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Abstract This paper develops a query-by-example method for retrieving shots of an
event (event shots) using example shots provided by a user. The following three prob-
lems are mainly addressed. Firstly, event shots cannot be retrieved using a single
model as they contain significantly different features due to varied camera tech-
niques, settings and so forth. This is overcome by using rough set theory to extract
multiple classification rules with each rule specialized to retrieve a portion of event
shots. Secondly, since a user can only provide a small number of example shots, the
amount of event shots retrieved by extracted rules is inevitably limited. We thus
incorporate bagging and the random subspace method. Classifiers characterize sig-
nificantly different event shots depending on example shots and feature dimensions.
However, this can result in the potential retrieval of many unnecessary shots. Rough
set theory is used to combine classifiers into rules which provide greater retrieval
accuracy. Lastly, counter example shots, which are a necessity for rough set theory,
are not provided by the user. Hence, a partially supervised learning method is used
to collect these from shots other than example shots. Counter example shots, which
are as similar to example shots as possible, are collected because they are useful
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for characterizing the boundary between event shots and the remaining shots. The
proposed method is tested on TRECVID 2009 video data.

Keywords Query by example · Rough set theory · Bagging · Random subspace ·
Small sample size problem · Partially supervised learning

1 Introduction

In recent times, a large number of videos have been stacked as video archives. View-
ing these is a time consuming process since videos are essentially temporal media.
Thus, there is great demand to develop a method which can efficiently retrieve
interesting shots (or video segments) from the archive. Users are usually interested
in retrieving shots which match semantic content rather than physical content such
as RGB pixel values. In this paper, the term event is used to denote a query regard-
ing semantic content. The shots matching the event are termed event shots while
non-event shots refer to the remaining shots. The retrieval of event shots is termed
event retrieval.

The proper representation of an event is very important. Existing approaches can
be roughly classified into two types, namely, the Query-By-Keyword (QBK) and
Query-By-Example (QBE) approaches. With QBK, a user represents an event by
using keywords and shots are subsequently retrieved by matching with defined
keywords. With QBE, a user provides example shots to represent an event and shots
are then retrieved based on their similarity to example shots in terms of fea-
tures. For example, consider the event ‘people appear with computers’ depicted
in Fig. 1. Assume that an event shot, Shot 1, is annotated with the words ‘people’
and ‘computer’. To retrieve Shot 1 using QBK, a user needs to enter the keywords
‘people’ and ‘computer’. However, the keywords ‘programmer’ or ‘internet user’
might be entered instead, which would not match the annotated words for Shot 1,
despite matching the actual event. This ambiguity relating to semantic content
makes it difficult for the user to appropriately represent events using keywords.
Alternatively, with QBE, the event is defined using features contained in example
shots, such as Ex. 1 in Fig. 1. This eliminates the ambiguity associated with semantic
content found in the QBK approach.

Shot 1 Ex. 1

People
Computer

People
Computer

Programmer

Internet user

QBEQBK

Event: People appear with computers

Match features

Fig. 1 Comparison between the QBK and QBE approaches for the event ‘people appear with
computers’
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Shot 1 Shot 2 Shot 3 Shot 4

Fig. 2 An example of a variety of event shots for the event ‘people appear with computers’

The QBE approach offers the added advantage of not requiring predefined re-
trieval models. In traditional QBK methods, a retrieval model needs to be prepared
for each event [15, 30], and recent QBK methods prepare classifiers for assessing
the relevance of keywords1 defining each event [22, 31]. However, it is impractical
to prepare retrieval models and classifiers for all possible events. In comparison, a
retrieval model is constructed on the fly from example shots in the QBE approach.
In other words, as long as example shots are provided, QBE can perform retrieval
for any event. In this paper, we describe the development of a QBE method.

The following three problems in the QBE method have been addressed.

1. Large variety of event shots Event shots are taken using different camera tech-
niques and settings. For example, in Fig. 2, Shot 1 depicts the user’s hands with the
computer monitor in a tight shot. Shot 2 shows the face of a person with the front of
the computer monitor while Shot 3 shows a computer monitor from the side. Shot 4
captures the back of a person facing the computer screen. This illustrates that objects
related to the same event can be depicted in several ways. Furthermore, event shots
show numerous objects unrelated to the event. For example, among four shots in
Fig. 2, the background and peoples’ clothing are different and a caption is visible
in Shot 2, but not in any other shots. Thus, even for the same event, event shots
not only contain significantly different features, but also many redundant features.
Therefore, a single retrieval model is not capable of retrieving a large variety of
event shots.

Rough set theory (RST) is a set-theoretic classification method for extracting
rough descriptions of a class from imprecise (or noisy) data, and is used for retrieving
a variety of event shots [13]. RST can be used to extract multiple classification rules,
which can correctly identify different subsets of example shots. In other words, each
classification rule is specialized for retrieving event shots characterized by certain
features. Hence, by accumulating event shots retrieved with various classification
rules, we can retrieve a variety of event shots.

2. Small sample size In QBE, a user can only provide a small number of example
shots for an event. Since QBE, by definition, retrieves shots similar to example shots,
a small number of example shots will inevitably lead to a small range of event
shots. We use bagging and the random subspace method to overcome this problem.

1These keywords are frequently called concepts. However, some readers may confuse them with
concepts which are hierarchically organized in an ontology. In light of this, we do not use the term
concept.
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Specifically, various classifiers are built using randomly selected example shots and
feature dimensions. When only a small number of example shots are available,
classifiers output significantly different classification results depending on example
shots [32]. In addition, classification results differ depending on feature dimensions
[8]. Thus, by building various classifiers using bagging and the random subspace
method, we can extend the range of event shots that can be retrieved. However,
this also results in many non-event shots potentially being retrieved. To overcome
this, RST is used to extract classification rules as combinations of classifiers, which
can accurately retrieve event shots.

3. Lack of negative examples RST extracts classification rules to enable the dis-
crimination of event shots from non-event shots. This requires two types of example
shots, positive examples (p-examples), provided by a user to serve as representatives
of event shots, and negative examples (n-examples), which are not provided by the
user and serve as representatives of non-event shots. To solve the lack of n-examples,
we formulate the QBE approach as partially supervised learning (PSL). Classification
rules are extracted using p-examples and unlabeled examples (u-examples), which re-
fer to shots other than p-examples. N-examples are collected from these u-examples.
It can be considered that n-examples similar to p-examples are informative, because
they allow the characterization of the boundary between event and non-event shots.
To collect such n-examples, we devise a PSL method based on the coarse-to-fine
approach. Firstly, all u-examples are regarded as n-examples, because the number of
event shots included in u-examples is usually very small. Subsequently, n-examples
which are dissimilar to p-examples, are iteratively filtered using a classifier built on
p-examples and the remaining n-examples.

Our proposed QBE method is summarized in Fig. 3. It should be noted that
our main research objective is to develop a method which can retrieve a variety

Subset 1

Subset 2

Subset 4

Subset 3

Event: People appear with computers

p-examples
(example shots)

n-examples

Training
examples

Partially supervised learning
1. Lack of n-examples

Classifier 1: 
Subset of examples
Subspace in SIFT

Classifier 2: 
Subset of examples
Subspace in SIFT

Classifier 3: 
Subset of examples
Subspace in Dense SIFT 

Classifier 4: 
Subset of examples
Subspace in Dense SIFT

Classifier 5: 
Subset of examples
Subspace in Opponent SIFT

Retrieved 
event shots

Bagging & Random subspace method
2. Small sample size problem

Rough set theory
3. Large variation of event shots

Fig. 3 An overview of our event retrieval method based on the QBE approach



Multimed Tools Appl (2012) 57:145–173 149

of event shots only by using a small number of p-examples. Given p-examples,
n-examples are collected using the PSL method. Subsequently, various classifiers
are built based on bagging and the random subspace method. Lastly, RST is used
to extract combinations of classifiers as classification rules, and shots matching many
rules are retrieved.

2 Related works and the innovation of our research

2.1 Rough set theory

Firstly, RST determines the indiscernibility relation, which relates to whether a
p-example and n-example can be discerned with respect to available features.
Thereafter, multiple classification rules are extracted by combining indiscernibility
relations among examples based on set theory. RST can extract classification rules
without any assumption or parameter as long as indiscernibility relations can be
defined.

Although methods other than RST can be used to retrieve a variety of event
shots, they have inappropriate limitations. For example, a Gaussian Mixture Model
(GMM) can extract multiple feature distributions of event shots [34]. However,
such distributions cannot be appropriately estimated only from a small number of
p-examples. In addition, without any a priori knowledge, the number of Gaussian
distributions in the GMM cannot be effectively determined. The Genetic Algorithm
(GA) can be used to extract multiple classification rules [7]. Each rule is encoded
as a bit string (chromosome), where one bit indicates whether or not a feature is
utilized. The GA combines bit strings based on the principles of biological evo-
lution, such as crossover and mutation, to extract accurate rules. However, with
no a priori knowledge, parameters in the GA, such as the number of bit strings,
the probability of crossover and the probability of mutation, cannot be effectively
determined.

Decision tree learning methods extract multiple classification rules in a tree-based
approach [2]. Each rule is represented as a path in a tree, where p-examples and
n-examples are recursively classified using a feature associated with each node.
Sequential covering methods extract multiple rules in a sequential approach [2].
Each rule is sequentially extracted from p-examples, which are not characterized
(covered) by already extracted rules. But, the tree-based and sequential approaches
only extract one classification rule for each p-example. As a result, the number of
extracted rules is inevitably small, which is insufficient for retrieving a variety of
event shots. In comparison to the above methods, without any parameter setting,
RST can extract various rules as minimal sets of features, which can correctly
identifying different subsets of p-examples.

Traditional RST can only deal with categorical features where the indiscernibility
relation between two examples can be easily defined according to whether they have
the same value. In contrast, in our case, examples are represented by non-categorical
and high-dimensional features. For instance, the bag-of-visual-words representation
involves thousands of dimensions, each of which indicates the frequency of a local
edge shape (visual word). Thus, when applying RST to QBE, the most important
issue becomes the definition of indiscernibility relations among examples, that is,
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the categorization of non-categorical high-dimensional features. With respect to this
issue, existing approaches can be classified into the following three types:

1. Clustering-based This approach groups examples into a small number of clusters.
The indiscernibility relation between two examples is then defined by examining
whether or not they belong to the same cluster [5, 20].

2. Similarity-based This approach does not categorize a feature, but rather defines
the indiscernibility relation between two examples by measuring their similarity for
the feature [28, 36].

3. Classifier-based This approach builds a classifier on a feature, and defines the
indiscernibility relation by examining whether or not two examples are classified into
the same class [25].

In our research, we have previously developed the clustering-based and similarity-
based RSTs, however, they had performance limitations. In [20], we developed a
clustering-based RST using k-means clustering and tested it on TRECVID 2008
video data. TRECVID is an annual international competition where a large video
data is used to benchmark state-of-the-art video analysis methods [29]. However, for
most of events, inferred average precisions of the clustering-based RST were nearly
equal to zero. One main reason for this was the coarseness in categorizing a feature
into a small number of clusters, which led to semantically different shots frequently
being included in the same cluster.

We also developed a similarity-based RST in [28]. Although its performance
was better than that of the clustering-based RST, it was far from the satisfactory.
Table 1 provides a performance comparison between the similarity-based RST and
classifier-based RST. We use the same examples, and the same features as will be
described in Section 3. In the similarity-based RST, cosine similarity is used as a
similarity measure, while the classifier-based RST categorizes features using Support
Vector Machines (SVMs) with the Radial Basis Function (RBF) kernel. For each
event, the retrieval performance is evaluated as the number of event shots within
1,000 retrieved shots. As seen in Table 1, the similarity-based RST is significantly
outperformed by the classifier-based RST. The reason for the low performance of
similarity-based RST is that it is difficult to appropriately measure similarities among
examples for high-dimensional features.

Table 1 demonstrates the effectiveness of the classifier-based RST. In the fol-
lowing paragraphs, we discuss which classifiers are effective for the QBE approach,
where high-dimensional features have to be categorized using only a small number
of examples. The existing classifier-based RST uses different types of classifiers, such
as the decision tree, nearest neighbor, naive Bayes and maximum entropy [25].
However, they are ineffective for the following two reasons. Firstly, a nearest neigh-
bor is ineffective because the result of the similarity-based RST in Table 1 implies

Table 1 Comparison of the similarity-based RST and classifier-based RST

Event Tall building Flame Computer Helicopter/plane Talking

Similarity-based RST 46 14 54 17 38
Classifier-based RST 144 100 150 34 67
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that similarity measures do not work well for high-dimensional features. Secondly,
the other classifiers rely on probabilistic distributions, such as information gains in
decision tree, conditional probabilities in naive Bayes, and entropy models in max-
imum entropy. These are ineffective because probabilistic distributions estimated
from a small number of examples tend to deviate from the true distributions [6].

In contrast, SVMs are effective when only a small number of examples are avail-
able as the margin maximization does not require any probability estimation [6].
Additionally, Vapnik [33] theorized that if the number of feature dimensions is large,
the generalization error of an SVM is defined by the margin size and properties of
examples, such as the diameter of the sphere enclosing examples and the number
of examples. That is, from the theoretical perspective, the generalization error of
the SVM is independent of the number of feature dimensions if this number is
sufficiently large. Furthermore, as examples are generally not linearly separable,
a kernel function is used to transform a high-dimensional feature into a higher-
dimensional feature, with the above theory allowing a well generalized SVM to be
built independent of the number of feature dimensions. Thus, we develop a classifier-
based RST using SVMs, specifically using SVMs with the RBF kernel as it is known
to be the most general kernel [9].

2.2 The problem of small sample size

As described in Section 1, bagging and the random subspace method are useful for
extending the range of event shots that can be retrieved. They are additionally useful
for alleviating two important problems related to small sample sizes. The first is
the class imbalance problem, which refers to the imbalance between the number of
p-examples and n-examples, significantly degrading the classification performance
[1]. In our technique, numerous n-examples can be collected using the partially
supervised learning method. However, the SVM built using a small number of
p-examples and all collected n-examples cannot appropriately classify shots into
event and non-event shots. To address this, we use bagging which combines classifiers
built on different sets of randomly selected examples [3]. In other words, for a small
number of p-examples, an appropriate number of n-examples are randomly selected
to build an SVM. However, due to the insufficiency of n-examples, the SVM wrongly
classifies many non-event shots as event shots. Thus, we combine SVMs built on
different sets of randomly selected n-examples in order to consider a variety of
n-examples.

The second problem is overfitting that a classifier can perfectly classify p-examples
and n-examples, but cannot appropriately classify unseen examples. Generally, as
the number of feature dimensions increases, the number of examples required to
construct a well generalized classifier exponentially increases [10]. This is due to
the fact that a class needs to be determined for each combination of values along
different dimensions. In our case, we can only use a small number of examples
(at most, a hundred of p- and n-examples in total). On the other hand, based on
the bag-of-visual-words model, we represent each example as a vector with more
than 1,000 dimensions. As a result, the SVM is overfit to feature dimensions which
are specific to p-examples (or n-examples), but are ineffective for characterizing
event shots (or non-event shots). Thus, we use the random subspace method, which
combines classifiers built on randomly selected feature dimensions [8]. The original
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high-dimensional feature is transformed into a lower-dimensional feature, which
alleviates building an overfit SVM. By combining such SVMs, a large number of
feature dimensions can be considered.

Numerous methods have been proposed to overcome the class imbalance and
overfitting. For the class imbalance problem, Japkowicz [11] tested various sampling
approaches, such as over-sampling of examples belonging to the minority class,
under-sampling of examples belonging to the majority class, and sampling based on
a classifier for examining the association of an example to the minority (or major-
ity) class. Akbani et al. [1] used the Synthetic Minority Oversampling TEchnique
(SMOTE), which synthetically generates new examples for the minority class based
on their similarities with existing examples. Liu [17] presented various feature dimen-
sion reduction methods to overcome the problem of overfitting. For example, one
method selects feature dimensions by measuring their relative importance based on
an ensemble of decision trees, while a second method selects feature dimensions
which are both maximally relevant and minimally redundant based on the mutual
information between examples and classes. Guo and Dyer [6] proposed a method
which simultaneously achieves dimension reduction and margin maximization in
classifier training. As the above methods only select the best subset among examples
or feature dimensions, they are not useful for extending the range of event shots that
can be retrieved, unlike bagging and the random subspace method.

The application of bagging and the random subspace method in this paper is cru-
cially different to that in the previous research [32]. In particular, Tao et al. [32]
performed simple majority voting using SVMs built by bagging and the random
subspace method. We refer to this majority voting as Simple_MV. On the other hand,
our method involves majority voting using classification rules, which are extracted
as combinations of SVMs by RST. We refer to this as RST_MV. Table 2 shows
a performance comparison between Simple_MV and RST_MV. For each event,
10 retrieval results are obtained using Simple_MV or RST_MV. To perform an
appropriate comparison, retrieval results are obtained by using the same set of
60 SVMs for both Simple_MV and RST_MV. The second and fourth rows represent
average numbers of event shots retrieved by Simple_MV and RST_MV, respectively.
These rows demonstrate that RST_MV outperforms Simple_MV for all events. A key
reason for this is the difference between SVMs and classification rules. The third and
fifth rows represent average numbers of event shots which are correctly classified
by SVMs and classification rules, respectively, showing that classification rules are

Table 2 Performance of SVM combination by majority voting and RST

Event Tall building Flame Computer Helicopter/plane Talking

Majority Retrieval 136.0 122.6 160.5 36.1 175.6
voting performance

SVM 84.3 67.4 90.4 22.6 98.4
performance

RST Retrieval 140.6 145.3 164.3 41.5 189.9
performance

Rule 109.6 98.6 118.8 32.4 139.5
performance
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much more accurate than SVMs. This allows RST_MV to achieve more accurate
event retrieval than Simple_MV.

2.3 Negative example selection

Traditional QBE methods only use p-examples and retrieve shots similar to them
[12, 23]. But, only considering similarities to p-examples cannot yield accurate event
retrieval. For example, consider the event ‘a car moves’. If a p-example showing a
moving red car is provided, it may seem more similar to a shot where a person wears
a red piece of clothing than a shot showing a moving white car. Compared to this,
if a QBE method uses n-examples and compares them to the p-example, it can be
found that the edge feature characterizing a car shape is important while the color
feature is not. Thus, n-examples are required to construct a retrieval model (in our
case, classification rules), which characterizes features specific to p-examples.

Since event shots form only a small portion of all shots, several methods use an
approach which considers randomly selected shots as n-examples [21, 31]. However,
this approach is associated with the following problem. The random selection of n-
examples does not consider the type of n-examples that are required to construct an
accurate retrieval model. For example, if all of collected n-examples are significantly
dissimilar to p-examples, we cannot identify features that are relevant to p-examples
because p-examples and n-examples can be classified by using any features.

Numerous partially supervised learning (PSL) methods have been proposed to
build a classifier using p-examples and unlabeled examples (u-examples). Most the
existing methods adopt the two-step approach, wherein n-examples are first collected
from u-examples and a classifier is subsequently built on p-examples and collected
n-examples [4, 16, 37]. In such a PSL approach, one of main research issues is how to
collect n-examples from u-examples. For instance, Liu et al. [16] proposed a method
which selects some p-examples as ‘spy’ examples and adds them to u-examples. A
naive Bayesian classifier is then built using p-examples and u-examples, where spy
examples are used to set the probabilistic threshold for evaluating whether or not
u-examples can be regarded as negative. Yu et al. [37] proposed a method which
iteratively collects n-examples. In each iteration, the method builds an SVM from
p-examples and already selected n-examples, and subsequently selects n-examples as
u-examples, which are classified as negative by the SVM. Fung et al. [4] proposed
an iterative method where u-examples which are more similar to already selected
n-examples rather than p-examples are selected as n-examples.

However, most of existing PSL methods only collect a large number of n-
examples. Due to the class imbalance problem, the use of all collected n-examples
does not guarantee the construction of an accurate classifier. To overcome this, we
propose a new PSL method which can select a small number of n-examples useful
for building an accurate classifier like SVM. Our method is inspired by the method
proposed in [38]. It was originally developed to solve the class imbalance problem
using under-sampling examples of the majority class, i.e., n-examples. Yuan et al.
[38] contends that since n-examples similar to p-examples characterize the class
boundary, they are useful for building an accurate SVM. N-examples are iteratively
filtered to collect those n-examples that are similar to p-examples. In each iteration,
the method filters out n-examples that are distant from the decision boundary of the
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SVM, which is built on p-examples and the remaining n-examples. As a result, the
method selects a small number of n-examples that are as similar to p-examples as
possible. We apply this method to PSL by regarding all u-examples as n-examples,
because almost all of u-examples are non-event shots.

3 Event retrieval method

In this section, the proposed QBE method is described. We assume that the rep-
resentative semantic content in each shot is shown in the middle video frame, called
keyframe. The following six types of features are extracted from the keyframe in
each shot using the color descriptor software [26]: 1. SIFT, 2. Opponent SIFT,
3. RBG SIFT, 4. Hue SIFT, 5. Color histogram and 6. Dense SIFT. The first three
types of SIFT features are defined in different color spaces and have different
invariance properties for lighting conditions. By using these three SIFT features, we
aim to characterize local shapes of objects (e.g. corners of buildings, vehicles, human
eyes etc.), regardless of changes in illumination. Since they only compute derivatives
in color spaces, they do not consider absolute color values which are effective for
characterizing certain objects, such as faces, flames, vegetation and so on. So, we use
Hue SIFT and Color histogram. Hue SIFT represents a SIFT feature concatenated
with a Hue histogram in HSV color space, and Color histogram represents a pure
RGB color histogram. All of the above five types of features are extracted at interest
points computed by Harris-Laplace detector, where pixel values largely change in
multiple directions. But, small changes of pixel values are critical when considering
certain objects such as sky, water, roads and so on. In addition, many interest points
in the background may be missed due to low contrast. Thus, Dense SIFT is used,
wherein SIFT features are extracted at interest points sampled with a fixed interval.
In this way, interest points missed by Harris-Laplace detector can be compensated.
Due to space limitations, the above features are not discussed any further and can be
found in [26] in greater detail.

The above six types of features are represented using the bag-of-visual-words
representation. For each type of feature, 1,000 visual words are extracted by clus-
tering features at 200,000 interest points, sampled from keyframes in TRECVID
2009 development videos (219 videos) [29]. As depicted in Fig. 4, a shot is rep-
resented as a 6,000-dimensional vector where each type of feature is represented
as a 1,000-dimensional vector. Based on this high-dimensional representation, we
perform rough set theory extended by bagging and the random subspace method,
and partially supervised learning. It should be noted that for the random subspace
method, it is unreasonable to build an SVM using dimensions randomly sampled
across different types of features. Thus, we build one SVM by randomly selecting
dimensions in the same type of feature.

SIFT
Opponent

SIFT
RGB
SIFT

Hue
SIFT

RGB
Histogram

Dense
SIFT

1,000 dims 1,000 dims 1,000 dims 1,000 dims 1,000 dims 1,000 dims

Fig. 4 The representation of a shot as a 6,000-dimensional vector
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3.1 Rough set theory extended by bagging and the random subspace method

Given p-examples and n-examples, RST is used to extract classification rules, known
as decision rules, for distinguishing event shots from non-event shots. Firstly, various
SVMs are built using bagging and the random subspace method. Using each of these
SVMs, the indiscernibility relation between a p-example and n-example is defined by
determining whether or not the p-example and n-example are classified into the same
class. Lastly, by combining such indiscernibility relations among examples, decision
rules, which can discriminate subsets of p-examples from the entire set of n-examples,
are extracted. The proposed RST is explained in detail in the following paragraphs.

First of all, the number of p-examples and that of n-examples are too small to
characterize the distribution of event shots and that of non-event shots in a high-
dimensional feature space, respectively. So, the decision boundary of an SVM tends
to be inaccurate. Generally, an SVM determines the class of an example based on the
binary criterion, i.e., whether the example is located on the positive or negative side
of the decision boundary. However, this classification is erroneous since the decision
boundary is inaccurate. To overcome this, a continuous-valued criterion is employed.
Specifically, the probabilistic output of the SVM, which approximates the distance
between an example and the decision boundary using a sigmoid function, is used
[18]. Based on this, the class of an example is determined as follows. Firstly, examples
are ranked in descending order of probabilistic outputs of the SVM. If an example
is ranked within the top M positions, where M is the number of p-examples, its
class is determined as positive, or otherwise as negative. Thus, although the decision
boundary is inaccurate, examples can be robustly classified.

Classification results of SVMs can be summarized in a decision table, as shown
in Fig. 5. Each row represents the i-th p-example, pi (1 ≤ i ≤ M) or j-th n-example,

-1+1-1+1+1

-1+1-1-1-1

Class

P

N

+1+1-1-1-1 N

-1+1+1+1-1 P

a1 a2 a3 a4 a5

nN

n1

p
M

p
1

Subset of examples

Subset of dimensions in SIFT
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1
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p
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4 n5 n7
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Subset of examples
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Subset of examples
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4-th, 9-th,       , 987-th
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Fig. 5 Example of a decision table formed by applying RST extended by bagging and the random
subspace method
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nj (1 ≤ j ≤ N). Each column ak (1 ≤ k ≤ K) represents the classification result of
the k-th SVM, where +1 indicates that an example is classified as positive and −1
indicates that it is classified as negative. The classification result of the k-th SVM
for pi and nj are represented by ak(pi) and ak(nj), respectively. That is, each classi-
fication result can be regarded as one feature in RST. Lastly, the rightmost column
indicates whether an example is positive (P) or negative (N).

Before discussing the proposed decision rule extraction method, a conceptual
explanation in relation to decision rules is provided using Fig. 6. In this figure, one
p-example p1 and two n-examples n1 and n2 are given for the event ‘tall buildings are
shown’. Let ak1 and ak2 represent the classification of the k1-th SVM built on SIFT
feature and that of the k2-th SVM built on Hue SIFT feature, respectively. Since
SIFT feature of p1 is similar to the one of n1, the k1-th SVM incorrectly classifies
both as positive. On the other hand, since Hue SIFT feature of p1 is dissimilar to
that of n1, the k2-th SVM correctly classifies p1 and n1 as positive and negative,
respectively. The dissimilarity between SIFT features of p1’s and n2’s enables them
to be correctly classified by the k1-th SVM. On the other hand, p1 and n2 cannot
be correctly classified by the k2-th SVM due to their similar Hue SIFT features.
Thus, in order to discriminate p1 from n1 and n2, a decision rule consisting of ak1

and ak2 is required. This rule indicates the combination of the k1-th and k2-th SVMs.
In the following paragraphs, the extraction of such decision rules based on a logical
operation is described.

In order to extract decision rules, for each pair of pi and nj, we first determine
discriminative features which are useful for discriminating them. Specifically, the
following set of discriminative features fi, j are extracted between pi and nj.

fi, j = {ak|ak(pi) = +1 ∧ ak(pi) �= ak(nj)} (1)
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Fig. 6 The concept of decision rules extracted by RST
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This signifies that ak is included in fi, j, if the k-th SVM correctly classifies pi and nj

as positive and negative, respectively. In other words, pi can be discriminated from
nj when at least one feature in fi, j is utilized.

Next, in order to discriminate pi from all n-examples, the discriminative features
of pi’s are combined. This is achieved by using at least one discriminative feature in
fi, j for all n-examples. The discernibility function dfi, which takes a conjunction of
∨ fi, j, is computed as follows:

dfi = ∧{∨ fi, j| 1 ≤ j ≤ N} (2)

Let us consider the discernibility function df1 for one p-example p1 and two
n-examples n1 and n2. Let the sets of discriminative features between p1 and n1

and between p1 and n2 be f1,1 = {a1, a3, a5} and f1,2 = {a1, a2}, respectively. Under
this condition, df1 can be computed as (a1 ∨ a3 ∨ a5) ∧ (a1 ∨ a2). This is simplified as
df ∗

1 = (a1) ∨ (a2 ∧ a3) ∨ (a2 ∧ a5).2 Thus, p1 can be distinguished from n1 and n2, by
using a1, the set of a2 and a3, or the set of a2 and a5. Similarly, each conjunction
term in df ∗

i represents a reduct which is the minimal set of features required to
discriminate pi from all n-examples.

From each reduct, we construct a decision rule in the form of an IF-THEN rule.
A reduct r, consisting of L features, can be represented as follows.

r = a1∗ ∧ a2∗ ∧ · · · ∧ aL∗ (3)

where al∗ (1 ≤ l∗ ≤ L) denotes a single feature among the total K features a1, · · · , aK.
Recall that in (1), ak is selected as a discriminative feature only when ak(pi) = +1.
Thus, the decision rule, rule, constructed from r has a conditional part, where al∗(x)

has to be +1 for a shot (i.e. unseen example) x. It is represented as follows.

rule : IF (a1∗(x) = +1) ∧ · · · ∧ (aL∗(x) = +1), T HEN Class = P (4)

For example, from the reduct (a2 ∧ a3), we can construct the decision rule
IF (a2(x) = +1) ∧ (a3(x) = +1), T HEN Class = P. This rule indicates that if both
the 2-nd and 3-rd SVMs classify x as positive, then x is an event shot. Like this,
a decision rule describes how to combine SVMs built by bagging and the random
subspace method for retrieving event shots.

When matching x with rule, we regard decision boundaries of SVMs as inaccurate,
as described above. Decision rule matching is conducted based on probabilistic out-
puts of SVMs. To explain this, SVMl∗ is used to represent the l∗-th SVM correspond-
ing to each feature al∗ in rule (1 ≤ l∗ ≤ L). In addition, the probabilistic output of the
SVMl∗ for x is denoted by Prob SVMl∗ (x). Based on the above notations, we calculate
Match(x, rule) which is an evaluation value of matching x with rule.

Match(x, rule) =
L∏

l∗=1

Prob SVMl∗ (x) (5)

Match(x, rule) is the joint probability of L SVMs in rule. It should be noted that a
threshold is required to determine whether or not x matches rule. In view of this,

2This simplification is achieved by using the distributive law A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) and
the absorption law A ∨ (A ∧ B) = A. Although the simplification of a Boolean function is NP-hard,
we can obtain an approximate solution by using the genetic algorithm [13].
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the following two considerations must be made. Firstly, feature numbers (i.e. L)
differ depending on decision rules. Secondly, the distribution of SVM’s probabilistic
outputs differs depending on the sigmoid function estimated for the SVM. For
example, the mean of some SVM’s probabilistic outputs is 0.5, while the one of a
different SVM’s probabilistic outputs is 0.3. Thus, it is unreasonable to use the same
threshold for all decision rules.

Instead of actual values of Match(x, rule), the following ranking approach is used
to determine whether or not x matches rule. First, all shots are ranked in descending
order of Match(x, rule). A shot ranked within the top T-th position is considered
to match rule (T is set to 1,000 in all experiments). In this way, shots are matched
with all decision rules based on the same criterion of the ranking position. Finally,
our method outputs a retrieval result consisting of T ′ shots which match the largest
numbers of decision rules (T ′ = 1,000 in our experiments).

3.2 Effectiveness of bagging and the random subspace method

In this section, we discuss whether bagging and the random subspace method are
effective in extending the range of event shots that can be retrieved. That is, we
examine differences among classification results of SVMs, which are built using
different examples and feature dimensions.

Table 3 shows experimental results obtained for five events that will be used in
Section 4. In particular, the objective is to examine whether classification results of
SVMs change when using different examples and dimensions, even for the same type
of feature. Thus, SVMs are built only by using SIFT feature. In the second to fourth
rows of Table 3, we only use bagging where SVMs are built using the same number
of randomly selected examples. On the other hand, in the fifth to seventh rows of
Table 3, we use both bagging and the random subspace method where SVMs are
built using the same number of randomly selected examples and SIFT dimensions.
A comparison is drawn among classification results of 10 SVMs by examining 1,000
shots with the highest probabilistic outputs among the total 97,150 shots. We define
the first classification result as the baseline, and examined the difference between
the baseline and the remaining nine results, called comparison results. The second

Table 3 Differences among classification results of SVMs built using bagging and the random
subspace method

Event Event 1 Event 2 Event 3 Event 4 Event 5

Bagging Baseline: # of 124 99 111 35 146
event shots

Comparison: # of 466.9 579.7 470.1 396.6 512.8
different shots

Comparison: # of 39.4 16.7 34.3 7.3 42.2
different event shots

Bagging & Baseline: # of 129 97 115 22 150
random event shots
subspace Comparison: # of 461.3 695.4 656.4 428.4 693

different shots
Comparison: # of 27.1 16.7 37.2 11.9 53.7

different event shots
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(or fifth) row represents the number of event shots included in the baseline. The
third (or sixth) row represents the average number of shots that are only included
in comparison results. Lastly, the fourth (or seventh) row represents the average
number of event shots included only in comparison results.

As can be seen from Table 3, by changing examples with bagging, comparison
results include approximately 397 to 580 shots that differ from the baseline. In
addition, compared to event shots in the baseline, about 16 to 32% of different
event shots are included in comparison results. Furthermore, by changing both exam-
ples and feature dimensions with bagging and the random subspace method, compar-
ison results include about 428 to 695 shots that are different from the baseline, and
approximately 17 to 36% of event shots in comparison results are different from
event shots in the baseline. This indicates that bagging and the random subspace
method are effective in extending the range of event shots that can be retrieved.
However, Table 3 indicates that as the number of event shots which can be retrieved
increases, the number of non-event shots also increases. It can be seen that the ratio
of event shots to those shots included only in comparison results is less than 10%.
Thus, in order to accurately retrieve event shots, decision rules need to be extracted
as combinations of SVMs by using RST.

3.3 Partially supervised learning

Since the proposed RST relies on SVMs built using bagging and the random subspace
method, it is necessary to collect n-examples that are useful for building accurate
SVMs. In particular, considering the class imbalance problem, the proposed partially
supervised learning (PSL) method should be able to collect a small number of
informative n-examples from unlabeled examples (u-examples). N-examples similar
to p-examples are considered as informative, because they are useful for character-
izing the boundary between event and non-event shots. The procedure involved in
selecting a small number of informative n-examples is described below.

The proposed PSL method is summarized in Algorithm 1. Firstly, since the num-
ber of event shots included in u-examples is very small, all u-examples are assumed
to be n-examples. The set of p-examples and the set of n-examples are denoted by
P and N, respectively. The number of p-examples and the one of n-examples
are represented by |P| and |N|, respectively. Based on P and N, an SVM, which
examines whether or not n-examples are informative, is built. However, only a
small number of n-examples can be used due to the class imbalance problem. If
n-examples are randomly selected from N, n-examples located in certain regions
of the feature space may not be selected. As a result, the decision boundary of
the SVM is wrongly estimated, and it is not possible to appropriately evaluate
the informativeness of n-examples. Thus, we need to collect a set of representative
n-examples, which characterize the distribution of all n-examples. To this end,
n-examples are grouped into clusters using the k-means clustering algorithm and the
Euclidian distance measure. As shown in the line 1 of Algorithm 1, n-examples are
grouped into N/β clusters. β is a pre-defined parameter used to control the number
of clusters relative to the number of n-examples. Since various semantic contents
are presented in n-examples, their features are very diverse. This necessitates many
clusters of n-examples. In our experiment, β is set to 10, so that when |N| = 30,000,
one can obtain 3,000 clusters. In addition, since it is difficult to appropriately measure
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Algorithm 1 An overview of the proposed partially supervised learning
INPUT: set of p-examples P, set of n-examples N, desirable number of n-examples

α, ratio between n-examples and clusters β

OUTPUT: shrunk set of n-examples N

repeat
1. Cluster N into N/β clusters
2. Obtain the set of representative n-examples RN, each of which is centrally

located in a cluster
3. Build an SVM using P and RN
4. From N, remove those n-examples distant from the decision boundary of

the SVM
until |N| ≤ α OR no n-example is removed from N
5. Output N

similarities among n-examples in the 6,000-dimensional feature space defined in
Fig. 4, our PSL method is conducted on 1,000-dimensional SIFT feature (the SVM in
the line 3 of Algorithm 1 is also built on SIFT feature).

After clustering, for each cluster c, the most centrally located n-example is selected
as the representative n-example nc.

nc = min
ni∈Nc

∑

nj∈Nc

dist(ni, nj) (6)

where Nc is the set of n-examples in c, and ni and nj are n-examples in Nc. dist(ni, nj)

represents the Euclidian distance between ni and nj. Thus, nc is selected as the
n-example having the minimum sum of Euclidian distances to the other n-examples
in c. A set of representative n-examples for all clusters is denoted by RN.

By using an SVM built on P and RN, it can be determined whether each n-
example n in N is informative based on its distance from the decision boundary of the
SVM. N-examples distant from the decision boundary are uninformative for defining
the boundary between event and non-event shots. The above test is conducted using
the following criterion:

|wTn + b| > γ (7)

Using x as an arbitrary example, wT x + b = 0 represents the decision boundary
(hyperplane) of the SVM. Based on this, |wTn + b| can characterize the distance
between n and the decision boundary. Specifically, the distance is |wTn + b|/||w||,
but since ||w|| is constant, it can be omitted. If the distance between n and the
decision boundary is larger than the threshold γ , n is regarded as uninformative and
subsequently removed from N. This removal of uninformative n-examples is iterated
until the number of n-examples is less than the pre-defined number of n-examples
α or no further n-examples are removed from N.

An example illustrating the above iteration is shown in Fig. 7, with circles and
crosses representing p-examples and n-examples, respectively. N-examples are ini-
tially collected as shown in Fig. 7a, and the first iteration is then performed as shown
in Fig. 7b. N-examples are grouped into four clusters and an SVM is built using
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a) Initial situation b) First iteration c) Second iteration

1γ
1γRemove! Remove!

Fig. 7 An example of the proposed partially supervised learning method

representative n-examples from these clusters. As a result, two p-examples and two
representative n-examples are extracted as support vectors, as depicted by the solid
lines. The dashed line represents the decision boundary of the SVM. Based on this,
n-examples located on the left side of the bold line are regarded as uninformative
and are subsequently discarded. The second iteration is then performed using the
remaining n-examples, as shown in Fig. 7c. In this iteration, an SVM is built using
three representative n-examples. Based on the decision boundary of this SVM,
n-examples located on the left side of the bold line are discarded. In this way, a
small number of n-examples, which are highly similar to p-examples, can be obtained.
Such n-examples are useful for characterizing the boundary between event and
non-event shots.

4 Experimental results

In this section, the proposed QBE method is tested on TRECVID 2009 video data
[29]. This data consists of 219 development and 619 test videos in various genres, like
cultural, news magazine, documentary and education programming. Each video is
already divided into shots by using an automatic shot boundary detection method,
where development and test videos include 36,106 and 97,150 shots, respectively (the
detailed video data specification can be found on TRECVID 2009 Web site3). The
proposed method is evaluated based on the following five events:

Event 1: A view of one or more tall buildings and the top story visible
Event 2: Something burning with flames visible
Event 3: One or more people, each at a table or desk with a computer visible
Event 4: An airplane or helicopter on the ground, seen from outside
Event 5: One or more people, each sitting in a chair, talking

Each event retrieval is conducted as follows. Firstly, p-examples are manually col-
lected from development videos. Based on p-examples, n-examples are then col-
lected using the proposed PSL method. Considering the class imbalance problem,

3http://www-nlpir.nist.gov/projects/tv2009/tv2009.html

http://www-nlpir.nist.gov/projects/tv2009/tv2009.html
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the number of collected n-examples is set to be equal to five times the number of
p-examples. Afterward, the proposed RST method extended by bagging and the
random subspace method, is run where two libraries, LIBSVM [9] and ROSETTA
[13], are used for SVM learning and for the reduct extraction in RST, respec-
tively. SVM parameters are determined using 3-fold cross validation. Lastly, the
retrieval performance is evaluated based on the number of event shots within 1,000
retrieved shots.

4.1 Effectiveness of rough set theory extended by bagging and the random
subspace method

To examine the effectiveness of RST extended by bagging and the random subspace
method, a comparison is drawn among the four types of retrieval described below.

Baseline: For each of six features, an SVM is built using all examples and
dimensions, and a search of test videos is conducted. The SVM
which yields the best result is then manually selected. In other
words, Baseline represents a favorable retrieval result under the
ideal condition in which the best feature for the event can be
selected.

RST_only: RST, which uses neither bagging nor the random subspace method,
is executed. One SVM is built for each feature using all examples
and dimensions.

RST+BG: RST is executed only by using bagging. For each feature, three
SVMs are built using different subsets of examples and all dimen-
sions. Each subset is constructed by randomly sampling 75% of
examples.

RST+BG+RS: RST which incorporates both bagging and the random subspace
method is executed. For each feature, 10 SVMs are built using dif-
ferent subsets of examples and dimensions. Each subset of exam-
ples is formed by randomly sampling 75% of examples, while
each subset of dimensions is formed by randomly sampling 50%
of dimensions.

Table 4 shows performances of the above four types of retrieval. For each event,
the second row presents the number of p-examples. For the performance evaluation,
we consider that retrieval results of the proposed method differ due to the following
two random factors. The first is attributed to the fact that, the PSL method often
terminates before the number of n-examples is reduced to the specified number,
because there are no n-examples which can be filtered out (refer to the stopping
criterion in Algorithm 1). In such a case, from the remaining n-examples, five times
as many n-examples as p-examples are randomly selected. The second random factor
is associated with bagging and the random subspace method, where examples and
feature dimensions are randomly selected. Thus, in Table 4, each row labeled ‘#
of event shots’ indicates the mean number of event shots in 10 retrieval results.
Similarly, rows labeled ‘# of decision rules’ and ‘# of average precision’ indicate the
mean number of decision rules extracted by RST and the mean of average precisions,
respectively.
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Table 4 Performance comparison of Baseline, RST_only, RST+BG and RST+BG+RS

Event Event 1 Event 2 Event 3 Event 4 Event 5

# of p-examples 100 46 61 40 124

Baseline # of event shots 161.1 98.9 163.0 42.7 151.0

RST_only # of event shots 165.1 111.0 161.5 34.1 146.9
# of decision rules 5.5 5.2 5.4 4.5 3.8
Average precision 0.0931 0.1449 0.0871 0.0094 0.0365

RST+BG # of event shots 170.1 137.3 176.7 38.2 196.4
# of decision rules 252.9 159.7 151.9 137.4 354.0
Average precision 0.1148 0.1827 0.0877 0.0154 0.0571

RST+BG+RS # of event shots 172.0 147.5 176.9 41.6 194.6
# of decision rules 6159.2 1797.6 2286 1822.9 11455.6
Average precision 0.1170 0.1942 0.0992 0.0159 0.0604

In Table 4, the numbers in bold fonts indicate that RST_only, RST+BG or
RST+BG+RS can retrieve more event shots than Baseline. Since the performance
of RST_only for Event 3, Event 4 and Event 5 is lower than that of Baseline, it is
not necessarily effective. One main reason for this ineffectiveness of RST_only is
that the number of extracted decision rules for each event is very small. On the
other hand, except for Event 4 (which will be discussed later), both RST+BG and
RST+BG+RS outperform Baseline where a greater number of decision rules are
extracted compared to RST_only. Thus, bagging and the random subspace method
are useful for building various SVMs, which enables the extraction of decision rules
covering a large variety of event shots. Lastly, when making a comparison between
RST+BG and RST+BG+RS, numbers of retrieved event shots are not significantly
different from each other. For all events, average precisions of RST+BG+RS are
higher than those of RST+BG, implying that event shots are ranked at higher posi-
tions in a retrieval result by RST+BG+RS than by RST+BG. Thus, RST+BG+RS
is considered to be superior to RST+BG.

For Event 4, one main reason for the ineffectiveness of RST+BG and
RST+BG+RS is the difficulty of accurately recognizing airplanes and helicopters.
Specifically, SVMs built by bagging and the random subspace method wrongly
classify many shots showing cars, trains, ships etc. as positive, because their shapes
are relatively similar to those of airplanes and helicopters. Thus, combining such
inaccurate SVMs into decision rules degrades the retrieval performance.

4.2 Effectiveness of partially supervised learning

In this section, we examine the effectiveness of our PSL method. To this end,
the performance using n-examples collected by our PSL method is compared to the
one using n-examples which are randomly collected from all of u-examples. For the
simplicity, we call the former and the latter types of n-examples PSL n-examples and
random n-examples, respectively. In Table 5, we run RST+BG and RST+BG+RS
using the same p-examples in Table 4. PSL n-examples are used in the second and
third rows while random n-examples are used in the fourth and fifth rows. Each
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Table 5 Comparison between the retrieval performance using our PSL method and the one using
the random n-example selection

Event Event 1 Event 2 Event 3 Event 4 Event 5

PSL RST+BG 170.1 137.3 176.7 38.2 196.4
RST+BG+RS 165.1 147.5 176.9 41.6 194.6

Random RST+BG 157.9 136.0 168.5 46.6 187.5
RST+BG+RS 159.6 144.3 171.0 47.0 187.8

performance in Table 5 is evaluated as the average number of event shots in 10
retrieval results.

As can be seen from Table 5, except for Event 4, event retrieval using PSL
n-examples is more accurate than the one using random n-examples. The reason for
the ineffective performance in Event 4 is as follows. Due to the difficulty of accurately
recognizing helicopters and airplanes, few edges which characterize the sky and
runways in the background, are important for Event 4. But, since PSL n-examples
are highly similar to p-examples, most of them are characterized by few edges. So,
several event shots with few edges are inevitably excluded from the retrieval result.
Thus, it can be said that our PSL method works well for events involving objects,
which can be relatively accurately recognized. For example, for Event 1, the net of
a soccer goal, iron bars, closet etc. are shown in PSL n-examples, because shapes
of these objects are similar to buildings. By comparing such PSL n-examples to
p-examples, a precise boundary between event and non-event shots can be extracted.
Finally, since random n-examples are currently used in almost all of state-of-the-art
methods [21, 22, 31], we believe that our PSL method is novel in the sense that it can
outperform the random n-example selection.

4.3 Effectiveness for the small sample size problem

The performance of the proposed method is also tested in the case where only
a small number of p-examples are available. Figure 8 illustrates the difference in
the retrieval performance of Baseline, RST+BG and RST+BG+RS, depending on
p-example numbers. For a specified p-example number, we construct three different
sets of examples in the following way. Firstly, the specified number of p-examples
are randomly collected from all available p-examples, as shown in Table 4. Then,
n-examples are collected using our PSL method. The performance is evaluated as
the average number of event shots in retrieval results using the above three sets
of examples.

In Fig. 8, for Event 2 and Event 3, RST+BG and RST+BG+RS always outperform
Baseline. For Event 1 and Event 5, when only 10 p-examples are available, RST+BG
and RST+BG+RS are outperformed by Baseline. In this case, most of SVMs are
inaccurate and as a consequence, decision rules as combinations of these SVMs are
also inaccurate. Finally, for Event 4, RST+BG and RST+BG+RS are always out-
performed by Baseline, due to the difficulty of accurately recognizing airplanes and
helicopters described in the previous section. To summarize the overall performance,
except for Event 4, RST+BG and RST+BG+RS become more appropriate than
Baseline when greater than 20 p-examples are available.
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Fig. 8 Retrieval performances for different available p-example numbers

Finally, it is easy to collect more than 20 p-examples for Event 1 and Event 5 as
event shots of these are often seen in videos. However, event shots of Event 2 are
rarely seen and there are only a limited number of videos containing these event
shots. This increases the difficulty of collecting more than 20 p-examples for Event 2.
A sufficient number of p-examples may be obtained by retrieving images and videos
on the web using online image/video search engines such as Flickr and YouTube.

4.4 Performance comparison

A comparison is made between the performance of the proposed method and
those of state-of-the-art methods. RST+BG+RS is specially compared with methods
developed in TRECVID 2009 search task [29]. This task consists of three categories,
namely, the fully automatic, manually-assisted and interactive categories. Given the
textual description of an event and some p-examples, methods in the fully automatic
category retrieve event shots without any user intervention. In the manually-assisted
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category, a user intervention is allowed only prior to the start of the test video search.
The interactive category allows an interactive user intervention based on retrieval
results. Although our proposed method belongs to the manually-assisted category,
only three retrieval results are submitted to this category. This is clearly insufficient
for achieving a meaningful comparison. Thus, the retrieval result of the proposed
method is compared with 88 results in the fully automatic category.

Figure 9 shows the maximum (solid arrow) and average (dashed arrow) numbers
of event shots among 10 retrieval results, obtained using RST+BG+RS in Table 4.
As can be seen from Fig. 9, the overall performance of the proposed method is
ranked in the top quartile. It can be noted that almost all methods in the top quartile
use classifiers to assess the relevance of each shot to keywords like Person, Building,
Cityspace and so on. In this case, for each keyword, a classifier is built using a large
number of training examples. For example, in the method proposed by researchers
at City University of Hong Kong, classifiers for 374 keywords are built using 61,901
manually annotated shots [22]. Also, in the method developed by researchers at
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University of Amsterdam, classifiers for 64 keywords are built using more than 10,000
manually annotated shots, such as 39,674 shots for Bus, 21,532 shots for Car and so
on [31]. Like this, methods in the top quartile require tremendous manual effort.
Compared to these methods, our method only uses p-examples which are provided
by a user in an off-the-cuff manner. Thus, it can be concluded that the proposed
method is very effective in the sense that it requires neither manual shot annotation
nor classifier preparation.

4.5 Reducing computation cost by parallelization

In this section, we examine the computation cost of our QBE method and reduce
it by parallelizing several processes. Our method consists of two main phases, PSL
and RST. Figure 10 illustrates processes in PSL (a) and RST (b) phases. Roughly
speaking, the input of the PSL phase is a set of p-examples, and its output is a set of
n-examples which are as similar to p-examples as possible. To this end, we first regard
all of u-examples as n-examples and group them into clusters. Secondly, we find the
representative n-example for each cluster. An SVM is then built by using p-examples
and representative n-examples. Subsequently, n-examples which are distant from
the decision boundary of the SVM are removed. Finally, the above processes are
iterated until the number of n-examples is less than the pre-defined threshold or no
n-example can be removed.

When a large number of n-examples remain, the following two processes require
expensive computation costs. The first is the similarity calculation for calculating the
similarity between an n-example and each cluster center. The second computation-
ally expensive process is cross validation where, for each parameter candidate, an
SVM is built and evaluated by computing the error rate in classifying p-examples
and n-examples. Thus, we parallelize the above two processes by using a multicore

Clustering n-examples

Similarity calculation

Cluster center update

Find representative n-examples

Building an SVM

Cross validation

Remove uninformative n-examples
based on the SVM

Build SVMs

Extract decision rules

Matching shots with decision rules

SVM's probabilistic output calculation

Evaluation value calculation

Shot ranking with evaluation values

Shot ranking with numbers of matched rules

INPUT: p-examples

OUTPUT: Informative n-examples

INPUT: p-examples & n-examples

OUTPUT: 1,000 shots matching with largest
                  numbers of decision rules

a) PSL phase b) RST phase

Parallelize!

Parallelize!

Parallelize!

Parallelize by
MapReduce!

Fig. 10 Illustrations of processes in PSL (a) and RST (b) phases
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PC. For the similarity calculation process, each core is used to calculate the similarity
between one cluster center and n-examples. For the cross validation process, each
core is used to compute the error rate of an SVM with one parameter candidate.
These are implemented using Matlab Parallel Computing Toolbox [19].

As shown in Fig. 10b, the input of the RST phase is a set of p-examples and
n-examples, and its output is the set of 1,000 shots which match the largest numbers
of decision rules. The RST phase is summarized as follows. Firstly, various SVMs
are built by using bagging and the random subspace method. Decision rules are
then extracted based on SVMs’ classification results of p-examples and n-examples.
Subsequently, in order to match shots with extracted decision rules, the following
four processes are performed. The first one is SVM’s probabilistic output calculation
to compute the probabilistic output of an SVM for each shot. The second process is
the evaluation value calculation which computes the evaluation value of matching a
shot with each decision rule. The third is shot ranking with evaluation values where,
for each decision rule, shots are ranked in the descending order of evaluation values.
Based on this, 1,000 shots with the largest evaluation values are regarded to match
the decision rule. The final process is shot ranking with matched rules to determine
1,000 shots matching the largest numbers of decision rules.

The RST phase has a high computation cost due to a large number of shots and
decision rules. We address this by using two types of parallelizations on a multicore
PC. The first one is applied to the process of SVM’s probabilistic output calculation,
where each core is used to compute SVM’s probabilistic output for a distributed set
of shots. The other three processes are implemented by using MapReduce, which is a
parallel programming model that provides a simple and powerful interface [24]. We
use ‘Phoenix’ which is a MapReduce library for multicore PCs, in order to save a
significant amount of time on I/O operations [24]. In MapReduce, the basic data
structure is a (key, value) pair. Based on this, the Map function constructs input
(key, value) pairs from a distributed data, and produces intermediate (key, value)
pairs by conducting a user-defined task. Subsequently, the Reduce function conducts
a user-defined merge operation on intermediate (key, value) pairs with the same key
and outputs a final result. In this manner, MapReduce divides a large-scale data into
small pieces of (key, value) pairs, which are efficiently processed in parallel by the
Map and Reduce functions.

Three processes in Fig. 10b are implemented by utilizing MapReduce twice. The
first MapReduce performs two processes, the evaluation value calculation and shot
ranking with evaluation values. Specifically, the objective is to determine 1,000 shots
which have the largest evaluation values for each rule. To do this, the following Map
and Reduce functions are designed:

map1 : (
x,

[
rule, Prob all

SVM(x)
]) → List(rule, Match(x, rule))

reduce1 : (rule, List(Match(x, rule))) → (
rule, SList1,000

rule

)
(8)

where x and rule are a shot and decision rule, respectively. Prob all
SVM(x) represents

the set of probabilistic outputs of all SVMs for x. By using Prob all
SVM(x), map1 com-

putes Match(x, rule) which is the evaluation value of matching x with rule as defined
in (5). The output of map1 is a list including evaluation values of distributed shots
for all rules. Subsequently, reduce1 merges such lists produced by map1 on different
cores so that for the same rule, evaluation values of all shots are combined into a list,
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namely, List(Match(x, rule)). By sorting this list, reduce1 outputs SList1,000
rule which

consists of 1,000 shots with the largest evaluation values. That is, shots in SList1,000
rule

are regarded to match rule.
The second MapReduce performs the process of shot ranking with numbers of

matched rules. This process aims to obtain 1,000 shots which match the largest
numbers of decision rules. The following Map and Reduce functions are designed:

map2 : (x, 1) → List(x, MRules(x))

reduce2 : (x, List(MRules(x))) → SList1,000
MRules (9)

where (x, 1) is obtained by parsing SList1,000
rule and indicates that a shot x matches one

rule. It should be noted that as we have only to count the number of decision rules
matched with x, we do not need to know which rules are matched with x. The function
map2 constructs a list of (x, MRules(x))s, where MRules(x) represents the number
of decision rules matched with x. Subsequently, reduce2 merges MRules(x) for the
same shot into List(MRules(x)), which represents the total number of matched
decision rules. Finally, the function sorts all shots based on List(MRules(x)) and
outputs SList1,000

MRules which consists of 1,000 shots matching the largest numbers of
decision rules.

Figure 11 illustrates retrieval times for our QBE method where event shots for
Event 1 are retrieved by applying RST+BG to 100 p-examples and 500 n-examples.
Figure 11a and b show the change in computation times in the PSL and RST phases,
respectively. In both figures, the four bars from the top to the bottom represent
computation times by parallelizing our method with 1, 2, 4 and 8 cores, respectively.
Bars named Others depict computation times of non-parallelized processes while the
other bars depict computation times of parallelized processes. Specifically, in the PSL
phase in Fig. 11a, Clustering and SVM building include the similarity calculation and
cross validation processes in Fig. 10a, respectively. In the RST phase in Fig. 11b, SVM
prob. corresponds to SVM’s probabilistic output calculation process in Fig. 10b. Rule
matching includes three processes parallelized by MapReduce. In addition, numbers
overlaid with bars present actual values of computation times. Both of Fig. 11a
and b indicate that, as the number of cores increases, the computation time can be
significantly shortened. Specifically, when only one core is used, our QBE method
takes a total of 26,312 seconds to complete event retrieval with the PSL and RST
phases requiring 24,796 and 1,516 seconds, respectively. In comparison, when 8 cores

a) PSL phase b) RST phase
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Fig. 11 Comparison among retrieval times by parallelizing our QBE method with 1, 2, 4 and 8 cores
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are used, event retrieval is completed in 6,194 seconds with computation times of the
PSL and RST phases being 5,531 and 663 seconds, respectively.

From the perspective of computation time, our current QBE method is far from
the satisfactory. So, the retrieval time will need to be further reduced by improving
currently parallelized processes and parallelizing the other processes. In relation to
this concern, Fig. 11 reveals an important issue. For Clustering and Rule matching
processes, as the number of cores increases, computation times are nearly linearly
reduced. However, compared to these reductions, reductions of computation times
for SVM building and SVM prob. are significantly less effective. For example, for
SVM building process in the PSL phase, even if the number of cores is doubled from
4 to 8, the ratio between the computation time of 4 cores and the one of 8 cores is only
1.29 (i.e. 2,001 seconds versus 1,547 seconds). One consideration is that SVM building
and SVM prob. are parallelized simply by distributing examples (or shots) to multiple
cores. On each core, functions in LibSVM libraries [9] are called where memory
allocations and releases are executed many times. This degrades the effectiveness of
parallelization. Therefore, in order to achieve effective parallelization of a process, it
should be divided into sub-processes involving few memory allocations or releases.

5 Conclusion and future work

In this paper, we proposed a QBE method which can retrieve event shots using only
a small number of p-examples. Due to camera techniques and settings, event shots
are characterized by significantly different features. As such, RST is used to extract
multiple decision rules which characterize different subsets of p-examples. A variety
of event shots can be retrieved where each decision rule is specialized to retrieve a
part of event shots. Additionally, in order to extend the range of event shots that
can be retrieved, bagging and the random subspace method are incorporated into
RST. Classifiers built using different examples and feature dimensions, are useful
for covering a variety of event shots while many non-event shots are potentially
retrieved. Thus, RST is used to combine classifiers into decision rules in order to
accurately retrieve event shots. Furthermore, to overcome the lack of n-examples,
PSL is used to collect n-examples from u-examples. In particular, taking the class
imbalance problem into account, a method which can collect a small number of
n-examples useful for building an accurate classifier, is developed. Experimental
results demonstrated that our method successfully covers various event shots when
more than 20 p-examples are available. In addition, our method can achieve very
effective event retrieval without any shot annotation or classifier preparation.

The following issues will be addressed in future works. Firstly, we aim to use
temporal features such as 3DSIFT [27] and acoustic features such as Mel-Frequency
Cepstrum Coefficient (MFCC), as opposed to our current method which only makes
use of image features. Secondly, although majority voting is currently conducted
using all of extracted decision rules, some rules may be inaccurate or very similar
to other rules. Thus, in order to obtain the optimal set of decision rules, a method
which examines the accuracy of each decision rule based on cross validation will
be developed. The relationship among decision rules will be investigated using the
diversity measures proposed in [14]. Lastly, to improve the computation time of our
current method, we plan to build a cluster consisting of tens or hundreds of PCs.
On this cluster, in addition to the process of matching shots with decision rules,



Multimed Tools Appl (2012) 57:145–173 171

we parallelize the other processes using Apache Hadoop [35], which implements
MapReduce on a large-scale PC cluster.
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