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Abstract

We prove the consistency of the Béacklund transformation (BT) for the spin Calogero—
Moser (sCM) system in the rational, trigonometric, and hyperbolic cases. The BT
for the sCM system consists of an overdetermined system of ordinary differential
equations; to establish our result, we construct and analyze certain functions that
measure the departure of this overdetermined system from consistency. We show that
these functions are identically zero and that this allows for a unique solution to the
initial value problem for the overdetermined system.
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1 Introduction

Spin Calogero—Moser (sCM) systems describe arbitrary numbers of particles carrying
internal degrees of freedom and interacting in one dimension [1-3]. These systems
preserve several integrability properties of the spinless Calogero—Moser systems they
generalize; in the classical setting, one such property is the existence of a Biacklund
transformation (BT) relating certain distinct solutions of sCM systems [4]. The BT
for the sSCM system has recently appeared in the form of discrete-time evolution
equations for the sCM system [5, 6] and has been employed in the construction of
soliton solutions for spin generalizations of the Benjamin-Ono equation [7].

As will be delineated below, the BT for the sSCM system consists of an overdeter-
mined system of ordinary differential equations (ODEs), whose consistency was not
elaborated in [4]. This note provides a direct proof that the BT for the sCM system is
consistent.
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We consider complex sCM systems in the rational (case 1), trigonometric (case II),
and hyperbolic (case III) cases; corresponding results for the elliptic case [3] are more
complicated and are presented elsewhere [8]. The cases we consider are distinguished
by the following special functions which will appear as two-body interaction potentials
in the sCM equations of motion below,

1/7? (case I)
V(2):=1 (w/L)?/ sinz(rrz/L) (case IT) (1.1)
(1/28)%/ sinh?(rz/28) (case III),

with L > 0 and § > O arbitrary parameters. Let N € Zx; the jth particle in an
N-body sCM system is characterized by a time-dependent position a;(¢) € C and
internal degrees of freedom |e; (1)) € V and (f;(t)| € V*, where V is a d-dimensional
complex vector space with d € Z> and V* is the corresponding dual vector space. To
write the sSCM equations of motion, we use Dirac bra-ket notation [9] where ( f|e) € C
and |e)(f] € V @ V* = C?*4 are the inner and outer products, respectively. Then, in
each case [-1II, the sCM system is defined by the following system of equations,

N
dj=—4Y (file)(file))V'@j—a) (j=1,....N) (12)
k#j
and
N
léj) =2i ) lex)(filej)V(aj —ax),
k#N G=1,...,N) (1.3)
(fil= —2i ) (file)(filV(aj —a)
k#j
and
ejlfiy=1 (j=1,...,N), (1.4)

where dots above a variable indicate differentiation with respect to time, V (z) is as
in (1.1), and Z,i\;éj = Z,I(\/:Lk#j. We emphasize that (1.4) is only a constraint on the
initial conditions for {|e;), {f; |}§V=1; if (1.4) is satisfied at t+ = 0, a short calculation
using (1.3) shows that it holds at future times.

Under certain conditions, a BT for the sSCM system [4] links solutions of (1.2)—(1.4)
to those of a second sCM system with M € Z> particles,

M
by =4 (hile)(helg )V (b —bi) (j=1.....M) (1.5)
k#j
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and
M
187) =20 ) |g) (el gj)V (bj — by),
k#£j .
” G=1,....,M) (1.6)
(hil = —20) (hjlge)(helV (b — by)
k#j
and
(hjlgj)=1 (j=1,...,M). (1.7

The BT between (1.2)—(1.4) and (1.5)—(1.7) reads

N M
aj(fil =20 (filen) file(aj — ap) — 203 (flg) helata; —bi) (= 1,.... N),

k#j k=1
(1.8)
. M N
bjlgj) = —ZiZ lgk) (hilgj)a(bj — by) +212 le)(filgjlabj —ar) (j=1,...,M),
k#j k=1
where
1/z (case I)
a(z):=1 (w/L)cot(wz/L) (case II) (1.9)

(r/268) coth(mrz/28) (case III),

and its significance is captured in the following proposition [4, 7].

Proposition 1.1 (BT for the sSCM system) In each case I-111, the first-order equations
(1.3), (1.6), and (1.8), together with the constraints (1.4) and (1.7), imply the second-
order equations (1.2) and (1.5).

The first-order system of equations (1.3), (1.6), and (1.8) in Proposition 1.1 is
overdetermined, owing to the fact that there are d equations for the time evolution
of each {a j} _, and {b; }M | in (1.8), and thus is not obviously consistent. However,
by right- multlplymg the ﬁrst set of equations in (1.8) by |e;) and left-multiplying the
second set of equations in (1.8) by (% ;| and using (1.4) and (1.7), we obtain
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N M
aj = ZiZ(fj\ekaklej)Ot(aj —ak) — ZiZ(fjlgk)(hk\eﬂﬂt(aj by (j=1,....N),
kj k=1

(1.10)
M N
bj = —ZiZ(hj\nghklgj)Ot(bj — b)) +ZiZ(hj|€k>(fk|gj>0!(bj —a) (j=1,...,M),
k£j k=1

which together with (1.3) and (1.6) forms a manifestly consistent system. We will use
this consistent system to establish our main result: the system of first-order equations
in Proposition 1.1 is consistent and the corresponding initial value problem admits a
unique solution on some maximal interval.

Theorem 1 (Consistency of the BT for the sSCM system) In each case I-1I1, the initial
value problem consisting of the first-order equations (1.3), (1.6), and (1.8) with initial
conditions satisfying (1.4), (1.7), and (1.8) att = 0 has a unique solution on a maximal
interval [0, t), for some T € (0, 00) U {oo}.

We now give some remarks on Theorem 1 and its proof, which is given below in
Sect. 2. Certain basic properties of the special functions «(z) and V (z) are recalled in
Appendix A.

1.1 Remarks on the result

1. We use the concept of a maximal solution of a system of ODEs (see, e.g., [10,
Corollary 3.2]) in Theorem 1 and its proof. Given an initial value problem for a
system of ODEs y; = Fj(y1,...,yn), j = 1,..., N, where each F; is Lipschitz
near the initial data imposed at # = 0, a local solution exists by the Picard-Lindelof
theorem. This solution may be extended as long as (i) each variable y; remains
finite in finite time and (ii) each function F; remains Lipschitz near the solution,
up to a maximal time T € (0, 0o) U {oo}. The resulting maximal solution is unique
on the maximal interval [0, T) (see, e.g., [10, Theorem 8.1]). For the system we
consider, the set of conditions

aj—ar#0 (1<j<k=<N), bj—b#0 (1=<j<k=M),
aj—be #0 (G=1,...,N;k=1,..., M) (1.11)

(with the equalities modulo L and 2i4 in cases II and III, respectively) is equivalent
to (ii).

2. We prove cases [-III concurrently. Only properties of the special functions «(z)
and V (z) that are the same in all three cases are needed in the proof.

3. Given initial data satisfying (1.4), (1.7), and (1.8), we may solve the consistent sys-
tem (1.3), (1.6), and (1.10) to determine {a;, |e;), <fj|};.V=1 and {b;, |g;), <hj|}§!4:1
on a maximal interval [0, 7). The key idea in our proof of Theorem 1 is to show
that, on such a solution, a set of V ® V*-valued functions {R j}?/:]M (see (2.9) for
the definition, which uses notation introduced in Sect.2.1) that measure the dif-
ferences between the left- and right-hand sides of (1.8) satisfy a system of linear
homogeneous ODEs (see (2.43)). Because R;j(0) = Ofor j =1,..., N + M, as
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the initial data is assumed to satisfy (1.8), it follows that the unique solution of the
linear homogeneous system is {R; (¢) = O}jy:ﬁM on [0, 7), which implies that (1.8)
holds on [0, 7).

4. The BT for the sSCM system was proposed in [4] in the case N = M. Our conven-
tions for the BT (1.8) (with N = M) are different from but equivalent to those in
[4, Eq. (17)] via the transformations t — —2¢ and

(llj,dj, |€j>, (f]lvbj~bjs |gj>s <hj|) - (X}F, Pj—, |87)7 <f;—|sxj7 Pj» |€j), <fj‘) G=1... N).

2 Proof of Theorem 1

We first introduce shorthand notation used in the proof in Sect.2.1. Theorem 1 is
proved in Sect.2.2.

2.1 Notation

We make the following definitions,

@j,lej), (fil,.+1) j=1,...,N

: @.1)

(aj,lej), (fjl.rj):=

and

Pis=le)(fil G=1,...., ), (2.2)

which allows the two sCM systems (1.2)—(1.4) and (1.5)—(1.7) to be written as one,

N
ij=—2) (L +rrw®POV @ —a) (j=1.....\) 2.3)
k#j
and
N
16j) =1 _(1+rjm)Pilej)V(aj —ar),
ket _
. N G=1,....N) 2.4)
(fil= —iY_ A +rm){filPeViaj —ar)
k]
and
(filej) =1 (j=1,....\). 2.5)
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We note that by (2.2) and (2.5), each P; is a rank-one projector, i.e., P; = P; and
tl‘(P]’) =1.

Moreover, because each |e;) and (f;| for j = 1, ..., N is nonzero by (2.5), (1.8)
is equivalent to the system obtained by left-multiplying the first set of equations in
(1.8) by |e;) and right-multiplying the second set of equations in (1.8) by { f;|,

N
a;P; = ink((l + )PP+ (L= r)PP))a(a; —ar) (j=1,...,N),
kj
(2.6)

where we have used (2.1)—(2.2). By taking the trace of (2.6), using (2.5), we obtain

N
aj = ink((l + PP + (1 —rptr(P;P))ala; —ax) (j=1,...,N),
kit
(2.7)

which is equivalent to (1.10) via the notation (2.1)—(2.2) and the identity tr(P;Py) =
(filex)(frlej).

2.2 Proof

Let {a;, lej), (fjl }ﬁ.\il be the maximal solution of (2.4) and (2.7) (equivalent to (1.3),
(1.6), and (1.10)) with the given initial data on a maximal interval [0, 7). It follows
from (2.7) that

N
ajPj =iy re((1+r)uPPOP; + (I = rr(P;POP)eaj —a) (j=1,....N),
ket j
(2.8)

holds on this same interval. The BT (2.6) will hold on [0, t) provided that the differ-

ence of the right-hand sides of (2.6) and (2.8) vanishes for each j = 1, ..., \/; this
difference is given up to an overall multiplicative constant by

N
Rji= Y ric((1+rj)Pi(tr(P;Pe) — Pp) + (1 — rj)(tr(P;Py) — P)PJar(aj —a) (j=1.....N).
k#j
2.9
Because (2.6) is assumed to hold at # = 0, we have R;(0) =0 for j =1,..., N. We

now consider the time evolution of the quantities {R; }/j\i I
By differentiating (2.9) with respect to time, we find

Ri=Cl+CG+C+C+GCs (2.10)
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(for notational simplicity, we suppress the j-dependence of the quantities Cy, ..., Cs),
where

N
Cii= ) (147 (PPe) — Pr) + (1 = r)(r(P;P) — PP Jer(aj — ap),
ks j
N, d d
C= Z rk<(1 +rj)Pja<tr(Pij)> + (1 - ”j)a(tr(Pij)>Pj>a(aj —ay),
ki j
N . .
Cyi= — Y (L + )PP+ (1 = r))PrPj)ela; — ap), (2.11)
k#j
N
Cor= — Y (A +rpPj(r(PjPL) — P) + (1 = ) (tr(P;P) — PP )t V(aj — ap),
ki j

N
Csi= Y (1 +r))P(er(PPr) — Pp) + (1 — 1) (tr(PPy) — PP )éx V (aj — ay),
k#j

where we have used o/ (z) = —V (z) (A.2).
We compute each quantity Cy, ..., Cs in turn. In doing so, we use the following
time evolution equation for P,

N
P; = —12(1 +rir)PjL PV(aj —ar) (j=1,...,N), (2.12)
kj

where [-, -]is the commutator, which follows from (2.1) and (2.4). The parity properties
of a(z) and V (z) (A.1) are also used repeatedly. The identity

P;AP; =tr(P;AP; (j=1,...,N), (2.13)

valid for arbitrary A € V ® V*, is needed at two points below.
To compute C; in (2.11), we first insert (2.12) to find

N N

Cr=—1iY > (47 (A +r)P;. Ptr(P;Pr) — P) + (1 — r;)(tr(P;Py) — Pi)[P;. Pr])
k£ I£]

xa(aj —ap)Viaj — ap). (2.14)

To proceed, we write

[P, Pi](tr(P;Pr) — Pr) = [P (tr(P;Px) — Pg), Pr] + P[Py, Pil,

2.15
(tr(P;jPr) — P[P, Pr] = [(tr(P;Pr) — Pr)P, Pr] + [Pr, P1]P; 219
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and, using (2.9), (1 + rj)2 =2(1£rj),and (1 +r;)(1 —r;) =0,

N
(L4 7R =2 (1 + rpP(tr(P;Py) — Pr)ec(a; — ay).,
el (2.16)
¢ )
(1—rjR; = ZZrk(l —rj)(tr(P;Pr) — P)Pja(a; — ax).
k|
Using (2.15)—(2.16) in (2.14) gives
N
C=iY (+rmIPLRjIV(aj —a)
I#]
N N
—i Z Z (L4 7)) ((1+7)P;[Pe, P+ (1= ) [P, PP )a(a; — ap)V(aj — ).
k] 1) .k
(2.17)
To compute C; in (2.11), we start with, using (2.12),
d ) .
atr(Pj Pr) = tl‘(Pj Pr) + tI‘(Pj Pr)
N N
= —i Y (L +rmte(Py, PPV (aj —ap) —i Y (1 + rerte(P[Py, PV (a — ap).
1£) 1k
(2.18)

Employing the identity tr([P;, P;]Px) = —tr(P;[Pg, P;]) and noting that the [ = k
term of the first sum and / = j term of the second sum in (2.18) cancel, we find
N
d .
GUPPO =i D wPiIPe P+ rim)V(aj —an) = (14 rr) V (ai = ap).
I#j .k
(2.19)

Inserting (2.19) into C; in (2.11) then yields
N N
=iy Y m(+rmu®;Pr, PP ((1+r) + (1 —rp)ala; —a)V(a; —a)

k#j1#] .k

N N
—i) Y k)PP PP (L4 7)) + (1= rp)alaj —a)V(ax —ap). (2.20)
k#j 1#] .k
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Next, inserting (2.12) into C3 in (2.11) gives

N N
G =iy > m(+rr)((1+7)P;P, Pl + (1 = )Py, PP )ar(a; — ap)V (ax — ap)
k#j Ik
N
= iZ(rj + 1) ((L+7)P;[Pr, P14+ (1= rp)[Pe, PP )exla; — ax)V(aj — ax)
k£
N N
+i Z Z (rk + ) ((L+7)P; [Pk, P+ (L= r)[Pk, PP )a(aj — ap) V (ax — ap). (2.21)
k] 1]k

It follows from (2.17), (2.20) with (2.13), and (2.21) that

G+G+G

N
=iy (1 +rmlPr, Rj1V () — &)
k#j
N
H1Y 0+ (A +7)PjPe. Pl + (1= 1)) [Pe, PjIP ar(a; — ap)V(aj — ar)
k#j
N N
FiY D @ +rr) (4P [Pe, POP; — 1) + (1= r)(P; — DIPe, PIIP;)a(aj — an) V(a; — ap)
k#j 1)k
N N
=YY e+ (A4 )PP PP, — 1)+ (1= r))(P; — DIPx, PP (e — ap)V (ax — an).

k#jl#].k
(2.22)

For future convenience, we will rewrite the final two lines of (2.22). By swapping
indices k <> [ and using (1+7;r;)(1£r;) = (1£r;)(1£ry), we write the penultimate
line of (2.22) as

N N
iZ Z re(L+rir) (L4 r))P;[Pe, PP — 1) 4 (1 = r)(P; — D[Pk, PIP))a(a; — ap)V(a; — ap)
kit 1.k
N N
= 712 Z (L) A+1)P; [Pe, PP — D +(1—=r ) (1=r) (P — D[Pk, PiIP; )t (aj—ap) V (aj—a)
kit j 1),k
N N
=i Z Z (L4 7)P [P, PP — 1) + (1 — r)[Px, PP )a(a; — a))V(a; — ax)
ket 1£].k
N N
—i) Y (4 )PP, PP — 1) = (1= [Py, PP a(aj — an)V(aj — a). (2.23)
kit 1.k
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The final line of (2.23) can be written as

N N
—iy > rer((L+ P[P, PAP; = 1) = (1= [Py, PiIP))ala; — apV (aj — ax)
k] 1]k
N N
=i) > mr((147)PPPL(P; — 1) + (1 — rj)PkPiP))
k#j 1.k
X (ot(aj —a)V(a; —ar) —ala; —ar)Via; — al)), (2.24)

as can be seen by symmetrizing both sides of the equality. Similarly, the final line of
(2.22) can be written as

N N
=i Y e A+ PP PP — D)+ (1= r))(Pj — D[P, PIPj (e — )V (a — ap)
k#j 1],k

N N
==Y 3 (A +rpPiPPAP; — 1)+ (1= r))(Pj — DIP. PIIP;)
k] I# )k
X (a(aj —ap) —alaj — al))V(ak —aj). (2.25)

Hence, after inserting (2.23) with (2.24) and (2.25), (2.22) may be written as

G+G+G
N
=i (1+7rm)Pe. Rj1V(aj — ar)
k£
N
+1Y 0+ ) (14 )PP P+ (1= r))[Pe, PjIP a(a; — an)V (aj — ax)
k#j
N N
—iY Y (A + )PP PP — 1)+ (1= r))(P; — D[Py, PIP;)
ket j 1)k
X (oz(aj —a)V(a; —ap) + (oz(aj —ap) —alaj — al))V(ak — a[))
N N
+i) Y mn((L+r)PPPL(Py — 1) + (1 —rj)(P; — PLP,P;)
k) 1)k
X (ot(aj —a)V(a; —ar) —ala; —a)Viaj — al)). (2.26)

A key tool in computing C4 and Cs in (2.11) is the following relation, which follows
from (2.8) and (2.9),

N
ajP; =iR; +i Y r((L+r)PiPr+ (1 = rp)PiPj)aa; —ar).  (227)
k)
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First, we insert (2.27) into C4 in (2.11),

N
G=- Zrk((l +r)(@;Py)r(PPr) — Pr) 4+ (1 — rj)(tr(P;Pr) — Po)(@;P;))V(a; — ax)
k#j
N
= =i ) m((1+ R PP — P) + (1= r)(r(PiPY) — PR}V (aj — ax)
k#j
N N
=20 ) > rrr((1+ rj)PPi(tr(PiPy) — Pi) + (1 — ) (tr(P;Py) — Pr)PIP))
kA 1]
xa(aj—a)V(aj — ag). (2.28)

We use (2.16) to replace the terms in R;P; and P¢R; in (2.28), and this leads to

N
Co= =iy nm((+rpRitr(P;Pe) + (1 — r))tr(P;POR;)V(a; — ar)
k£j
N N
- 2iZZrkrl((l +r))P;Pitr(P;Py) + (1 — rptr(P;POPP Ya(a; — a))V(aj — ax)
ket j 1]
N N
+20) 0 e (14 )P Petr(PPy) + (1 — r)te(PP)PYP)ar(aj — an)V(a; — ax)
ket 1]
N
= —Zinktr(Pij)RjV(aj —ay)
k]
N N
- 2iZZrkrl((1 + )PP, PP — (1 — rpIPeP;, PP )a(aj — )V (aj — ax),
kit j 1]
(2.29)

where we have used (2.13) in the last step.
Next, we insert (2.27) into Cs in (2.11),

N
Cs = Y (1 +7)Pj@POP; — 1)+ (1 —rj)(P; — D(@Pr)P;)Via; — ar)
k]
N
=i Zrk((l +rp)PiRe(Pj — 1)+ (1 —rj)(P; — )PLR;)V(aj — ag)
k#j
N N
F1Y D A4 (4 )P PkPI(Py — 1) — (1 = r)PPPL(P; — D))er(ay — ap)V (a; — ar)
k#j £k
N N
+i Z Z(l —rpr (L4 r) (P — DPEPP; — (1 — rp)(P; — DP PP )ar(ay — ap)V(aj — ap),
k#j 17k
(2.30)
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where we have used r; (1 £ r¢) = £(1 £ r¢). The [l = j terms of the double sums in
(2.30) amount to

N
Y (A4 =r)PiPPy = 1)+ (1= ) +r)(Pj — DPP))ala; — an)V(aj — ax)
kit

N
= —i Z(I‘j +rk)((1 + rj)Pj[ka Pj] + (1 — rj)[Pk, Pj]Pj)a(aj — ak)V(aj —ay)
=y
N
+ 2iZ ((1 +7rj)P;[Pe, P14+ (1 —rp[P;, Pk]P_j)a(a_j —ap)V(aj — ai)
k#j
N
=i (rj + ) (L +7)Pj[Pe. Pi1+ (1= r)[Pk. P;IPj)aa; — an)V(aj — ar)
=
N
+2inkRjV(aj — )
k#j
N N
=20) > nn((+r)PIPL P+ (1= rpIP;, PP )a(a; — a)V(aj — ax),
k#j 1) .k

(2.31)

where we have used (2.9) in the second step. Thus, combining (2.30) and (2.31) and
simplifying gives

N N
Cs = ZinkRjV(aj —ayg) +iZV}<((1 +rj)Pij(Pj -D+{- "j)(Pj — ])PkRj)V(aj —ay)
k#j k#j
N
- iZ(rj +rk)((1 +rj)Pi[P;,P;1+ (1 —rj) [P, Pj]Pj)a(aj —a)V(a; —ax)
[y
N N
- 2iz Z rkrl((l +rj)P_,-[P1, P.i] + (1 — r_,-)[Pj, P1]Pj)a(aj 7al)V(aj —ag)
k#j1#).k
N N
+iz Z r((L+r)Pj[Pr, PP — 1) + (1 = r)(P; — D[Py, P1IP;)ar(ax — ap)V(aj — ax)
k#j1#j.k
N N
+iZ Z (L4 rp)P{PL, PP — 1) + (1 = rj)(Pj — D{Px, PIP))ax(ax — an)V (aj — ay),
k#j1#]).k
(2.32)
where {-, -} is the anti-commutator.
Then, the sum of (2.29) and (2.32) is
CG+Gs
N
=1 n(2(0 = tr(P;POIR; + (L +7))PjRe(P; — 1) + (1 — rj)(P; — DPR;)V (a; — ax)
k]
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Consistency of the Backlund Transformation... Page130of16 12

N N
=20 ) > (14 r)IP;Pe PPl — (1= )PP, PIP N)a(a; — )V (aj — ax)
k) I#]
N N
=20 ) > (U4 r)P;IPL P+ (1= r)IP;. PP a(aj — an)V (a; — ax)
k) I#]
N N
iy Y (4 PPk PP = D)+ (1= r)(P; — DIPk, PiIP))aax — apV (aj — ax)
k£ 1]k
N N
+iY > nn((4r)PPPL(P; — 1) + (1 = rj)(P; — 1)PPkP;)
k£ 1]k
x alar —a)(Viaj —ar) — V(aj — ap)), (2.33)

where, similarly as in (2.24)—(2.25), we have used symmetry to rewrite the final line.
By inserting (2.26), (2.33), and the identities

alaj —a)Vaj —ap) + (a(aj — ar) —a(aj —ap)V(ak — ap)
—a(ax —apViaj —ar) =0 (2.34)

and

—a(aj —ap)Viaj —ap) +alax —a)(Viaj —ap) — Viaj — ap)
=ala; —a)V(a; — ay), (2.35)

each of which can be found by differentiating (A.3) with respect to a particular variable
and then renaming variables, into (2.10), we obtain

N
Rj= iy (1+rm)Pe.RjIV(a; — ar)
=y
N
+ink(2(l — tr(Pij))Rj + (1 +rj)Pij(Pj -1+ —rj)(Pj — l)PkRj)V(aj —ay)
ke
N N
=21 )Y nn((L+r)IPjPe, PP = (1= r)IPkP;. PP )er(aj — an)V (a; — ax)
et j 1.k
N N
7212 Z rert((L+ )PP P T+ (1 — I[Py, PP )ar(aj — a)V(a; — ag)
et j 1.k
N N
+20) > nn((+r)PPPP; — 1) + (1= r))(Pj — DPPIP;)a(a; — anV (aj — ).
et j 1.k
(2.36)

The final two lines of (2.36) can be combined into
N N

20 mn((4r))PPIPe = DP; = 1)+ (1= r))(P; — D(Pe — DPP))ar(a; — )V (a; — ax)
k£ 1) K
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N N
= *Ziz Z rert ((A4r)IPe—D(P;—1), PP 1—(1=r)[(P;—1)(Pe—1), PiP;)a(aj—an)V (aj—a),
k) 1]

(2.37)

where we have used (P; — 1)P; = 0 = P;(P; — 1). By further combining (2.37) with
the third line of (2.36), we find
N
Rj =iy (1+rm)lPe, R1V(a; — )
ki
N
1Y (201 = e (PPOIR; + (1 +7))PjRe(P; — 1) + (1 — r))(P; — DPkR;)V (a; — ax)
k]

N N
—ZiZ Z e (L4 rp)Pr(Pj — 1) +P;(Pe — 1), PPl = (1 — r)[Pk(Pj — 1) + P; (P — 1), P/P;])

k#jl#j.k
xalaj —ap)V(aj — ag). (238)

The double sum in (2.38) can be written as

N N
—ink[Pj(Pk — D +PPj = 1,2 Y r(l +7))P;Pa(a; — a,)}V(aj - a)
k#j 1#j.k
N N
+ink|:Pj(Pk —1)+P(P; —1),2 Z ri(1 —r;)PP;a(a; —al):|V(aj —ay).
k#j 1#j.k
(2.39)
Using that
[Pj(Pk — 1) +Pr(Pj = 1), Pjpk] =0= [Pj(Pk — 1) +Pr(Pj = 1), PkPj]
(2.40)
and
[Pj(Px — 1) +Px(P; — 1),P;] =0, (2.41)

we write (2.39) as
N N
ink[Pj(Pk =D+ PP = 10,2 n(l+rj)P;(tr(P;P)) — Pa(a; — a[)]V(aj —ar)
ke j I#]
N N
—ink[Pj(Pk =D +PePy = 1),2) rn(1—r)(r(P;P) — P)Pje(a; — a,)]V(aj — ).
e I#]
(2.42)

We recognize the second arguments of the commutators in (2.42) as the right-hand
sides of (2.16). Replacing the double sum in (2.38) by (2.42) with (2.16) gives

N
Rj =iy (I+rjmlPr.Rj1V(aj — ar)
kit j
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N
+iY (20 =t (PPOIR; + (1 +7))PRe(P; — 1) + (1 — rj)(P; — DR(P;)V(a; — ar)
ki j
N
+2i ) [P Pk — 1)+ PPy — 1), R;]V(a; — ), (2.43)
ket

valid for j =1, ..., N.
We have constructed a system of linear homogenous differential equations obeyed by {R; }ﬁ.\i 1 With

coefficients in known variables {a, P; = Iej)(fjl}?il.Because {aj, lej), (fj |}'j’.\il is a maximal solution
of (2.4) and (2.7), (1.11) holds on [0, 7) and, consequently, each coefficient in (2.43) is finite on [0, 7).
Given that {R;(0) = O}ji 1» We conclude that (2.43) is uniquely solved by {R;(t) = O}'J/.\i ponf0,7). It
follows that (2.6) and consequently (1.8) is satisfied on [0, 7).

We have shown that {a;, |e¢;), <fj|}§\i1 solves the system of equations (1.3), (1.6), and (1.8) on [0, 7).
We claim that this solution is unique. A necessary condition for the solvability of (1.3), (1.6), and (1.8)
is the solvability of the reduced system (1.3), (1.6), and (1.10), for which we have constructed a unique
solution on [0, 7). It follows that {a}, |e;), {f; |}'}\il is the only possible solution of (1.3), (1.6), and (1.8)
with the given initial data on [0, 7). This completes the proof.
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A Special Functions

We recall three basic properties of the special functions «(z) and V (z) defined in (1.9) and (1.1), respectively.
First, the functions «(z) and V (z) are odd and even functions of z, respectively:

a(—=z2) =—a(z), V(=2=V(@ eC (A.1)
Second, the functions «(z) and V (z) are related by differentiation,
d(z)=-V(@) (ze€O). (A.2)
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Third, the function «(z) satisfies the identity

a(a —b)a(a —c) =ab — c)(a(a —b)—a(a— c)) +C (a,b,ceC), (A.3)
where
0 (case I)
C:={@/L)? (casell) (A.4)
—(/28) (case III).
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