity of all
coordinates (n=3 for (x,y,z)-coordinate system).

& Angle 8a,b,a,d (i) denotes the i-th time sample of the angle between the vectors νa,b (i)
and νa,d (i), and is defined as:

8 a;b;a;dðiÞ ¼ arccos
na;bðiÞ � na;dðiÞ

na;bðiÞ
�
�

�
� � na;dðiÞ
�
�

�
�

 !

; ð3Þ

where νa,b (i) denotes a vector between the i-th time samples of the positions of the tags
a and b, and where νa,b (i)·νa,d (i) is the scalar product of the i-th samples of the vectors
νa,b (i) and νa,d (i).

& max
k

i¼1
xðiÞð Þ and min

k

i¼1
xðiÞð Þ denote the maximum and minimum element of the time series

x, respectively.
& Height za(i) is the i-th time sample of the height (z coordinate) of the tag a.
& Velocity va(i) of the i-th time sample is defined as:

naðiÞ ¼ ma; x ið Þ � ma; xði� 1Þ;ma;y ið Þ � ma; yði� 1Þ;ma; z ið Þ � ma; zði� 1Þ
t

� 	

; ð4Þ

where ma,x, ma,y and ma,z denote the x, y, and z coordinate of positions, respectively, and
t denotes the time between two consecutive time samples.
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The proposed features are listed as follows:

I. Absolute difference between 1) the average distance between the right elbow and the
right hip (d5;10) and 2) the average distance between the right wrist and the left hip
(d6;7):

F1 ¼ d5;10 � d6;7








: ð5Þ

II. Average angle of the right elbow:

F2 ¼
Pk

i¼1
8 5;4;5;6ðiÞ
k

: ð6Þ

III. The quotient between the maximum angle of the left knee and the maximum angle of
the right knee:

F3 ¼
max
k

i¼1
8 8;7;8;9ðiÞ
� �

max
k

i¼1
8 11;10;11;12ðiÞ
� � : ð7Þ

IV. Difference between the maximum and minimum angle of the right knee:

F4 ¼ max
k

i¼1
8 11;10;11;12ðiÞ
� ��min

k

i¼1
8 11;10;11;12ðiÞ
� �

: ð8Þ
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Fig. 1 Placement of tags for a definition of the features for subsequent machine learning
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V. Difference between the maximum and minimum height of the left shoulder:

F5 ¼ max
k

i¼1
z1ðiÞð Þ �min

k

i¼1
z1ðiÞð Þ: ð9Þ

VI. Difference between the maximum and minimum height of the right shoulder:

F6 ¼ max
k

i¼1
z4ðiÞð Þ �min

k

i¼1
z4ðiÞð Þ: ð10Þ

VII. Quotient between 1) the difference between the maximum and minimum height of
the left ankle and 2) the maximum and minimum height of the right ankle:

F7 ¼
max
k

i¼1
z9ðiÞð Þ �min

k

i¼1
z9ðiÞð Þ

max
k

i¼1
z12ðiÞð Þ �min

k

i¼1
z12ðiÞð Þ

: ð11Þ

VIII. Absolute difference between 1) the difference between the maximum and minimum
speeds (magnitudes of velocity) of the left ankle and 2) the difference between the
maximum and minimum speeds of the right ankle:

F8 ¼ max
k

i¼1
n9ðiÞk kð Þ �min

k

i¼1
n9ðiÞk kð Þ

� 	

� max
k

i¼1
n12ðiÞk kð Þ �min

k

i¼1
n12ðiÞk kð Þ

� 	















:

ð12Þ

IX. Absolute difference between 1) the average distance between the right shoulder and
the right elbow (d4;5) and 2) the average distance between the left shoulder and the
right wrist (d1;6):

F9 ¼ d4;5 � d1;6








: ð13Þ

X. Average speed (magnitude of velocity) of the right wrist:

F10 ¼
Pk

i¼1
n6ðiÞk kð Þ
k

: ð14Þ

XI. Frequency of the angle of the right elbow passing the average angle of the right
elbow:

F11 ¼
Pk

i¼1
# 8 5;4;5;6ðiÞ < 8 5;4;5;6

� �
& 8 5;4;5;6 iþ 1ð Þ � 8 5;4;5;6

� �� �

k
; ð15Þ

where #(condition) denotes the number of samples for which the condition holds, and
8 5;4;5;6 is defined as:

8 5;4;5;6 ¼
Pk

i¼1
8 5;4;5;6ðiÞ
k

ð16Þ
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XII. Average angle between 1) the vector between the right shoulder and the right hip and
2) the vector between the right shoulder and the right wrist:

F12 ¼
Pk

i¼1
8 4;10;4;6ðiÞ

k
: ð17Þ

XIII. Difference between the average height of the right shoulder and the average height
of the left shoulder:

F13 ¼
Pk

i¼1
z4ðiÞ
k

�
Pk

i¼1
z1ðiÞ
k

: ð18Þ

The features for the identification of the chosen four health problems were designed after
discussions with a medical expert. They are intended to capture the following character-
istics of the observed health problems [7, 10, 20]:

& Parkinson’s disease: The tremor, which is not seen in otherwise similar disorders, can be
used to help make a firm diagnosis, even when the other signs are absent. The features F10
and F11 are used to capture the tremor. Rigidity is defined as a resistance (increased muscle
tone) to passive movement; it is affecting mostly the neck, the torso and the knees (F4).

& Hemiplegia: The affected leg is swung in a semi-circle from the hip with the pelvis tilted
upward. The knee is hyperextended due to inappropriate quadriceps activity (F3 and F4). The
stiff knee inhibits the advancement of the leg and deprives the patient of shock-absorbing
knee flexion during weight acceptance. The outer part of the foot slides on the floor (F7).
The arm is held flexed and close to the torso with minimum swing (F1, F2, F9 and F12). The
compensatory movements of a hemiplegic patient include a decrease in walking velocity
with a shorter duration of stance, decreased weight bearing, and an increased swing time for
the affected leg. The unaffected leg has an increased stance time (F8).

& Pain in the leg: A person with such a problem steps slowly on the affected leg, leans
the torso laterally to the side of the affected leg, trying not to put too much weight on it,
steps quickly on the unaffected leg and moves the torso back to the vertical position
(F8). Leaning the torso from the vertical position means that one shoulder is lowered in
comparison to the other, and later returned to the normal position (F5, F6 and F13). In
addition, the knee is bent when stepping on the affected leg (F3 and F4).

& Pain in the back—similar to pain in the leg—causes a lateral deviation of the torso, but
the deviation is largely constant (F5, F6 and F13). In order to minimize the pain, the
affected person usually supports his/her back with the arm(s) (F2). There is also a
similarity to hemiplegia and pain in the back in the inequality of the steps; however, the
inequality is not as pronounced as in walking with a pain in the back (F8).

The final set of thirteen features is used for modeling using the machine-learning
methods, which is presented in the following section.

4 Modeling target health problems using machine learning

To construct a predictive model that can be subsequently used to automatically
recognize health states in subjects yet to be observed (the first objective from the
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Introduction), supervised learning methods from the field of machine learning (a sub-
field of artificial intelligence), were employed. In supervised learning, a training data
set of already-labeled recordings (i.e., classified into one of the five target classes) is
used to construct a model, which is later used to predict the class for the new
recording.

The task of the presented study was therefore to classify the recordings of walking into
five classes: four with selected health problems (classes hemiplegia, Parkinson's disease,
pain in the leg, and pain in the back) and one without a problem (normal).

4.1 Data acquisition

Data for the evaluation of the proposed approach was collected by recording the
walking patterns of 9 test subjects, of which 4 had hemiplegia (3 subjects had right
and 1 had left hemiplegia) and 5 subjects who were healthy (each subject was
recorded 4–5 times). Due to the unavailability of test subjects with the actual target
health problems, some of the data were acquired artificially under the supervision of
an expert physician. These data were captured by recording healthy test subjects who
were imitating particular health problems by following the physician’s instructions.
The final data set of 141 recordings consisted of:

& 25 recordings of normal walking,
& 45 recordings of walking with hemiplegia,
& 25 recordings of walking with Parkinson’s disease,
& 25 recordings of walking with a limp due to a pain in the leg,
& 21 recordings of walking with a limp due to a pain in the back.

The recordings consisted of the position coordinates for the 12 tags worn on the
shoulders, the elbows, the wrists, the hips, the knees and the ankles, as presented in Fig. 1,
sampled with 60 Hz. The tag coordinates were acquired with a Smart IR motion-capture
system consisting of six IR cameras, tags on the body, and computer that captures the
positions with a 0.5-mm standard deviation of noise.

For each subject, the locations of the tags were recorded in a session that lasted 5–8 s,
from which a vector of 13 features (see Sect. 3.2) was computed. These learning examples
were labeled with the type of the represented health state, yielding the final data on which
the classifier was trained.

4.2 Classification models

For the testing, the following machine-learning algorithms were used and compared:

& support vector machines (SVM) [5]: SVM implementation in Weka, which uses a radial
basis function kernel with the parameter g ¼ 1

number of attributes that defines the shape of

the radial basis kernel which is defined as k u; vð Þ ¼ e�g: u�vk k2 , the parameter C = 1 as a
cost parameter of the model, that controls the trade-off between allowing training errors
and forcing rigid margins, and the precision parameter ε = 0.1,

& decision tree (DT) [4]: recursive partitioning trees with information gain as the node-
splitting criterion. Each leaf is assigned a majority class of the examples in the leaf,

& k-nearest neighbors (KNN): locality-based, lazy-learning algorithm which uses the five
nearest neighbors for the classification of a new example,
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& random forest (RF) [3]: the number of trees in the forest was set to 10,
& naïve Bayes (NB) classifier: standard probabilistic classifier, no special parameters,
& neural network (NN) [18]: three-layered perceptron with 9 neurons in the hidden layer

and the backpropagation learning rule using an adaptive gradient descent,
& majority class (MC): predictor, used only for comparative-evaluation purposes. It defines the

lowest acceptable classification accuracy, which can be trivially achieved by classifying all the
examples into the majority class, i.e., the class with the largest number of training examples.

5 Experiments and results

Focus of the experimental work was on analyzing the classification accuracies of various
models, built using the machine-learning methods. The experimental classification
accuracies were obtained using a stratified 10-fold cross validation. The machine-learning
algorithms implemented in Weka [28] were used.

The classification accuracies of the selected and tested classifiers are shown in Table 1.
The results show that the k-nearest neighbors and the neural network algorithms both

recognized the health states of all the recordings correctly (i.e., they classified all the
examples correctly) as is evident from the classification accuracies of 100% from Table 1.
The decision tree achieved the lowest classification accuracy of the first six classifiers with
90.1%; however, considerably higher than the baseline majority class classifier with 31.9%.

Table 2 shows the confusion matrices, i.e., how many examples of a certain true class (in
rows) are classified in one of five possible classes (in columns). Again, it is evident that the
k-nearest neighbors and the neural network algorithms correctly classified all the examples
and that the decision tree performed the worst of the six classifiers. It is also noticeable that
classifying the pain in the back was the easiest task for all used classifiers, since each of
them classified all 21 examples of the pain in the back correctly.

For the real-world cases, the confusion matrices from Table 2 can be used for three
purposes; an estimation of the:

A. False positives (false alarms): When the system would report a false alarm in the real
world, e.g., classifying the normal walking as a health problem, an ambulance would
erroneously drive to pick up the elderly person, which would result in unnecessary
costs. The following false positives were observed in the experiments:

○ normal walking was classified as hemiplegia in 2 out of 25 examples using the
decision tree and in 1 out of 25 examples using the naïve Bayes.

B. False negatives: False negatives could mean a potentially risky situation for the
elderly person, as his/her health problem would not be recognized automatically. The
experiments resulted in the following false negatives:

○ hemiplegia was classified as normal walking using the decision tree and using
the naïve Bayes classifier in 1 out of 45 examples.

Table 1 Classification accuracies (in [%]) of the tested classifiers

Classifier SVM DT KNN NB RF NN MC

Classification accuracy [%] 97.9 90.1 100.0 97.2 99.3 100.0 31.9
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C. Errors (misclassifications): After locating the misclassifications, additional features can
be added to prevent them in the future. The following misclassifications were detected:

○ normal walking was classified as hemiplegia in 2 out of 25 examples using the
decision tree and in 1 out of 25 examples using the naïve Bayes,

○ Parkinson’s disease was classified as hemiplegia in 5 out of 25 examples using
the decision-tree classifier,

○ pain in the leg was classified as hemiplegia in 2 out of 25 examples using the
decision tree,

○ hemiplegia was in 4 out of 45 examples classified as Parkinson’s disease, in 1
out of 45 as normal walking and in 2 out of 45 examples as pain in the leg, using
the decision tree and using the naïve Bayes.

The results show that in the proposed approach false positives are rare, i.e., the
approach would not result in many unnecessary ambulance expenses. Moreover, since it
accurately classified the most of the true health problems, apart from two classifiers
making a mistake in 1 out of 45 examples, it represents high confidence and safety for
potential use in elderly care.

5.1 Variation of noise

To test the robustness of the approach, Gaussian noise with varying standard deviation (and
zero mean) was added to the raw coordinates. The standard deviation of the noise was
varied from 0 mm to 50 mm in steps of 5 mm.

Table 2 Confusion matrices of the tested classifiers, where H = hemiplegia, L = pain in the leg, N = normal
(healthy) subject, P = Parkinson’s disease and B = Pain in the back. The numbers denote the quantities of the
classified examples

a) SVM 

classified as 

H L N P B 

H 45 0 0 0 0 

L 1 24 0 0 0 

N 0 0 25 0 0 

P 2 0 0 23 0 tr
ue

 c
la

ss
 

B 0 0 0 0 21 

b) DT 

classified as 

H L N P B 

H 40 0 1 4 0 

L 2 23 0 0 0 

N 2 0 23 0 0 

P 5 0 0 20 0 tr
ue
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B 0 0 0 0 21 

c) KNN 

classified as 

H L N P B 

H 45 0 0 0 0 

L 0 25 0 0 0 

N 0 0 25 0 0 

P 0 0 0 25 0 tr
ue
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ss
 

B 0 0 0 0 21 

d) NB 

classified as 

H L N P B 

H 42 2 1 0 0 

L 0 25 0 0 0 

N 1 0 24 0 0 

P 0 0 0 25 0 tr
ue
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B 0 0 0 0 21 

e) RF 

classified as 

H L N P B 

H 45 0 0 0 0 

L 0 25 0 0 0 

N 0 0 25 0 0 

P 1 0 0 24 0 tr
ue
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B 0 0 0 0 21 

f) NN 

classified as 

H L N P B 

H 45 0 0 0 0 

L 0 25 0 0 0 

N 0 0 25 0 0 

P 0 0 0 25 0 tr
ue
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ss
 

B 0 0 0 0 21 
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As a preprocessing step, a Kalman filter was used to smooth the potentially unrealistic
difference between the positions of two consecutive time samples, caused by the addition of
Gaussian noise to the captured positions [17]. The classification accuracies of the six tested
classifiers, modeled on noisy data, are shown in Table 3.

The results presented in Table 3 and in Fig. 2 show that varying the amount of noise in
the range 0–50 mm has a different impact on all the used classifiers. The decision tree is the
only classifier for which the performance does not degrade significantly with an increase in
the noise; however, its classification accuracy is, in the initial setting, the lowest among all
the models used. The results indicate that among the models with an initial classification
accuracy of over 99%, the random forest manages to retain its performance longest, while
increasing the noise; its classification accuracy does not have statistically significant drop
for any level of noise except for the highest, i.e., 50 mm.

Even with the largest amount of noise added, the classification accuracy of the tested
classifiers was considerably higher than the accuracy of the majority class classifier.
Therefore, the models are robust to noise.

5.2 Reduction of the number of tags

Since wearing the full complement of twelve tags may be uncomfortable for the user, ways
to reduce the number of tags were investigated in the presented study. For that reason, the
experiments were started with all twelve tags and continued with removing one by one in
the order that retained the largest number of features for each number of tags from twelve to

Table 3 Classification accuracies (in [%]) of the classifiers built on data with added noise. The table cells
contain the classification accuracy and the significance level of the two-tailed, paired t-test that was
performed between the cross-validation folds of the initial setting (0 mm noise) and the corresponding
amount of noise denoted by the table row. Dark shading denotes the experiments in which the classification
accuracy changed significantly (α<0.05)

Model Noise [mm] 
SVM DT KNN NB RF NN 

0 97.9 90.1 100.0 97.2 99.3 100.0 

5 
98.6 

α = 0.558 
92.9 

α = 0.380 
100.0 

α = 0.999 
97.9 

α = 0.608 
97.9 

α = 0.168 
99.3 

α = 0.343 

10 
98.6 

α = 0.558 
94.3 

α = 0.168 
100.0 

α = 0.999 
98.6 

α = 0.168 
99.3 

α = 0.999 
99.3 

α = 0.343 

15 
97.9 

α = 0.999 
93.6 

α = 0.245 
99.3 

α = 0.343 
97.2 

α = 0.999 
98.6 

α = 0.591 
97.2 

α = 0.037 

20 
98.6 

α = 0.343 
92.2 

α = 0.510 
99.3 

α = 0.343 
95.7 

α = 0.443 
99.3 

α = 0.999 
100.0 

α = 0.999 

25 
98.6 

α = 0.591 
92.2 

α = 0.542 
96.5 

α = 0.053 
95.7 

α = 0.443 
97.9 

α = 0.168 
98.6 

α = 0.168 

30 
94.3 

α = 0.049 
87.9 

α = 0.403 
97.2 

α = 0.037 
96.5 

α = 0.654 
97.9 

α = 0.352 
98.6 

α = 0.168 

35 
95.0 

α = 0.228 
90.1 

α = 0.976 
95.7 

α = 0.050 
95.7 

α = 0.343 
97.9 

α = 0.343 
94.3 

α = 0.022 

40 
97.9 

α = 0.999 
87.2 

α = 0.524 
94.3 

α = 0.011 
93.6 

α = 0.096 
96.5 

α = 0.099 
95.0 

α = 0.045 

45 
90.8 

α = 0.008 
87.2 

α = 0.453 
96.5 

α = 0.053 
92.2 

α = 0.045 
93.6 

α = 0.053 
92.9 

α = 0.064 

50 
90.8 

α = 0.004 
84.4 

α = 0.182 
92.9 

α = 0.015 
92.2 

α = 0.068 
94.3 

α = 0.008 
94.3 

α = 0.011 
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one. With this procedure the best placement for each number of tags was defined. The
classification accuracies for the chosen tag placements without the addition of noise are
shown in Table 4 and illustrated in Fig. 3. The best tag placement for each number of tags
for the recognition of specific health problems is illustrated in Fig. 4.

The results show that decreasing the number of tags results in decrease of the classifiers'
performance. From Table 4 it is observable that six is the smallest number of tags for which
the performance of all the tested classifiers is insignificantly different compared to the
initial setting. Figure 3, similarly to Table 4, illustrates a trend of decreasing classification
accuracy for less than six tags. Figure 4 illustrates that for recognizing the target health
states, the positions of the tags from the most to the least important are: shoulder, wrist,
elbow, hip, ankle and knee.

5.3 Dependence of the classification accuracy on the tag placement and noise level

In addition to experimenting with number of tags, for every tag placement the standard
deviation of the noise was varied from 0 to 50 mm. Figure 5 shows the dependence of the
classification accuracy (CA) on the number of tags and the noise level. In each subfigure
(a–f), a variation of the noise in the standard deviation from 0 to 50 mm on the horizontal
axis and the best tag placement for each number of tags from 12 to 1 tag on the vertical axis
can be observed. Each curve of different shape (e.g., doted, dashed) connects points of the
particular classification accuracy, which is consequently a borderline between the higher
and lower accuracy.

Analysis of Fig. 5 revealed that overall the support vector machines, k-nearest neighbors,
random forest and neural network achieved the best and comparable accuracies, while the
decision tree achieved the worst classification accuracies of all the classifiers used. The
most accurate four classifiers exceeded 99%, naïve Bayes exceeded 98%, and decision tree
exceeded only 90% classification accuracy.

The k-nearest neighbors proved to be the best option for a classification accuracy over
99%, as only 8 tags with up to 15 mm of noise are needed to achieve it. The support vector
machines, random forest and neural network are comparable in this characteristic. The
classification accuracy of 98% was achieved with the four most accurate classifiers using at
least 6–8 tags and up to 20 mm of noise and with the naïve Bayes using at least 10 tags and
up to 5 mm of noise. The support vector machines, k-nearest neighbors, random forest and
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neural network reached classification accuracy of 95% using at least 5–6 tags with up to
25 mm of noise or using approximately 6–8 tags with up to 40 mm of noise. The naïve
Bayes needed at least 8 tags and at most 35 mm of noise to achieve the same classification
accuracy, and although decision tree achieved it also, it was statistically insignificant.
Classification accuracy of 90% was achieved with all the tested classifiers using at least 4–5
tags with up to 30 mm of noise or about 6–8 tags with higher values of noise, except for the

Table 4 Classification accuracies achieved with the best tag placements for each number of tags. The table
cells contain the classification accuracy and the significance level of the two-tailed, paired t-test that was
performed between the initial setting (12 tags) and the corresponding number of tags. Dark shading denotes
the experiments in which the classification accuracy decreased significantly (α<0.05)

Model 
Number of tags 

SVM DT KNN NB RF NN 
12 97.9 90.1 100.0 97.2 99.3 100.0 

11 
99.3 

α = 0.168 
91.5 

α = 0.168 
100.0 

α = 0.999 
97.9 

α = 0.343 
97.9 

α = 0.573 
98.6 

α = 0.168 

10 
98.6 

α = 0.594 
90.1 

α = 0.999 
100.0 

α = 0.999 
98.6 

α = 0.168 
99.3 

α = 0.965 
99.3 

α = 0.343 

9 
98.6 

α = 0.343 
91.5 

α = 0.168 
100.0 

α = 0.999 
97.9 

α = 0.343 
100.0 

α = 0.343 
99.3 

α = 0.343 

8 
98.6 

α = 0.591 
90.1 

α = 0.999 
100.0 

α = 0.999 
97.2 

α = 0.999 
100.0 

α = 0.343 
99.3 

α = 0.343 

7 
95.0 

α = 0.228 
92.9 

α = 0.363 
96.5 

α = 0.052 
92.9 

α = 0.052 
95.7 

α = 0.053 
97.2 

α = 0.106 

6 
99.3 

α = 0.168 
90.1 

α = 0.974 
100.0 

α = 0.999 
96.5 

α = 0.591 
98.6 

α = 0.343 
99.3 

α = 0.343 

5 
92.9 

α = 0.097 
92.2 

α = 0.443 
97.2 

α = 0.037 
93.6 

α = 0.052 
97.9 

α = 0.168 
93.6 

α = 0.030 

4 
87.2 

α = 0.004 
94.3 

α = 0.114 
94.3 

α = 0.010 
92.9 

α = 0.195 
95.7 

α = 0.096 
88.7 

α = 0.004 

3 
75.2 

α < 0.001 
87.2 

α = 0.486 
88.7 

α < 0.001 
83.0 

α = 0.001 
90.8 

α = 0.009 
80.9 

α < 0.001 

2 
59.6 

α < 0.001 
71.6 

α = 0.001 
69.5 

α < 0.001 
68.8 

α < 0.001 
73.8 

α < 0.001 
68.1 

α < 0.001 

1 
46.1 

α < 0.001 
43.3 

α < 0.001 
42.6 

α < 0.001 
50.4 

α < 0.001 
42.6 

α < 0.001 
44.7 

α < 0.001 
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decision tree, which could not achieve 90% with noise over 25 mm. It is common to all the
used classifiers that in order to surpass an accuracy of 80%, at least 3–4 tags are needed
with up to 25 mm of noise or at least 4–6 tags with 25–50 mm.

Although the decision tree and naïve Bayes achieved slightly lower classification
accuracies than the other classifiers, they both have an important advantage over the others.
The results of their classification are easily interpretable through the Bayes nomogram or
the decision-tree visualization, i.e., if in practice the system was to recognize some health
state, the physician could check why the system classified observed gait as the particular
health state.

6 Explanation of the interpreted health state

Since it is important for the physician to be able to observe the reasons which led the
system to classify the movement into the particular health state, a control-panel prototype
with the explanation of the interpreted health state was developed (shown in Fig. 6).

In the middle of the prototype screen there is a visualization of the kinematic model of
an elderly person moving through the room. In the upper-right-hand corner, controls for
saving and loading the captured movement are placed. The time series of the calculated
angles are located underneath. In the lower-left-hand corner the time series of the x, y and z
positions are shown for all 12 tags. When a health problem is recognized, the red alarm sign
appears in the upper-left-hand corner of the screen with a description of the recognized
health problem.

7 Conclusion

A system for the automatic recognition of health problems that are manifested in the gait of
older adults was proposed in this study. Time series of the detected positions of the body
parts from the motion-capture system were transformed into a form suitable for supervised
machine-learning methods using novel semantic features for the recognition of health
problems.

12 11 10 9 8 7

6 5 4 3 2 1
R L

Fig. 4 Best tag placement for each number of tags for the recognition of the target health problems
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Despite the large amount of research devoted to the related fields of activity recognition
and fall detection, the automatic health-problem recognition from the movement patterns is
not an extensively researched field. This study took up the challenge to contribute to the
latter and it achieved successful results.

The research work had two objectives. The first objective was to discover to what extent
the automatic recognition of health problems with a motion-capture system is feasible.

The results show that the k-nearest neighbors and neural network algorithms performed
the best of all the used classifiers in the initial setting (no noise, all tags), with the
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the target health problems using the a) support vector machines, b) decision tree, c) k-nearest neighbors, d)
naïve Bayes, e) random forest, f) neural network
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classification accuracies of 100%. The lowest classification accuracy of all the used
classifiers was 90.1% for the decision tree, which is considerably higher than the
31.9% of the reference majority class. False positives/negatives were rare, thus the
approach would not result in significant amount of unnecessary ambulance expenses
or undetected health problems in the implementation in practice. Therefore, the
presented approach shows that automatic recognition of health problems with a
motion-capture system is not only feasible, but also it would provide high confidence
and safety in the practical use in elderly care.

The second objective was to investigate the classification accuracy achievable using
various machine-learning approaches and the numbers/placements of tags on the user’s
body and various amounts of noise in the tag coordinates. The results of varying the amount
of noise show that the decision tree is the only classifier for which performance does not
degrade significantly with the increase of noise; however, its classification accuracy is in
the initial setting the lowest among all the models used. Among the models with an initial
classification accuracy of over 99%, the random forest manages to retain its performance
longest while increasing the data noise. The proposed approach is therefore robust to the
addition of noise.

The results of decreasing the number of tags show that it causes a decrease of the
classifiers' performance. Six is the smallest number of tags for which the
performance of all the tested classifiers is insignificantly different compared to the
initial setting with all tags. For recognizing the target health states, the positions of
the tags from the most to the least appropriate are: shoulder, wrist, elbow, hip, ankle
and knee.

Fig. 6 Control-panel prototype for the explanation of the interpreted health state
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The results of an investigation of the dependence of the classification accuracy on
the tag placement and noise level show that support vector machines, k-nearest
neighbors, random forest and neural network proved to be the best option for a
classification accuracy over 99%, as only 8 tags with up to 20 mm noise are needed
to achieve it. It is common to all the used classifiers that for surpassing an accuracy
of 80% at least 3-4 tags are needed with up to 25 mm noise and at least 4-6 tags
with 25-50 mm. Although the decision-tree and naïve Bayes achieved slightly lower
classification accuracies than the other classifiers, they both have an important
advantage in comparison to the others which is the interpretability of their
classifications by physicians.

Since it is very important for the physician to obtain an explanation for the interpreted
health state, a control-panel prototype for the explanation of the interpreted health state was
developed. When a health problem is recognized, the alarm sign appears with the necessary
description of the recognized health problem.

Since the system is embedded in the domestic environment of the elderly person, it
uses an artificial intelligence approach to interpret the health state and provides a
natural explanation of the hypothesis; it is an example of the semantic ambient media
for ambient-assisted living.

In future work, additional features to improve the distinguishing between classes, where
the confusion matrices showed misclassifications, can be added. The present research was
intended to study the feasibility of using machine-learning methods for detection of gait-
related health problems. According to the acquired results, the study is intended to be
expanded with the inclusion of more patients. Use of a wearable (e.g., inertial) motion-
capture system instead of an infra-red one would allow the recognition of the health
problems of the elderly even outside their homes. This would be possible with a small
adaptation of the presented algorithms. A modification of the proposed recognition system
could also be used for an automatic evaluation of the rehabilitation process (e.g., after a
stroke) at home.

The important problems of rapid aging of a population could be mitigated if the approach
proposed in this paper or in related work were to be transferred into practice. It is realistic to
believe that this will eventually happen since supporting such research is an important objective
of the Ambient Assisted Living joint research-and-development funding programme of the
European Union.
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