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Abstract
We propose a general procedure to construct noncommutative deformations of an
algebraic submanifold of R , specializing the procedure [G. Fiore, T. Weber,
Twisted submanifolds of R , arXiv:2003.03854] valid for smooth submanifolds. We
use the framework of twisted differential geometry of Aschieri et al. (Class. Quantum
Grav. 23, 1883–1911, 2006), whereby the commutative pointwise product is replaced
by the -product determined by a Drinfel’d twist. We actually simultaneously con-
struct noncommutative deformations of all the algebraic submanifolds that are
level sets of the , where 0 are the polynomial equations solved by the
points of , employing twists based on the Lie algebra of vector fields that are
tangent to all the . The twisted Cartan calculus is automatically equivariant under
twisted . If we endow R with a metric, then twisting and projecting to normal or
tangent components commute, projecting the Levi-Civita connection to the twisted

is consistent, and in particular a twisted Gauss theorem holds, provided the twist
is based on Killing vector fields. Twisted algebraic quadrics can be characterized in
terms of generators and -polynomial relations. We explicitly work out deformations
based on abelian or Jordanian twists of all quadrics in R3 except ellipsoids, in partic-
ular twisted cylinders embedded in twisted Euclidean R

3 and twisted hyperboloids
embedded in twisted Minkowski R3 [the latter are twisted (anti-)de Sitter spaces

2 2].
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1 Introduction

The concept of a submanifold of a manifold plays a fundamental role in
mathematics and physics. A metric, connection, ..., on uniquely induces a met-
ric, connection, ..., on . Algebraic submanifolds of affine spaces such as R or
C are paramount for their simplicity and their special properties. In the last few
decades the program of generalizing differential geometry into so-called Noncom-
mutative Geometry (NCG) has made a remarkable progress [14, 35, 41–43]; NCG
might provide a suitable framework for a theory of quantum spacetime allowing
the quantization of gravity (see e.g. [1, 20]) or for unifying fundamental interac-
tions (see e.g. [12, 15]). Surprisingly, the question whether, and to what extent, a
notion of a submanifold is possible in NCG has received little systematic attention
(rather isolated exceptions are e.g. Ref. [17, 45, 48, 54]). On several noncommutative
(NC) spaces one can make sense of special classes of NC submanifolds, but some
aspects of the latter may depart from their commutative counterparts. For instance,
from the -equivariant noncommutative algebra “of functions on the quan-
tum Euclidean space R ”, which is generated by non-commuting coordinates ,

one can obtain the one A on the quantum Euclidean sphere 1 by imposing that

the [central and -invariant] “square distance from the origin” 2 be
1. But the -equivariant differential calculus on A (i.e. the corresponding A-
bimodule of 1-forms) remains of dimension instead of 1; the 1-form 2

cannot be set to zero, and actually the graded commutator 1
2 1

2 2 acts as

the exterior derivative [11, 26, 28, 53].
In [32] the above question is systematically addressed within the framework

of deformation quantization [6], in the particular approach based on Drinfel’d
twisting [21] of Hopf algebras; a general procedure to construct noncommutative
generalizations of smooth submanifolds R , of the Cartan calculus, and of
(pseudo)Riemannian geometry on is proposed. In the present work we proceed
studying more in detail algebraic submanifolds R , in particular quadrics, using
tools of algebraic geometry. Considering C instead of R seems viable, too.

Assume that the algebraic submanifold R consists of solutions of the
equations

0 1 2 ... (1)
where 1 ... R R are polynomial functions fulfilling the irre-
ducibility conditions listed in Theorem 1; in particular, the Jacobian matrix

is of rank on some non-empty open subset D R , and more precisely
consists of the points of D fulfilling (1). One easily shows that E R D is
empty or of zero measure1. By replacing in (1) , with

1 ... D , we obtain a -parameter family of embedded manifolds
( 0 ) of dimension that are level sets of . Embedded algebraic sub-

manifolds can be obtained by adding more polynomial equations of the same

1Let be the submatrices of , their determinants, E R 0 , 1 2 ... .
E E . At least one polynomial function is not identically zero; hence E has codimension 1
and zero measure, and so has E .
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type to (1). Let X be the -algebra (over C) of polynomial functions R C,
restricted to D . The -algebra X of complex-valued polynomial functions on
can be expressed as the quotient of X over the ideal C X of polynomial functions
vanishing on :

X X C C X (2)

In Appendix A, after recalling some basic notions and notation in algebraic geometry,
we prove

Theorem 1 Assume that is of rank on a non-empty open subset D R , so
that the system (1) defines an algebraic submanifold D of dimension .
In addition, assume that is irreducible in C ; this is the case e.g. if there exists
a -dimensional affine subspace R meeting in 1 deg points.
Then C is the complexification of the ideal generated by the in R 1 ... , i.e.
for all C there exist X such that

1 1

. (3)

(In the smooth context, i.e. with D , (3) holds if is of rank
on D [32].) X is the quotient of X over the ideal generated by further equations
of type (1), or equivalently of X over the ideal generated by all such equations. Iden-
tifying vector fields with derivations (first order differential operators), we denote as

X the Lie algebra of polynomial vector fields on D
(here and below we abbreviate ) and

C C for all 1
CC C for all X C .

(4)

The former is a Lie -subalgebra of , while the latter is a Lie -ideal; both are X -
-subbimodules. By Theorem 1 the latter decomposes as CC 1 . We

identify the Lie algebra of vector fields tangent to with that of derivations of
X , namely with

C CC CC C . (5)

A general framework for deforming X into a family - depending on a formal
parameter - of noncommutative algebras X over C (the ring of formal power
series in with coefficients in C) is Deformation Quantization [6, 40]: as a mod-
ule over C X coincides with X , but the commutative pointwise product

of X (C -bilinearly extended to X ) is deformed into a possibly
noncommutative (but still associative) product,

1
(6)

where are suitable bidifferential operators of degree at most. We wish to deform
X into a noncommutative algebra X in the form of a quotient

X X C C X (7)
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with C a two-sided ideal of X , and fulfilling itself X X as an equality of
C -modules. To this end we require that C C , i.e. that C
for all X , C, so that C for all X
and C . As a result, taking the quotient would commute with deforming
the product: X C X C . As argued in [32], these conditions are fulfilled if2,
for all X , 1 .. ,

0 N (8)

(this implies that the are central in X , again). The quotient (7) also appears in
the context of deformation quantization of Marsden-Weinstein reduction [10, 37]. A
more algebraic approach to deformation quantization of reduced spaces is given in
the recent article [18].

In [21] Drinfel’d introduced a general deformation quantization procedure of uni-
versal enveloping algebras g (seen as Hopf algebras) of Lie groups and of their
module algebras, based on twisting; a twist is a suitable element (a 2-cocycle, see
Section 2.1)

F 1 1
1

F1 F2 g g (9)

(here C , and tensor products are meant completed in the -adic topology);
F acts on the tensor product of any two g-modules or module algebras, in particular
algebras of functions on any smooth manifolds acts on, including some symplectic
manifolds3 [3]. Given a generic smooth manifold , the authors of [1] pick up g

, the Lie algebra of smooth vector fields on (and of the infinite-dimensional
Lie group of diffeomorphisms of ), and the -module algebra X ;
F1 F2 seen as differential operators acting on X have order at most and no
zero-order term. The corresponding deformed product reads

1
F1 F2 (10)

where F F 1 1 1 1 F1 F2 is the inverse of the twist. In
the sequel we will use Sweedler notation with suppressed summation symbols and
abbreviate F F1 F2, F F1 F2; in the presence of several copies of F
we distinguish the summations by writing F1 F2, F1 F2, etc. Actually Ref. [1]
twists not only X into new Hopf algebra F and F -equivariant module
algebra X , but also the -equivariant X -bimodule of differential forms on ,

2In fact, for all 1 C ( X ) (8) implies 1 and, for all X , by the
associativity of , 1 1 1 C ; and
similarly for .
It is not sufficient to require that , belong to C to obtain the same results.
3However this quantization procedure does not apply to every Poisson manifold: there are several sym-
plectic manifolds, e.g. the symplectic 2-sphere and the symplectic Riemann surfaces of genus 1,
which do not admit a -product induced by a Drinfel’d twist (c.f. [9, 16]). Nevertheless, if one is not taking
into account the Poisson structure, every -manifold can be quantized via the above approach.
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their tensor powers, the Lie derivative, and the geometry on (metric, connection,
curvature, torsion,...) - if present -, into deformed counterparts.

Here and in [32], as in [45], we take the algebraic characterization (2), (5) as
the starting point for defining submanifolds in NCG, but use a twist-deformed dif-
ferential calculus on it. Our twist is based on the Lie subalgebra (and X -bimodule)
g defined by

1 0 ... 0 C (11)

which consists of vector fields tangent to all submanifolds (because they fulfill
0 for all R ) at all points. As in [32], we note that, applying this

deformation procedure to the previously defined X with a twist F
, we satisfy (8) and therefore obtain a deformation X of X such that for all

D X X X C ; moreover, C CC ,
see Section 2.3. In other words, we obtain a noncommutative deformation, in the
sense of deformation quantization and in the form of quotients as in (2), (5), of the
-parameter family of embedded algebraic manifolds R . For every C

there is an element in the equivalence class that belongs to , namely its tangent
projection ; hence we can work with the latter. X ... are F -equivariant,
while X ... are F -equivariant. If F is unitary or real, then F and
X ... admit -structures (involutions) making them a Hopf -algebra and F -
equivariant (Lie) -algebras respectively; thereby F is a Hopf -subalgebra and
X ... are F -equivariant (Lie) -subalgebras.

In passing, we recall that sometimes, if a Poisson manifold is symmetric under
a solvable Lie group like R , the Heisenberg or the “ ” group, one can
construct even a strict (i.e. non-formal) deformation quantization [52] of
such that the -product remains invariant under itself (or a cocommutative Hopf
algebra), see e.g. [7, 52].

The plan of the paper will be as follows.
Section 2 reviews: Hopf algebras, their module algebras and twisting[4, 13, 21, 22,

34, 39, 43, 47] (Section 2.1); their application [1, 2] to the differential geometry on a
generic manifold (Section 2.2); twisting of smooth submanifolds of R as developed
in [32] (Section 2.3).

In Section 3 we apply this procedure to algebraic submanifolds R . For sim-
plicity we stick to of codimension 1, and we assume that there is a Lie subalgebra
g (of dimension at least 2) of both and the Lie algebra aff of the affine group
Aff R R of R ; the level sets of of degree 1 (hyperplanes) or 2
(quadrics) are of this type. Choosing a twist F g g we find that the alge-
bra X of polynomial functions (with complex coefficients) in the set of Cartesian
coordinates 1 ... is deformed so that every -polynomial of degree in equals
an ordinary polynomial of the same degree in , and vice versa. This implies in par-
ticular that the polynomial relations 0 (whence the commutativity of
X ), as well as the ones (1) defining the ideal C, can be expressed as -polynomial
relations of the same degree, so that X , X X C can be defined globally in
terms of generators and polynomial relations, and moreover the subspaces X , X
ofX ,X X C consisting of polynomials of any degree in coincide asC -
modules with their deformed counterparts X , X ; in particular their dimensions
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(hence the Hilbert-Poincaré series of both X and X ) remain the same under defor-
mation - an important (and often overlooked) property that guarantees the smoothness
of the deformation. The same occurs with the X -bimodules and algebras of dif-
ferential forms, that of differential operators, etc. We convey all these informations
into what we name the differential calculus algebrasQ Q on R respectively
(generated by the Cartesian coordinates, their differentials, and a basis of vector
fields, subject to appropriate relations; they are graded by the form degree and fil-
tered by both the degrees in the and in the vector fields), and their deformations
Q Q (see Sections 3.1 and 3.2).

In Section 4 we discuss in detail deformations, induced by unitary twists of
abelian [51] or Jordanian [49] type, of all families of quadric surfaces embedded
in R

3, except ellipsoids. The deformation of each element of every class is inter-
esting by itself, as a novel example of a NC manifold. Endowing R

3 with the
Euclidean (resp. Minkowski) metric gives the circular cylinders (resp. hyperboloids
and cone) a Lie algebra k of isometries of dimension at least 2; choosing a
twist F k k we thus find twisted (pseudo)Riemannian (with the met-
ric given by the twisted first fundamental form) that are symmetric under the Hopf
algebra kF (the “quantum group of isometries”); the twisted Levi-Civita connec-
tion on R

3 (the exterior derivative) projects to the twisted Levi-Civita connection on
, while the twisted curvature can be expressed in terms of the twisted second fun-

damental form through a twisted Gauss theorem. Actually, the metric, Levi-Civita
connection, intrinsic and extrinsic curvatures of any circular cylinder or hyperboloid,
as elements in the appropriate tensor spaces, remain undeformed; the twist enters
only their action on twisted tensor products of vector fields. The twisted hyperboloids
can be seen as twisted (anti-)de Sitter spaces 2 2.

In Appendices A, B we recall basic notions in algebraic geometry and prove most
theorems.

We recall that (anti-)de Sitter spaces, which can be represented as solutions of
2 1 2 ... 1 2 2 2 0 in Minkowski R , are maximally sym-
metric cosmological solutions to the Einstein equations of general relativity with a
nonzero cosmological constant in spacetime dimension 1, and play a prominent
role in present cosmology and theoretical physics (see e.g. [19, 44]). Interpreting
in Minkowski R as relativistic -momentum, rather than position in spacetime, then
the same equation represents the dispersion relation of a relativistic particle of square
mass 2 . In either case it would be interesting to study the physical consequences
of twist deformations. On the mathematical side, directions for further investigations
include: submanifolds of C (rather than R ), just dropping -structures and the
related constraints on the twist; twist deformations of the (zero-measure) algebraic
set E .

Finally, we mention that in [30, 31, 50] an alternative approach to introduce NC
(more precisely, fuzzy) submanifolds R has been proposed and applied to
spheres, projecting the algebra of observables of a quantum particle in R , subject to
a confining potential with a very sharp minimum on , to the Hilbert subspace with
energy below a certain cutoff.

Everywhere we consider vector spaces over the field K R C ; we denote
by the K -module of formal power series in with coefficients in K. We
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shall denote by the same symbol a K-linear map and its K -linear
extension .

2 Preliminaries

2.1 Hopf Algebras and their Representations

Hopf algebras. We recall that aHopf algebra overK is an associa-
tive unital algebra overK [ is the product:
for , K with 1 1 is the unit] endowed with a coprod-
uct, counit, antipode . While are algebra maps, is an anti-algebra
map; they have to fulfill a number of properties (see e.g. [13, 22, 43]), namely

id id 2 (coassociativity), id id id
(counitality), id id (antipode property). We
shall use Sweedler’s notation with suppressed summation symbols for the coproduct

and its 1 -fold iteration

1 2 ... . (12)

A -involution on a K-algebra A is an involutive, anti-algebra map A A such
that for all A and K (here denotes the
complex conjugation of ). A Hopf -algebra over K is a Hopf
algebra endowed with a -involution such that, for all ,

1 1 and . (13)

The universal enveloping algebra (UEA) g of a K-Lie algebra g is a Hopf
algebra; are determined by their actions on 1 and on primitive elements, i.e.

g:

1 1 0 and . (14)

It is cocommutative, i.e. , where is the flip, . If there is
a -involution g g on g such that for all g, the UEA
g becomes a Hopf -algebra with respect to the extension g g.
Replacing everywhere in the above definition K by the commutative ring K

one obtains the definition of a Hopf ( -)algebra overK . For any Hopf ( -)algebra
over K the K -linear extension (with completed tensor product in the -adic
topology) is trivially a Hopf ( -)algebra over K . Other ones can be obtained by
twisting (see below).

Hopf algebra modules and module algebras. Given an associative unital algebra A
over K, a K-vector space M is said to be a left A-module if it is endowed with a
K-linear map A M M such that and 1
for all A and M. Similarly right A-modules are defined. An A-bimodule
is a left and a right A-module with commuting module actions. A K-linear map

M M between left A-modules is said to be A-equivariant if intertwines
the A-module actions, i.e. if for all A and M. For a
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Hopf -algebra , a left -module M is said to be a left - -module if there is a
-involution M M on M such that

for all and M. (15)

Similarly, right A- -modules and A- -bimodules are defined. An element M
of a left -module is said to be H-invariant if for all . An
associative unital ( -)algebra A is said to be a left -( -)module algebra if A is a
left -( -)module such that

1 2 and 1 1 (16)

for all and A. More generally, an A-( -)bimodule M for a left -
module ( -)algebra A is said to be an H-equivariant A-(*-)bimodule if M is a left
-module such that

1 2 3 [and (17)

hold for all , A and M, where we denoted the A-( -)module
actions by .

Similarly one defines module ( -)algebras and (equivariant) (bi-)( -)modules over
K , and trivially obtains istances of them from their K-counterparts by K -
linear extension.

Drinfel’d twist deformation. Fix a Hopf algebra over K. A (Drinfel’d) twist on
is an element F 1 1 O of the form (9) satisfying the

2-cocycle property

F 1 id F 1 F id F (18)

and the normalization property id F 1 id F . Every twist is
invertible as a formal power series. We denote the inverse twist by F and suppress
summation symbols, employing the leg notation: F F1 F2, F F1 F2, and
F1 F2 F3 for the expression at both sides of (18). In the presence of several copies
of F we write F F1 F2 for the second copy etc. to distinguish the summations.
To every twist we assign an element F1 F2 . It is invertible with
inverse given by 1 F1 F2 .

Let F be a Drinfel’d twist on . Then F
F F is a Hopf

algebra over K , where the twisted coproduct and antipode are defined by

F F F and F
1 (19)

for all 4. Again, we shall use Sweedler’s notation with suppressed summation
symbols for the coproduct F and its 1 -fold iteration

F F 1 2 ... . (20)

IfA is a left -module algebra thenA A 1 is a left F -module algebra
with respect to the product (10), [now abbreviated as F1 F2

4Here one could replace 1 by , as Centre .
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for A ; this implies the twisted Leibniz rule

1 2 for all F . (21)

More generally, if A is a left -module algebra and M an -equivariant A-
bimodule, then M becomes (cf. [4] Theorem 3.5) an F -equivariant
A -bimodule, with respect to the undeformed Hopf algebra action and the twisted
module actions

F1 F2 and F1 F2 for all A and M
(22)

on M . If is cocommutative then in general F is not, but it is quasi-
cocommutative, i.e.

2 1 R F R for all F (23)

whereR F21F is the triangular structure or universalR-matrix.
R has inverse R FF21 R21 and further satisfies the so-called
hexagon relations

F id R R13R23 and id F R R13R12. (24)

As the representation theory of a Hopf algebra is monoidal, the K-tensor product
M M of two left -modules is also a left -module, via the action
1 2 . The -tensor product

F1 F2 M M (25)

is the corresponding monoidal structure on the representation theory of F , since

1 2 (26)

for all F , i.e. M M M M . Consider [4] for more information.
The algebra itself is a F -module algebra, and one can build a tri-

angular Hopf algebra R isomorphic to F

F F R , with isomorphism F given by
F1 F2 F1 F2

1 and inverse by 1 F1 F2 [1, 36] (cf.
also [24, 29]). In other words, , and R are related
to F F R by the relations

1 1
F

1
F R 1 1 R .

(27)
One can think of also as a change of generators within .

If is a Hopf -algebra, and the twist is either real [namely, if F
F21 ] or unitary (namely, ifF F), then one can make both F and into

Hopf -algebras in such a way that twisting transforms the -modules and module
-algebras into F and -modules and module -algebras, respectively. In fact, if

F is real then also , whileR 1R R 1,
and F endowed with the -involution

F 1 for F (28)
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is a triangular Hopf -algebra (in fact, R F F R); moreover, A , M are a left
F -module -algebra and a F -equivariantA - -bimodule when endowed with the

undeformed -involutions (cf. [43] Proposition 2.3.7). In particular is
a left F -module -algebra. Actually is an isomorphism of the triangular Hopf
-algebra onto the one F

F , see [1, 43] for more information. If F is a
unitary twist, then alsoR is, 1 , and F endowed with the undeformed -
involution is a Hopf -algebra; moreover,A M are respectively a left F -module
-algebra and an F -equivariant A - -bimodule when endowed with the twisted
-involutions

(29)

where A and M (cf. [29]). In particular is a
left F -module -algebra. Actually, one finds that is a triangular Hopf -
algebra, in particular , id , and

F is an isomorphism of triangular Hopf -algebras, see
Proposition 18 in [32].

For their simplicity, here we shall only use abelian or the following Jordanian
Drinfel’d twists on UEAs:

i.) For a finite number N of pairwise commuting elements
1 1 g we set 1 g g,

1
2 1 . Then

F exp g g (30)

is a Drinfel’d twist on g ([51]); it is said of abelian (or Reshetikhin) type. It
is unitary if ; this is e.g. the case if the are anti-Hermitian or
Hermitian. The twist F exp is both unitary and real, leads to the same
R and makes 1, whence F , and the -structure remains undeformed
also for - -modules and module algebras, see (29).

ii.) Let g be elements of a Lie algebra such that 2 . Then

F exp
1

2
log 1 g g (31)

defines a Jordanian Drinfel’d twist [49]. If and are anti-Hermitian, F is
unitary.

2.2 Twisted Differential Geometry

Here we recall some results obtained in [1, 2]. We apply the notions overviewed in
the previous section choosing as Hopf -algebra , where
denotes the Lie -algebra of smooth vector fields on a smooth manifold , as a left
-module -algebra the -algebra X C of smooth K-valued functions on
, as -equivariant symmetric X - -bimodules itself, the space

of differential 1-forms on , as well as their tensor (or wedge) powers. The Hopf
-algebra action on X , and is given by the extension of the Lie derivative: for

, X and we have

L L L i d di (32)
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and we set L L L , L1 id. Henceforth we denote such an extension by .

2.2.1 Twisted Tensor Fields

The tensor algebra T
N0

T on is defined as the direct sum of the
K-modules

T
-times -times

(33)

for 0, 0, where we set T 0 0 X . Here and below stands for
X (rather than K), namely for all X . Every T is an
-equivariant X - -bimodule with respect to the module actions

1 1 1 1 1 1

1 1 1 1

for all and X . This induces the structure of an -equivariant X - -
bimodule on T . In particular, for all T , and X the relations

1 2
(34)

hold. Let T . On a local chart of there are unique functions
1
1 C such that 1

1 d 1 d 1 , where

is the dual frame of vector fields on corresponding to , i.e. d
and we sum over repeated indices.

Consider a (in particular, unitary or real) Drinfel’d twist F on . Applying the
results of Section 2.1 to , X , , and T we obtain the following: F F

is a Hopf ( -)algebra, X is a left F -module ( -)algebra, while T are
F -equivariant X -( -)bimodules. The F -actions are given by the -Lie derivative

L LF1
F2 for all F and T . On -vector fields ,

the -Lie derivative

L F1 F2 R1 R2 (35)

structures as a -Lie algebra. This means that is twisted skew-symmetric,
i.e. R1 R2 and satisfies the twisted Jacobi identity

R1 R2 for all . Fur-
thermore, is F -equivariant, i.e. 1 2 and -vector
fields act on X as twisted derivations, i.e.

L L R1 LR2
(36)

for all and X . By setting A T we can apply the results of
Section 2.1, in particular define a deformed tensor algebra T with associative -
tensor product defined by (25). This can be decomposed as T

N0
T ,
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where T 0 0 X and for 0

T
-times -times

. (37)

In particular, for all T , X and F

1 2

.
(38)

The third formula shows that is actually X , the tensor product over X . Let
T . On any local chart of there unique functions 1

1 C
such that

1
1

d 1 d 1 . (39)

Higher order differential forms are defined by the twisted skew-symmetrization of

F1 F2 R1 R2 (40)

( -wedge product, an associative unital product), and we define
to be the twisted exterior algebra of (see [54] for more information).

The dual pairing between vector fields and 1-forms can be equivalently con-
sidered as X -bilinear maps X or X ; for all arguments ,

these maps have the same images, which we respectively denote by the lhs
and right-hand side (rhs) of the identity . They have distinct twist
deformations ( -pairings) defined by

F1 F2 (41)

with and respectively. They satisfy

R1 R2

1 2

1 2 3 1 2 3 (42)

for all F , , , or , and
1 2 3 X . Moreover, d L . As one can extend the ordinary

pairing to higher tensor powers setting

... 1 1 ... 1 1 (43)

for all T (the image will belong again to T ) provided
or for all , so can one extend to the corresponding twisted
tensor powers using the same formula (41). Due to the ‘onion structure’ of (43) (i.e.
the order of the and of the are opposite of each other), properties (42) are
preserved, namely the -paring is F -equivariant, as well as left, right and middle
X -linear (if we chose a different order in (43) the deformed definition would need
copies ofR acting on the ).
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2.2.2 Twisted Covariant Derivatives and Metrics

A twisted covariant derivative (or connection) is a K -linear map F

K T T fulfilling, for all , X , T and ,

F L (44)

F F (45)

F R1
F
R2

R2 R2R1R1 R1
F
R2

(46)
F R1

F
R2

R2 R2R1R2 R1
F
R2

. (47)

Its curvature RF and torsion TF maps respectively act on all through

TF F F
R1

R2

RF F F F
R1

F
R2

F (48)

and are left X -linear maps TF and RF

fulfilling

TF TF R1 R2 RF RF R1 R2 .
(49)

They are in one-to-one correspondence with elements TF 2 , RF

2 such that

TF TF RF RF . (50)

Setting F 1 1 it follows thatR 1 1 and the definitions of twisted connection,
torsion, curvature give the algebraic notion of connection, torsion, curvature of dif-
ferential geometry. Consider a (classical) connection T T on and its
equivariance Lie algebra e (cf. [32]). The latter is a Lie subalgebra of the Lie
algebra of vector fields defined by

e for all T . (51)

It follows that is e-equivariant, i.e. 1 2 for all e,
and T . If F e e is a Drinfel’d twist, then

F
F1

F2 (52)

defines an eF -equivariant twisted connection F
K T T ; then (46–47)

reduce to

F F R1
F
R2

F F R1
F
R2

(53)

for all , T and (cf. [32] Proposition 2).
A metric on is a non-degenerate element g g g such

that g g g . We can view g as an element g g g with
g g F1 g F2 g . A twisted connection F such that TF 0 and Fg 0
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is said to be a Levi-Civita (LC) connection for g. The associated Ricci tensor map
and Ricci scalar of F are respectively defined by

RicF RicF RF RF RicF g 1 g 1 (54)

(sum over ), where , are -dual bases of , in the sense
. One easily finds RicF RF .

For a (pseudo-)Riemannian manifold g we define the Lie subalgebra

k g g g for all (55)

of Killing vector fields. If T T is the Levi-Civita (LC) covariant derivative
on g [i.e. T 0 andL g g g for all ]
and e the corresponding equivariance Lie algebra, we obtain k e by the Koszul
formula.

The following results are taken from [2, 32]. If F k k is a twist
“based on Killing vector fields”, then (52) defines a twisted LC connection F

K T T , and moreover

g g g g F1 F2 g (56)

for all . F is the unique LC connection with respect to g ; equivalently

L g g F g R1
F
R2

(57)

for all . This twisted metric map g X as well as the
twisted curvature and Ricci tensor maps, are left X -linear in the first argument and
right X -linear in the last argument. Also the twisted Ricci tensor map is in one-to-
one correspondence with an element RicF such that RicF

RicF , by the non-degeneracy of the -pairing. The twisted curvature,
Ricci tensor and Ricci scalar are kF -invariant and coincide with their undeformed
counterparts as elements

RF R 2 RicF Ric RF R X .
(58)

2.3 Twisted Smooth Submanifolds ofRn of Codimension 1

Here we collect the main results of [32] regarding a smooth submanifold D
R whose points solve the single equation 0. More generally, the solutions

D of
0 D R (59)

define a smooth manifold ; varying we obtain a whole 1-parameter family
of embedded submanifolds R of dimension 1. In [32] X stands for
the -algebra of smooth functions on D , and also X C ... are
understood in the smooth context.

Twist deformation of tangent and normal vector fields. According to Section 2.1
is a X -bimodule with X -subbimodules C CC . We further define the
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X -bimodule

0 . (60)

By Proposition 9 in [32], the X -bimodules C and
C CC are -Lie subalgebras of while CC is a -Lie ideal. Further-

more, we obtain the decomposition X d d X , and
the twisted exterior algebras C CC are F -equivariant
X -bimodules. C CC resp. coincide as C -modules with

C CC .
Let g g g be a (non-degenerate) metric on D with inverse

g 1 g 1 g 1.

g 0 g 1 0 (61)

are the X -bimodules of normal vector fields and tangent differential forms. The open
subset where the restriction g 1 g 1 X is non-degenerate
is denoted by D D . If g is Riemannian D D . From now on we denote
the restrictions of to D by the same symbols and by k

the Lie subalgebra of Killing vector fields with respect to g which are also tangent to
D . The deformed analogues of (61)

g 0 g 1 0
(62)

can be defined for any twist F . Henceforth in this section
F k k .

If F k k then by Proposition 10 in [32], there are direct sum
decompositions

(63)

into orthogonal X -bimodules, with respect to g and g 1 respectively. is a -
Lie subalgebra of , and are orthogonal with respect to the -pairing and
actually 0 . Furthermore, the restrictions

g g X g g X
g 1 g 1 X g 1 g 1 X (64)

are non-degenerate. resp. coincide with
asC -modules; and similarly for their -tensor

(and -wedge) powers. The orthogonal projections pr , pr ,
pr and pr and their (unique) extensions to multivec-
tor fields and higher rank forms are the C -linear extensions of their classical
counterparts. They, as well as , are kF -equivariant.

The induced metric (first fundamental form) for the family of submanifolds
D , where D , stays undeformed: gF pr pr g pr pr g
g .

Defining C C and CC , we
further obtain

C CC CC C . (65)
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The following proposition assures that every element of can be represented by
an element in and every element of can be represented by an element in .

Proposition 11 in [32]. For C , C the tangent projections
pr , pr respectively belong to and

.
Let be the LC connection corresponding to D g and F be the twisted

LC connection corresponding to g . The induced twisted second fundamental
form and LC connection on the family of submanifolds are F pr

F and F pr F
K K

respectively; the latter yields the curvature RF via (48). We now summarize
results of Propositions 3, 12 and 13 in [32]. As gF g , also the twisted second
fundamental form, curvature, Ricci tensor and Ricci scalar on are kF -invariant
and coincide with the undeformed ones as elements

F RF R 2

RicF Ric RF R X .
(66)

Hence g gF X , F F

, RF RF , RicF

RicF X , are kF -equivariant maps, and for all
they actually reduce to

g g F1 F2 RF R F1 F2 F3

F F1 F2 RicF Ric F1 F2 (67)

where F1 F2 F3 is the inverse of (18); these maps are left (resp. right) X -
linear in the first (resp. last) argument, ‘middle’ X -linear otherwise, in the sense
g g , etc. Furthermore, the following twisted Gauss equation
holds for all

g RF g RF g F R1
F R2

g F R1 1 R1 2
F R2 . (68)

The twisted first and second fundamental forms, Levi-Civita connection, curvature
tensor, Ricci tensor, Ricci scalar on are finally obtained from the above by apply-
ing the further projection X X , which amounts to choosing the 0 manifold

out of the family. Of course, one can do the same on any other .

Decompositions (63) in terms of bases or complete sets. In terms of Cartesian coor-
dinates 1 of R the components of the metric and of the inverse metric on
R are denoted by g and g 1 d d (as before ).
Using them we lower and raise indices: d d , , ,
etc. In particular

g d d
g 1

g
g 1 .

(69)

Let E ( ), D D R be the subset where E 0, and E 1

on D . If g is Riemannian then D D , because E 0 on all of D (as g 1 is
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positive-definite). Let

g 1 (70)

or spans (and ), while or spans (and
). All are k-invariant. are -dual, 1, but g 1 E,

g , while

1 g g 1 sign E (71)

(see Proposition 8 in [32]); these relations hold also without . The projection pr
(C -linear extension of pr ) on , can be equivalently expressed as

pr g 1 g 1 g 1

pr g g g
(72)

(see Proposition 14 in [32]). By the -bilinearity of g these equations imply in
particular

g 1 g 1

g g
(73)

in terms of the left and right decompositions ,
in the bases 1, 1. One can decompose

themselves in the same way, if one wishes. If the metric is Euclidean
( ) or Minkowski [ diag 1 ... 1 1 ] one makes (73)
more explicit replacing

g 1 g 1 g 1

g g g .
(74)

Finally, we can express the tangent projection acting on , simply as
pr , pr . All the above formulae hold
also if we drop all .

Having determined bases of we now consider . The globally
defined sets 1, 1, where pr ,
pr , are respectively complete in , ; they are not bases, because of
the linear dependence relations 0, 0. An alternative complete set
(of globally defined vector fields) in is

1 where . (75)

In fact, manifestly annihilate , and is complete because the combinations
make up . Clearly , so at most 1 2 (e.g.

those with ) are linearly independent over R (or C), while is of rank 1
over X because of the dependence relations

0 (76)

(square brackets enclosing indices mean a complete antisymmetrization of the latter).
Contrary to the , the are anti-Hermitian under the -structure
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and do not involve g, so they can be used even if we introduce no metric. Setting
, their Lie brackets are

. (77)

By the mentioned propositions, every complete set of , e.g. , is also a com-
plete set of ; similarly, every complete set of , e.g. or , is also a complete
set of .

3 Twisted Algebraic Submanifolds ofRn: the Quadrics

We can apply the whole machinery developed in the previous chapter to twist
deform algebraic manifolds of codimension 1 embedded in R provided we adopt
X Pol R , etc. everywhere. We can assume without loss of generality that the
be an irreducible polynomial function5. It is interesting to ask for which algebraic

submanifolds R the infinite-dimensional Lie algebra admits a nontrivial
finite-dimensional subalgebra g over R (or C), so that we can build concrete exam-
ples of twisted by choosing a twist F g g of a known type. If
are manifestly symmetric under a Lie group6 K, then such a g exists and contains the
Lie algebra k of K (if is maximally symmetric then k is even complete - over X
- in ). In general, given any set of vector fields that is complete in the ques-
tion is whether there are combinations of them (with coefficients in X ) that close a
finite-dimensional Lie algebra g.

Here we answer this question in the simple situation where the themselves
close a finite-dimensional Lie algebra g. This means that in (77) const, hence

is a quadratic polynomial, and is either a quadric or the union of two hyper-
planes (reducible case); moreover g is a Lie subalgebra of the affine Lie algebra aff
of R . In the next subsection we find some results valid for all 3 drawing some
general consequences from the only assumptions X Pol R and g aff ;
in particular, in Sections 3.1, 3.2 we show that the global description of differential
geometry on R in terms of generators and relations extends to their twist defor-
mations, in such a way to preserve the spaces consisting of polynomials of any fixed
degrees in the coordinates , differential and vector fields chosen as generators.
In Section 4 we shall analyze in detail the twisted quadrics embedded in R

3.

5If , we find

on the second term vanishes and the first is tangent to , as it must be; and similarly on . Having
assumed the Jacobian everywhere of maximal rank have empty intersection and can be analyzed
separately. Otherwise vanishes on (the singular part of ), so that on the latter a
twist built using the will reduce to the identity, and the -product to the pointwise product (see the
conclusions).
6For instance, the sphere 1 is invariant; a cylinder in R

3 is invariant under 2 R; the
hyperellipsoid of equation 1 2 2 2 2 3 2 4 2 1 is invariant under 2 2 ; etc.
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If is of degree two then there are real constants ( 0 1 ... )
such that

1

2
0

1

2
00 0 (78)

hence 0, all are constant, and (77) has already the desired
form

(79)

i.e. the span a finite-dimensional Lie algebra g over R. This is a Lie subalgebra
of the affine Lie algebra of R , because all act as linear transformations of the
coordinates :

0 0 (80)

Let rank . To identify g for irreducible ’s ( 2 7 we note that by a
suitable Euclidean transformation (this will be also an affine one) one can always
make the canonical coordinates for the quadric, so that (no sum over
), 0 0 if 0, and coordinates are ordered so that

1 0 ... 0 1 0 ... 0 1 0
1 0 ... 0

0
(81)

with ; moreover, if one can make 00 0 by translation of
a with . The associated new (which are related to the old by a linear
transformation) fulfill

. (82)

It is easy to check that 1 if , 2 if . One can always make
1 1 by replacing 1; one can make also the other nonzero ’s in (82) be
1 by the rescalings 1 2 of the corresponding coordinates (another

affine transformation). So the associated new fulfill (82) with the 1 0 1 .
Then:

• If (what is possible only if 1), then 0.
Hence the center Z g of g is trivial if 1; otherwise it contains
all such 0 0 , and Z g R

1; a basis of Z g is B
1 2 2 3 ... 1 .

• The with span an ideal I g Z g of g, because (82) becomes
; adding the elements with

to B one obtains a basis of I g , hence dim I g

1 1 . I g is a nilpotent Lie subalgebra, the radical R g (the largest
solvable ideal) of g.

• Finally, the with make up a basis of a 1 2-dimensional
simple Lie-subalgebra g , in view of the signs of .

7If all 0 vanish, but 0 0 for some then 1, is a (hyper)plane, and rhs(79) vanishes;
one can express all (or ) as combinations with constant coefficients of 1 independent ones: i.e.
g R

1 is the abelian group of translations in the (hyper)plane. 2 corresponds to a reducible , i.e.
two (hyper)planes.

Math Phys Anal Geom (2020) 23: 38 Page 19 of 57 38



Summing up, the Levi decomposition of g becomes g R.
The cones, which in the coordinates are represented by the homogeneous

equations

1 2 ... 2 1 2 ... 2 0

strictly speaking are not encompassed in the above analysis because the Jacobian
matrix vanishes at the apex 0 (the only singular point). They are alge-
braic varieties that are limits of the hyperboloids 0 as 0. If we omit the
apex, a cone becomes a disconnected union of two nappes (which are open in R ),
and g is spanned not only by the , but also by the central anti-Hermitian element

2 generating dilatations; note that all of them vanish on the apex. Hence
g R in this case.

If we endow R with the Euclidean metric, the metric matrix is not
changed by the above Euclidean changes of coordinates, because the Euclidean group
is the isometry group H of R , whereas its nonzero (diagonal) elements are rescaled
if we rescale 1 2 . Similarly, if we endow R with the Minkowski metric,
Euclidean changes of coordinates involving only the space ones, or a translation of
the time coordinate, do not alter the metric matrix .

3.1 Twisted Differential Calculus onRn by Generators, Relations

Let us abbreviate . We name differential calculus algebra on R the unital
associative -algebra Q over C generated by Hermitian elements 1 i 1
fulfilling

1 1 0 for

0

0

(83)

0

0

0

1 0.

(84)

The 0 1 play respectively the role of the unit, of Cartesian coordinate
functions on R , of differentials of , of partial derivatives with respect
to . This is the adaptation of the definition of Q in the smooth context (Sections
3.1.3, 3.2.3 in [32]) to the polynomial one: the relations in the first two lines define
the algebra structure ofX , the other ones determine the relations (113-114) of [32] for
the current choice ofX and of the pair , of dual frames. The ( 0 ... )
span the fundamental module M of aff (the invariant element 1 itself spans
a 1-dim, non-faithful submodule), the span a related module M , the the
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contragredient one M . More precisely they are related by

1 1

1 0

(85)

the first relation and 0 0 imply 0 0. We encom-
pass these aff -modules into a single one M spanned by 0 1 ... 3

1 1 ... 1 ... 1 ... . All are trivially also g-modules; also g is, under
the adjoint action. Of course, this aff action is compatible with the relations (83-
84); the ideal I generated by their left-hand sides in the free -algebra A generated
by 0 1 ... 3 is aff -invariant. The aff -action is also compatible with
the invariance of the exterior derivative, because .

In the Q framework is the inhomogeneous first order dif-
ferential operator sum of a first order part (the vector field ) and a zero order
part (the multiplication operator by ); it must not be confused with the prod-
uct of by from the right, which is equal to and so far has been denoted
in the same way. In the Q framework we denote the latter by (of course

, remain valid).
When choosing a basis B of Q made out of monomials in these generators,

relations (83-84) allow to order them in any prescribed way; in particular we may
choose

B 1 1 ... 1 1 ... 1
1 ... 0 1 N0

(we define 0 0 0 1). The -algebra structure of Q is compatible with the form
grading

1 1 1

(86)

and the one defined by ( are the total degrees in
respectively). Fixing part or all of we obtain the various relevant aff
modules or module subalgebras or X -bimodules: .... For instance
the exterior algebra is generated by the alone ( 0) and its
component is the aff -submodule of exterior -forms ; by (84)3 dim

; in particular this is zero for , 1 for , and 0 . Let X
be the component of X of degree , and X 0 X (i.e. X X consist resp.
of homogeneous and inhomogenous polynomials in of degree ); X 0 X
is trivially a filtered algebraX 0 X . LetD be the unital subalgebra generated

by the alone, D its component of degree , and D 0D ; then D
0D is trivially a filtered algebra D 0D . Finally, let

Q X D . (87)
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By (85) the aff action maps X D into themselves, and all Q are
aff - -modules. By (83-84), D X X D , whence

Q Q Q (88)

(this multiplication rule would not hold if we had defined Q X D ,
because, D X X D ). A basis of Q is B

1 1 1
. Q is graded by and filtered by both ; it

decomposes as

Q
0 0 0

Q . (89)

Choosing a twist F based on aff (in particular, on g) and setting (10) for all
Q one makes Q into a aff F -module (resp. gF -module) algebra Q

with grading (whereas the grading is not preserved). In the appendix we prove

Proposition 2 The vector fields are the -dual ones
to the ; under the aff (and g) action they transform according to

F . The polynomials relations (83-84) are deformed into the ones

1 1 0 for

0

0

0

(90)

1 1 0

0

0

1 0.

(91)

where R . Defining Q X D , we find not only Q
Q , but that for all N0 also

Q Q (92)

hold as equalities of C -modules. A basis B of Q is obtained replacing all
products in the definition of B by -products. Q is graded by , filtered by both

, and

Q
0 0 0

Q Q Q Q . (93)
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Q is a gF -module -algebra with the Q as -submodules, if F is either real
or unitary; correspondingly the involution is the undeformed one , respectively is
given by (29), i.e.

1 1 [ ] [ ] 1 . (94)

In theQ framework R1 R2 , while so far it stood just
for the -product of the vector field by the function from the right, i.e. for the first
term at the rhs; denoting the latter by R1 R2 , we can abbreviate

. Of course R1 R2 ,
remain valid.

These results are the strict analogues of their untwisted counterparts. Relation (92)
is much stronger than the equality of infinite-dimensional C -modules Q
Q ; it implies dim Q dim Q over C , so that the Hilbert-
Poincaré series of the -graded and -filtered algebras Q Q coincide. In
particular, 0 yields dim X dim X .

The affF -equivariant relations (90-91) definingQ have the same form (see e.g.
formulae (1.10-15) in [27]) as the quantum group equivariant ones defining the dif-
ferential calculus algebras on the celebrated ‘quantum spaces’ introduced in [23].
The relations, among (90-91), that involve only the generators of the twisted
Heisenberg algebra on R (the 0 component of Q ) were already determined in
[24, 25], while (92) extends results of [29].

3.2 Twisted Differential Calculus onM by Generators, Relations

Chosen a basis 1 ... of g (e.g. consisting of ), on D R one can use
1 ... 1 , instead of 1 ... , as a complete set of vector

fields in . They fulfill the following commutation relations with the coordinates

0 0 1 ... (95)

and the remaining relations of the type (113) in [32], i.e.

1 0 1 ... 1

0

0

(96)

with suitable X . For instance, if then the dependence rela-
tions in the first line amount to (76), while the commutation relations in the second
line have constant and amount to (79) for . We collectively rename

1 1 ... 1 ... 1 ... as 0 1 ... ; we denote as A the free algebra
generated by 0 ... , and as A the subspace consisting of polynomials in the

of degree in the , of degree in the and homogeneous of degree in the
. Clearly

A A A . (97)
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A is graded by and filtered by both ; it decomposes as

A
0 0 0

A . (98)

For all R denote as 0 ... J the set of polynomial functions at the
lhs of (96), (83) , (95) involving only with , together with

0

0
(99)

which are (78) and its exterior derivative. Let I be the ideal generated by all the
in A . We define the differential calculus algebra on as the quotient

Q A I . (100)

I I A is a subspace of A . The quotient subspaces Q
A I fulfill

Q Q Q (101)

because of the equations 0, in particular because in (95) are
polynomial functions of first degree in . Q is graded by and filtered by both

; it decomposes as

Q
1

0 0 0

Q . (102)

By (85), (96)2 the span a (reducible) g- -module. Hence A , which is gener-
ated by them, is a g-module -algebra, and the A are g- -submodules. It is
immediate to check that also the span a (reducible) g- -module,

J
(103)

more precisely , while more generally is a numerical
combination of the appearing in the same equation where appears,
e.g. 1 2 . Therefore I is a g-
-module, and Q is a g-module -algebra as well; moreover I I and

Q Q are g -submodules as well.
Equations (85) and (103) with a twist F g g imply that:

1. A is a gF -module -algebra; each component A consisting of polyno-
mials in the of degree in the , of degree in the and homogeneous of
degree in the is a gF - -submodule; A A , A A
hold as equalities of C -modules.

2. For all J, A , I , also

belong to I ; if the twist F is either real or unitary then also ,
do. Therefore I I is a two-sided ( -)ideal of A . For each
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component I I A we find I I . I and I
are gF - -submodules.

This leads to the following

Proposition 3 For all D Q A I defines a gF -module -
algebra, which we shall name twisted differential calculus algebra on ; taking the
quotient commutes with deforming the product:

Q A I A I . (104)

All components Q A I ( N0) are gF - -submodules. Q
is graded by , filtered by both , and

Q
0 0 0

Q Q Q Q . (105)

Q Q and

Q Q (106)

hold for all N0 as equalities of C -modules. The set of characterizing

polynomial relations 0 is equivalent to the set of relations 0
consisting of (90) and other relations of the same degrees in ( ) as
their undeformed counterparts. From any basis B of Q consisting of polyno-
mials in one can obtain a basis B of Q consisting of -polynomials
of the same degrees. If F is either real or unitary, Q is a gF -module -algebra
with the Q as -submodules. If F is real the involution is undeformed . If F
is unitary the involution is given by (29), i.e. on acts as in (94), while

1 2 (this differs from ).

These results are the strict analogue of their undeformed counterparts. Relation
(106) is much stronger than the equality of infinite-dimensional C -modules
Q Q ; it implies dim Q dim Q over C , so that the
Hilbert-Poincaré series of Q Q coincide. In particular, setting 0,
we find dim X dim X .

In Section 4 we explictly determine all of the relations 0 in the specific
case of some deformed quadrics in R3.

4 The Quadrics inR
3

Using the notions and results presented in the previous sections, here we study in
detail twist deformations of the quadric surfaces in R

3. As usual, we identify two
quadric surfaces if they can be translated into each other via an Euclidean transforma-
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tion. This leads to nine classes of quadrics, identified by their equations in canonical
(i.e. simplest) form. These are summarized in Fig. 1, together with their rank, the
associated symmetry Lie algebra g, and the type of twist deformation we perform.
A plot of each class is given in Fig. 2. These classes make up 7 families of sub-
manifolds, differing by the value of . In fact classes (f), (g), (h) altogether give a
single family: (f) consists of connected manifolds, the 1-sheeted hyperboloids; (g),
(h) of two-component manifolds, the 2-sheeted hyperboloids and the cone, which has
two nappes separated by the apex (a singular point); all are closed, except the cone.
For all families, except (i) (consisting of ellipsoids), we succeed in building g-
based Drinfel’d twists of either abelian (30) or Jordanian (31) type (depending on the
coefficients of the normal form) and through the latter in creating explicit twist defor-
mations. Those twists are the simplest ones resp. based on an abelian or “ ” Lie
subalgebra of the symmetry Lie algebras. Note that there are other choices of Drin-
fel’d twists on the “ ”-Lie algebra. In particular we like to mention the twist
of Theorem 2.10 of [34], which is the real (i.e. F F21 ) counterpart
of the unitary Jordanian twist we utilize; both twists lead to the same commutation
relations. Since we are especially interested in describing the deformed spaces in
terms of deformed generators and relations, i.e. we intend to explicitly calculate -
commutators and the twisted Hopf algebra structures, we use abelian and Jordanian
twists, which admit an explicit exponential formulation. Furthermore, all of the con-
sidered symmetry Lie algebras (except the one of the ellipsoids) contain an abelian
or “ ” Lie subalgebra, which allows us to perform a homogeneous deformation
approach for all quadric surfaces. We devote a subsection to each of the remaining
six families of quadrics, and a proposition to each twist deformation; propositions
are proved in the appendix. Throughout this section the star product of a vec-
tor field by a function from the right is understood in the Q Q sense (see
Section 3.1) R1 R2 .

Fig. 1 Overview of the quadrics in R
3: signs of the coefficients of the equations in canonical form (if

not specified, all 00 R are possible), rank, associated symmetry Lie algebra g, type of twist deforma-
tion; h 1 stands for the Heisenberg algebra. For fixed each class gives a family of submanifolds
parametrized by , except classes (f), (g), (h), which altogether give a single family; so there are 7 families
of submanifolds. We can always make 1 1 by a rescaling of . The † reminds that the cone (e) is not
a single closed manifold, due to the singularity in the apex; we build an abelian twist for it using also the
generator of dilatations
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Fig. 2 The irreducible quadric surfaces of R3

4.1 (a) Family Of Parabolic Cylinders: a2=a3=a01=a02=0

Their equations in canonical form are parametrized by 03 R and read

1

2
1 2 3 0. (107)
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For every fixed , R is a foliation of R3. The Lie algebra g is spanned by the
vector fields 12

1
2, 13

1
3 1, 23 2, which fulfill

23 g 0 13 12 23. (108)

Clearly, g h 1 , the Heisenberg algebra. The actions of the on the
are

12 2
1

13 1 3
1

23 2

12 2
1

13 3
1

23 0

12 1 2 13 1 3 23 0

(109)

the commutation relations , , 0
hold in Q .

Proposition 4 F exp 13 23 is a unitary abelian twist inducing the follow-
ing twisted deformations of g, of Q on R

3 and of Q on the parabolic cylinders
(107). The gF counit, coproduct, antipode on the 1 3 coincide with the
undeformed ones, except

F 12 12 1 1 12 23 23 F 12 23
2
23. (110)

The twisted star products and Lie brackets of the coincide with the untwisted
ones. The twisted star products of the with the , and those among
the latter, equal their undeformed counterparts, except 12

2
12

2
23,

1 2 1 2 2 3 2 2 3 1

3 2 3 2 1
1

2
1

2
3.

Hence the -commutation relations of the gF -equivariant -algebra Q read

2 1 1 2 2 3 1 1 3 3 2 2 3 1

2 3
1 0

1 1 2 3

12
2 2

12 23 otherwise

.

(111)

In terms o star products 12
1

2, 13
1

3 1, 23 2. Also the
relations characterizing the gF -equivariant -algebra Q , i.e. Equation (107),
its differential and the linear dependence relations, keep the same form:

1

2
1 1 3 0 1 1 3 0 0. (112)

The -structures on gF , Q Q remain undeformed.
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Alternatively, one could twist everything by the unitary abelian twist F
exp 12 23 .

4.2 (b) Family of Elliptic Paraboloids: a2 > 0, a3 = 0, a03 < 0

Their equations in canonical form are parametrized by 2 00 R,
3 R and read

1

2
1 2 2 2 3 0. (113)

For every fixed , R is a foliation of R3. The vector fields 12
1

2
2

1, 13
1

3 1, 23
2

3 2 fulfill

12 13 23 12 23 13 13 23 0. (114)

Clearly, g so 2 R
2. The actions of the on the are given by

12 2 1 1 2 12 2
1

1
2 for (115)

13 1 3 13 3
1

1 13 3
1

23 2 3 23 3
2

2 23 3
2

(116)

the commutation relations , , 0
hold in Q .

Proposition 5 F exp 13 23 is a unitary abelian twist inducing the follow-
ing twisted deformation of g, of Q on R

3 and of Q on the elliptic paraboloids
(113). The gF counit, coproduct, antipode on the 1 3 coincide with the
undeformed ones, except

F 12 12 1 1 12 23 23 13 13

F 12 12
2
23

2
13 .

(117)

The twisted star products and Lie brackets of the 1 3 coincide with the
untwisted ones except 12 12

2
12 23 13. The twisted star products of
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the with the , and those among the latter, equal their undeformed
counterparts, except

12
3

12
3

23
2 3

12
3

12
1

13

12
2

12
2

23
1

12
1

12 13

12 2 12 2 23 3 1 12 1 12 3 13

1 2 1 2 2 1 3 1 3 2

3 3 3 3 1 2 2 2

2
3 2 3 2 1

1 3 1 3 2 3 3 3 3 1 2

3 2 3 2 1 3 3 3 3 1 2

3 3 1 2
1 2 1 2 3 3

1
2

1
2 3

3
2

3
2

1
3

1
2

1
2

3 1
3

1
3

3
2

(118)

where . Hence the -commutation relations of the gF -equivariant
algebra Q read

1 2 2 1 2 1 3 3 1 2 2 3 3 2 1

3
1

3
2

2
2

3
1

1

3 3 2 1 2
1 2 3 3

1 1 3
2

2 2 3
1

1 3

3 1
2

2
1

3

(119)

while those among the tangent vectors and the generators read

12 12 12 1 13 2 23 3 3
1

13
2

23

12 12 3
1

13
2

23

12 12 12 3 3

3 3 3 3 3 1 2

3 3 3 1 2.

(120)

In terms of star products 12 2
1 2

1, 13
1

3 1, 23
2

3 2. Also the relations characterizing the gF -equivariant -algebra
Q , i.e. Equation (113), its differential and the linear dependence relations keep
the same form

1

2
1 1 2 2 3 0 1 1 2 2 3 0 0.(121)

The -structures on gF , Q Q remain undeformed.
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4.3 (c) Family of Elliptic Cylinders: a2> 0, a3=a0i =0, a00<0

Their equations in canonical form are parametrized by 2 R and read
1

2
1 2 2 2 0. (122)

For every 0, R is a foliation of R3 , where is the axis 1 2

0. Equation (122) can be obtained from the one (113) characterizing the elliptic
paraboloids (b) setting 0. Hence also the tangent vector fields , their commu-
tation relations, their actions on the , the commutation relations of the
with the can be obtained from the ones of case (b) by setting 0. The

fulfill again (114), so that g so 2 R
2. Hence we can deform all objects with

the same abelian twist as in (b), and obtain the corresponding results:

Proposition 6 F exp 13 23 is a unitary abelian twist inducing the twisted
deformation of g, of Q on R

3 and of Q on the elliptic cylinders (122) which is
obtained by setting 0 in Proposition 5.

This is essentially the same as Proposition 15 in [32]. Alternatively, as a complete
set in instead of 12 13 23 we can use 12 3 , which is actually a
basis of ; the Lie algebra g so 2 R generated by the latter is abelian; the
relevant relations are (115) 0,

12 2 1 1 2 12 2
1

1
2 for 115 0

and

3 3 31 3 3 0 3 12 3 12 0.
(123)

We correspondingly adopt the unitary abelian twist F exp 3 12 .

Proposition 16 in [32] . F exp 3 12 is a unitary abelian twist inducing the
following twist deformation of g, of Q on R3 and of Q on the elliptic cylinders
(122). The gF counit, coproduct, antipode on 3 12 coincide with the unde-
formed ones. The twisted star products and Lie brackets of 3 12 coincide with
the untwisted ones. The twisted star products of 3 12 with , and
those among the latter, equal the untwisted ones, except

3 1 1 3 2

3 1 3 1 2

3
1

3
1 2

3 2 2 3 1

3 2 3 2 1

3
2

3
2 1.

Hence the -commutation relations of the gF -equivariant algebra Q read

3 1
2

2
1

3 1
2

2
1

3 1
2

2
1

1 3 1 2 2 1

.

(124)
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In terms of star products 12
1

2
2

1. Also the relations characterizing
the gF -equivariant -algebra Q , i.e. Equation (122), its differential and (76),
keep the same form:

1

2
1 1 2 2 0 1 1 2 2 0 0. (125)

The -structures on gF , Q Q remain undeformed.

4.3.1 Circular Cylinders Embedded in EuclideanR3

If 1 2 1, i.e. 1
2

1 2 2 2 0 and we endow R
3 with

the Euclidean metric (circular cylinder of radius 2 ), then 3
is an orthonormal basis of alternative to 1 2 3 and such that

3 , are orthonormal bases of , respectively; here 12 ,
1

1
2

2 (outward normal). The Killing Lie algebra k is
abelian and spanned (over R) by . 0 for all , whereas the only
non-zero , with are

1 1 1 1
.

(126)
The second fundamental form , , is thus explicitly
given by

(127)

here we are using the decomposition 3
3 of a generic . Thus

is diagonal in the basis , with diagonal elements (i.e. principal curvatures) 1
0 2 1 . Hence the Gauss (i.e. intrinsic) curvature 1 2 vanishes; R 0
easily follows also from R 0 using the Gauss theorem. The mean (i.e. extrinsic)
curvature is 1 2 2 1 2 . The Levi-Civita covariant derivative on

is the tangent projection of

pr .

The deformation via the abelian twist F exp 3 12 k k yields
F

1 2 3 (128)

F pr 3 (129)

because 3 commutes with all such , so that F1 F2 1, and the
projections pr pr stay undeformed, as shown in Proposition 7. Equations (128-
129) determine F for all and F for all via
the function left -linearity in and the deformed Leibniz rule for . The twisted
curvatures RF RF vanish, by Theorem 7 in [2]. Furthermore,

F 67 F 1
1 F 1

2 (130)

for all , leading to the same principal curvatures 1 0 2 1 , Gauss
and mean curvatures as in the undeformed case.
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4.4 (d) Family of Hyperbolic Paraboloids: a2, a03 < 0, a3 = 0

Their equations in canonical form are parametrized by 2 03 0,
00 R and read

1

2
1 2 2 2 3 0. (131)

For all fixed 0, R is a foliation of R3. The Lie algebra g is spanned by
the vector fields 12

1
2

2
1, 13

1
3 1, 23 2

2
3, which

fulfill

12 13 23 12 23 13 13 23 0 (132)

whence g so 1 1 R
2. The abelian twist deformation is entirely similar to the

one of (b): just replace by in the equations of Proposition 5.
In addition, there is also a Jordanian twist deformation on the hyperbolic

paraboloid which we are going to discuss in detail. The tangent vector fields
2

12, 13
1

23, 13
1

23 fulfill the commutation relations

2 2 0. (133)

To compute the action of F on functions it is convenient to adopt the eigenvectors of

1 1 2 2 1 2 3 3 (134)

as new coordinates. In fact, with 1 2, 2 2 and 3 0. Abbre-
viating , the inverse coordinate and the partial derivatives transformations
read

1 1
2

1 2
1

1
2 1

1
2 1 1 2

2 1
2

2 1
2

1
2 1

1
2 2 2 1

3 3
3 3 3 3.

(135)

In the new coordinates 1
2

1 2 3 and

2 1
1

2
2

1
3 2 2

2
3 2 1.

The actions of on coordinate functions, differential forms and
vector fields are given by for all 1 3

3
1 2 2 3

2 2 1

3
1

3
2

1 3 2 3. (136)

Proposition 7 F exp 2 log 1 is a unitary Jordanian twist inducing
the following twisted deformation of g, of Q on R

3 and of Q on the hyperbolic
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paraboloid. The gF coproduct, antipode on read

F 1 F

F F 1

F 1 F .

(137)

The -structures on gF , Q Q remain undeformed apart from 2 2

2 and 1 1 3. The twisted star products of coincide
with the untwisted ones, except

2 2 2 2. (138)

The twisted star products of with equal the untwisted ones, except

2 2
1

3

3 3 1

1 1 3

2 2
1

3

3 3 1

1 1 3

2 2 1

2 2 1

2 1 2

(139)

the twisted star products among equal the untwisted ones, except

2 1 2 2 3
1

1 1 1 2 3

1 2 2 2 3
1

1 1 1 1 1 3

2 3 2 3 2 1

3 3
2 1

1

1 1 1 2 3

3 3
1 2

1

2 1 1 2 2 3

2 1 2 2 3
1 .

(140)
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Hence the -commutation relations of the gF -equivariant algebra Q read

1 2 2 1 2 1

3 3
2 1

1 for 1 2

1 1
3

1 1

2 2 2 1 2 3
1 2 2 1

3 3
1 2

1

1 11 1 1 1
3

2 21 2 1 2
3 2 1 2

3 31 3 1 2 1 1 2 1 1
3

3 1 3 1
1 2

1
2 1 3 3

1 2 1
3

1 1
3

2 1 2 1 2 3
(141)

and

2 2 1

2 2 1

2 1 2

2 2
1

3

3
1

1
3

2 2
1

3 2 3

3
1

1
3 .

(142)

In terms of star products

2 1
1

2
2

1
3

1
3 2 2

2
3 2 1

and the relations characterizing the gF -equivariant -algebra Q become

1

2
2 1 3 d

1

2
2 1 1 2 0. (143)
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4.5 (e) Family of Hyperbolic Cylinders: a2< 0, a3=a0μ =0

Their equations in canonical form are parametrized by 2 R and read

1

2
1 2 2 2 0. (144)

For every 0, this equation with 0 singles out a variety consisting of two
planes intersecting along the -axis; R is a foliation ofR3 . The case 0
is reduced to the case 0 by a 2 rotation around the -axis. Equation (144)
can be obtained from the one (131) characterizing the hyperbolic paraboloids (d)
setting 0. Hence also the tangent vector fields (or equivalently ),
their commutation relations, their actions on the (or equivalently on the

defined by (134-135)), the commutation relations of the with
the can be obtained from the ones of case (d) by setting 0. The
fulfill again (132), or equivalently (133), so that g so 1 1 R

2.

Proposition 8 F exp 13 23 is a unitary abelian twist inducing the twisted
deformation of g, ofQ on R3 and ofQ on the hyperbolic cylinders (144) that is
obtained by replacing in Proposition 16 in [32], Section 4.3.

We can also deform everything with the same Jordanian twist as in (d). We find

Proposition 9 Setting 0 in Proposition 7 one obtains the deformed g, Q
on R

3 and Q on the hyperbolic cylinders (144) induced by the unitary twist F
exp 2 log 1 .

4.6 (f-g-h) Family of Hyperboloids and Cone: a2,−a3 > 0

Their equations in canonical form are parametrized by 2 3 0
00 ( 0, 0 resp. for the 1-sheet and the 2-sheet hyperboloids, 0 for the

cone) and read

1
2

1 2 2 2 3 2 0. (145)

For all 0, R 0 is a foliation of R3
0, where 0 is the cone of

equation 0 0 (see Section 4.6.2). The Lie algebra g is spanned by 12
1

2
2

1, 13
1

3
3

1, 23
2

3
3

2, which fulfill 12 13 23,
12 23 13, 13 23 12. Setting 2

13, 1
12

1
23 and 1

12
1

23, we obtain

2 2 (146)

showing that the corresponding symmetry Lie algebra is g so 2 1 . The commu-
tation relations , , 0 hold inQ .
To compute the action of F on functions it is convenient to adopt the eigenvectors of

1 1 3 2 2 3 1 3 (147)
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as new coordinates; the eigenvalues are 1 2, 2 0 and 3 2. Abbreviating
2

2
1 2 3

3 2 1

the inverse coordinate and the partial derivative transformations read

1 1
2

1 3
1

1
2 1

1
3

1
2

3
1 1 3

2 2
2 2

2
2 2

3 1
2

1 1 3
3

1
2 1

1
3

1
2

1
3 1 3 .

(148)

In the new coordinates, , 1
2

1 3
2

2 2 and

2 1
1 2 3

3
1 1

2 2 2
3

1 3
2 2 2

1.

(149)
The actions of on any read

2
1 1 2 3

2
2

1 3 2 1
2. (150)

Proposition 17 in [32] . F exp 2 log 1 is a unitary twist inducing the
following twisted deformation of g, of Q on R

3 and of Q on the hyperboloids
or cone (145). The gF coproduct, antipode on are given by

F F 1

F
2 1

1
1

1

2

4
2

1 2

(151)

F 1 F 1

F 1 2 1 1
2

4 1 .

(152)
The twisted star products of coincide with the untwisted ones, except

2 2 2

2 2 2 2 .
(153)

The twisted star products of with and with
are given by

3 1
1

2
1 2 3

2
1 32

2 1 1

2 1 3

2 3
2 1

2
1 2 2

3
1

1
2

1 2 3
2

1 3 2 1
1 .

(154)
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Hence the -commutation relations of the gF -equivariant algebra Q read as
follows:

1 2 2 1 1 1 1 3 3 1 2 2 1 2 2 1 1

2 3 3 2 3 1 1 1 1 1 1 2 2 1 1 1

1 3 3 1 2 2 1 2 2 1 1 2 1 1 2 1 1

2 2 2 2 2 3 3 2 3 1 3 1 1 3 2 1 2

3 2 2 3 1 3 2 2 1 2

3 3 3 3 2 3 2 2 3 2 2 3 1

(155)

for ; the twisted Leibniz rule for the derivatives read

1 1 1 1 2 1 1 2 1 1 3 1 2 1 3 2 1 2

1 2 2 1 1 1 3 2 2 3 2 1 3 2 2 1 2

2 2 1 2 2 1 3 2 3 1 2 2 1 2 2 1 1

2 3 3 2 3 1 3 3 3 3 2 3 2 2 3 2 2 3 1

(156)

while the twisted wedge products fulfill

1 1 0 2 2 0 3 3 2 2 3

1 2 2 1 0 1 3 3 1 2 1 2 2 3 3 2 3 1.
(157)

The -commutation relations between generators of Q and the tangent vectors
are

2 1 3

1 1 2 2 1 1

3 3 2 2 2 2

1 1 2 2 1 1 2 1

2 2 3 1

3 3 2 3 2 2 3 2 2 1

(158)

where 1 if , 0 if . In terms of star products

2 1
1 1 3

3

1
2

1 2 2
3

1
2

3 2 2
1.

(159)
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The relations characterizing the gF -equivariant -algebra Q become

0 1
2

3 1
2

2 2

0 d 1
2

3 1 3 1 2 2

0 3 1 2 1 2 1 1 .

(160)

The -structures on gF , Q Q remain undeformed except 3 3

2 2 for .

4.6.1 Circular Hyperboloids and Cone Embedded in MinkowskiR3

We now focus on the case 1 1 , i.e. 1
2

1 2 2 2 3 2 .
This covers the circular cone and hyperboloids of one and two sheets. We endow R

3

with the Minkowski metric g d d d 1 d 1 d 2 d 2 d 3 d 3,
whence g . g is equivariant with respect to g, where g so 2 1 is
the Lie -algebra spanned by the vector fields , tangent to 1 0 . The
first fundamental form g g pr pr makes Riemannian if 0, Lorentzian
if 0, whereas is degenerate on the cone 0. Moreover,

1

2
g (161)

where (outward normal); in particular, this implies the propor-
tionality relation 1

2 (here g ) between the
matrix elements of g in any basis 1 2 of , and, applying the Gauss
theorem, one finds the following components of the curvature and Ricci tensors, Ricci
scalar (or Gauss curvature) on :

R
2

Ric R
2

R Ric
1
(162)

[we recall that by the Bianchi identity one can express the whole curvature tensor
on a (pseudo)Riemanian surface in terms of the Ricci scalar in this way, and that
R R ]. All diverge as 0 (i.e. in the cone 0 limit).
is therefore de Sitter space 2 if 0, the union of two copies of anti-de Sitter
space 2 (the hyperbolic plane) if 0. In Appendix B.7.2 we recall how these
results can be derived. In terms of the coordinates and the tangent vector fields

(145), (76) become the linear dependence relations 1 3 2 2 2
and 3 1 2 0, i.e. Equation (160) for 1, 0. At all points
of at least two out of are non-zero (in the case 0 we have already
excluded the only point where this does not occur, the apex) and make up another
basis 1 2 of . More precisely, we can choose 1 , 2 in a
chart where 2 0, 1 , 2 in a chart where 1 0, 1 , 2
in a chart where 3 0. One can use (161), (162) with each basis ; stands for

g , and these matrix elements are given in (181). Alternatively, we can
use the complete set on all of , keeping in mind the mentioned
linear dependence relations.

Math Phys Anal Geom (2020) 23: 38 Page 39 of 57 38



We now analyze the effects on the geometry of the twist deformation of Proposi-
tion 17 in [32] restated above. The curvature (and Ricci) tensor on R

3 remain zero.
Moreover, (66), (67) apply; namely, on the first and second fundamental forms,
as well as the curvature and Ricci tensor, remain undeformed as elements of the
corresponding tensor spaces; only the associated multilinear maps of twisted tensor
products g X , ..., ‘feel’ the twist (compare also to [2] Theo-
rem 7 and eq. 6.138). Also the Ricci scalar (or Gauss curvature) RF remains the
undeformed one 1 . By (67) the twisted counterpart of (161) becomes

F 1

2
g

1

2
g (163)

the second equality holds because is k-invariant. Similarly, by (67), (55)

RF R1 g R2 g

2
RicF

g
2

(164)

for all ; the twisted counterpart of (162) is obtained choosing
. Hence the matrix elements of F RF RicF in any basis

are obtained from those of the twisted metric g on . In the appendix we
sketchily prove that on

g 8 1 3 g 2 1 2 g 2 2 3

g 1 2 g 2 2 2 2 1 2 2 2 1 2

g 2 1 2 2 1 2 g 2 2 2

g 3 2 g 2 2 3 2 2 2 2 2 2 3.

(165)

Finally, we also show that the twisted Levi-Civita connection on gives

F 2 1
3

F 2 1
1 2 2

2 4 3 4 2 1
3

F 4 2
3 4 1

3
F 2 3

3 2 2
2

F 2 3
1 4 2

1
F 4 2

1 4 2
2

3
3

F 2 1
2

F 2 3
2

F 4 1
1 4 3

3.

(166)

We recall that a sheet of the hyperboloid , 0, is equivalent to a hyperbolic
plane. Other deformation quantizations of the latter have been done, in particular that
of [8] in the framework [7, 52] (cf. the introduction). However, while the -product
[8] is k-equivariant, i.e. relation (16) (which is the ‘infinitesimal’ version of the
invariance property (10) in [8] or (1) of [7]) holds, our -product is kF -equivariant
i.e. relation (21) holds.

4.6.2 (h) Additional Twist Deformation of the Cone

The equation of the cone 0 in canonical form is (145) with 0. In addition to the
tangent vector fields or fulfilling (146) also the generator D

of dilatations is tangent to 0 (only), D 0 , since D 2 ; furthermore
it commutes with all . Hence the anti-Hermitian elements D span a Lie
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algebra g so 2 1 R. The actions of onQ are as in cases (e-f), while
that of D is determined by

D D D D D D .
(167)

Therefore, we can build also abelian twist deformations of 0 of the form F
exp D , g. Here we choose 13

2 , i.e. F exp D 2 . The

cases with 23 12 are similar. Setting 1 1 3 and 2 0, for
we find

F F

F F .

Having this in mind, in the appendix we easily determine the twist deformed
structures.

Proposition 10 F exp D 2 is a unitary abelian twist inducing the follow-
ing twisted deformation of g, of Q on R

3 and of Q on the cone 0. The gF

counit, coproduct, antipode on D coincide with the undeformed ones,
except

F 1 exp D F exp D

F 1 exp D F exp D .
(168)

The twisted star products among D coincide with the untwisted ones. The twisted
star products of D with , coincide with the untwisted ones, except

.
(169)

The twisted star products among read

(170)

with . Hence the -commutation relations of the gF-equivariant
algebra Q are

1 .
(171)

The -structures on gF , Q Q are undeformed, except

which are nontrivial for 1 and 3. In terms of star products D
3

1 , 2 1
1

3
3 , 1

2 2 2
3,

3
2 2 2

1, and the relations characterizing the gF -equivariant
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-algebra Q , i.e. Equation (145) 0, its differential and the linear dependence
relations become

1

2
1 3

2
2 2 0

d
1

2
3 1 1 3 2 2 0

0.

(172)
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Appendix A: Real Nullstellensatz

First of all, we recall some basic notions and notation in algebraic geometry that
we are using in this subsection. In what follows we fix a ground field K of any
characteristic (even though we work only over real and complex fields, all the notions
and definitions we are going to review hold true in a much wider generality).

1. (Algebraic Sets [38, p. 2]) A subset of K is an algebraic set if it is defined as
the set of common solutions of a system of polynomial equations. By Hilbert
basis theorem [46, Theorem 3.3], algebraic sets can be also defined as

K 0

where denotes an ideal of the polynomial ring K
1 .

2. (Zariski topology [38, p. 2]) The affine space K can be endowed with a topol-
ogy, the so called Zariski topology, where closed sets coincide with algebraic
sets. In this section we will equip algebraic sets with the induced topology.

3. (Algebraic, or affine, varieties) An algebraic variety is an irreducible algebraic
set, i.e. an algebraic set which is not the union of two proper (i.e. strictly con-
tained) closed subsets. It turns out [38, Exercise I.1.6] that a non-empty open set
of an affine variety is irreducible.

4. (Decomposition of algebraic sets) An algebraic set can be expressed uniquely
as a union of varieties, no one containing another [38, Corollary 1.6]. Such
varieties are called irreducible components of .
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5. (Radicals) For any ideal K
1 the radical of [46, p. 3], [33,

Section 1.3] is the ideal defined as

Rad K
1 0 .

A radical ideal is an ideal s.t. Rad . By the very definition of prime
ideal [46, p. 2], any such an ideal is radical.

6. (Correspondence among varieties and prime ideals) An affine algebraic set is a
variety if and only if its ideal is a prime ideal [38, Corollary 1.4].

7. (Associated primes) Consider an algebraic set . An associated prime
is a prime ideal of K 1 which is the annihilator of some ele-

ment K
1

. It turns out [46, Section 6] that there are two kinds of
associated primes: minimal associated primes (they are in one to one correspon-
dence with the irreducible components of ), and embedded associated primes
(they have NOT a simple geometric interpretation).

8. (Hilbert’s Nullstellensatz [46, Section 5]) Assume now K algebraically closed
and define

I K
1 0

for any subset K . Then we have

I Rad K
1 .

A weak form of this result says that , for any proper ideal
K

1 [33, Section 1.7].
9. (Regular sequences) A set of polynomials 1 form a regular sequence

in K
1

[46, Section 16], if every is not a zero divisor in K
1

1 1
.

10. (Cohen-Macaulay property [46, Section 17]) An affine variety , such
that dim , is saidCohen-Macaulay at if there is a regular sequence

1 in K
1

, such that 0, . An affine variety
is said Cohen-Macaulay if it is Cohen-Macaulay at any point.

Now consider an algebraic submanifold, i.e. a smooth algebraic variety, R ,
defined by a system of polynomial (1), with 1

R
1 . Assume

that dim . Then, the hypersurfaces defined by each of the equations in (1)
meet transversally et each point of ; in other words, the Jacobian matrix is of rank
at each point of . Consider a further polynomial R

1 and assume
that

0.

One may wonder whether the irreducibility in R
1 of each polynomial

1 is a sufficient condition in order that lies in 1 , the ideal
generated by 1 . The following example answers in the negative.

Example 11 Consider in R
3 the variety defined by the system

2 3 3 1
1

(173)

Math Phys Anal Geom (2020) 23: 38 Page 43 of 57 38



where the first equation represents a cubic cylinder . Since the curve defined by

2 3 3 3 0

is smooth in P
2
C
, the cylinder is smooth and the polynomial 2 3 3 1 is irre-

ducible in R (the same conclusion is obvious for 1). The real variety
defined by (173) is the line

1 1 R

which is obviously smooth. Furthermore, the equation of the tangent plane to the
cylinder at the point 1 1 is 2 1 1 0, hence the intersection is
transversal at each point of . On the other hand, the plane defined by 2 0
contains but

2 2 3 3 1 1
since both 2 3 3 1 and 1 do vanish at the points exp 2

3 1 , R,
and conversely 2 does not. In view of the previous example, it is interesting
to ask for some sufficient condition in order that 1 . An answer is
provided by Theorem 1, which we now prove.

Proof of Theorem 1 Denote by
1

C
1

C
1

the ideal of C 1 generated by 1 . Since we are assuming that the
zero locus of is irreducible, there is only one minimal prime associated to the ideal
. The hypothesis that the hypersurfaces corresponding to the generators of meet

transversally at imply that 1 form a regular sequence in C
1

[46, Section 16], hence the zero locus of is a complete intersection, i.e. an
affine variety defined as the intersection of as many hypersurfaces as its codimension.
This implies that is Cohen-Macaulay, hence there is no embedded associated
prime [46, Theorem 17.3] and the ideal is primary, i.e. there is only one associated
prime. Again, the hypothesis that the hypersurfaces defined by the equations in (1)
meet transversally et each point of imply that is a prime ideal in C

1 .
On the other hand, by Hilbert’s Nullstellensatz [5, Exercise 7.14], [33, Section

1.7], [46, Theorem 5.4], the hypothesis 0 amounts to

Rad C
1 0

where Rad denotes the radical of [5, Exercise 1.12], [33, Section 1.3] and where
the last equality follows because is prime. This shows that R

1

1 . Finally, for a complex-valued 1 2 vanishing on both
1 2 do, and therefore belongs to the complexification of 1 .
As for the last statement, the projective closure P

C
of the zero locus of (1)

in P
C
has degree at least . On the other hand, is the maximum degree so is a

complete intersection in P
C
. Then, there cannot be other components and the variety

defined by (1) is irreducible in P
C
. The statement follows at once, since a non-empty

open set of an irreducible variety is irreducible [38, Exercise I.1.6].

Remark 12 Consider an algebraic smooth hypersurface , defined by a single equa-
tion 0, with deg . By the result above, in order that any polynomial ,
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such that 0, is a multiple of it suffices that there exists a line meeting in
points.

Appendix B: Proofs of Sections 2, 3, 4

B.1 Proof of Proposition 2

Using the definition F1 F2 , R1 R2 and the relation

F id R R21 id 1
F R . F F R R (174)

valid for all triangular Hopf algebras, one can prove relations (90–91) as follows:

R2 R1 R2 R1

R2 R1 R2 R1

obtained from the previous one applyingd

R2 R1 [ F R2 ] [ F R1 ]

174
[R2] [R1]

10 F1 F2 F1 F2

F1
0 F2 1 F2 1

F1 1 F2 F2

10 F1 F2 1 F1 F2 F1 F2

F1 F2 1 F1 F2 F2 F1

1 [R2] [ R1 ] 1 [R2] [ F R1 ]

1 [R2] [ F R1 ]
174

1 [R1] [R2]

1 .

By (85) the action of either leg F1 F2 of the twist, or F1 F2 of its inverse, as well
as of any tensor factor in the (iterated) coproducts of F1 F2 F1 F2, maps every
homogeneous polynomial in or into another one of the same degree, and every
polynomial in into another one of the same degree: hence (92), (93) follow. Finally,
the relations F , (94) are straightforward consequences of (19),
(29), (85):

[ F ] [ F ]

[ ]

[ ]

[ ] 1 1 .
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B.2 Proof of Proposition 3

All statements up to (106) and the statement that the -polynomials have
the same degrees in as the polynomials are straightforward conse-
quences of (85) and of what precedes the proposition. Under g the transform
as the ; in fact, since , we find

. Hence

1 2 1 2

1 2

this can be computed more explicitly using the relation (see e.g. Equation (126) in
[29])

F 1 F 1
21 F 1

21 F 1 . (175)

B.3 (a) Family of Parabolic Cylinders

Proof of Proposition 4

Since 13 and 23 are commuting anti-Hermitian vector fields it follows that F is a
unitary abelian twist on g. We find exp 12 23 , and

13 12 12 13 23
1

13

for all 0, since 13 12 23, 13 23 0. This implies

F 12 1
0

13 12 23

12 1
1

12 13 23
1

23
1

13 23

12 1 F 23 23

1

1

1
1

13
1

23

12 1 F 23 23 F

F 12 F 12 1 1 12 F 1
12 1 1 12 23 23

where in the last equation we use F 1 12 1 12 F since the second leg of
the twist is central. Moreover F 13 1 0

1
13 23 13 1 F

and F 23 1 23 1 F show that F 13 13 and F 23

23 . We have thus proved the claimed coproducts F . Next, the latter and
the antipode property F id F 1 0 easily determine the
twisted antipode F 12 as in (110), and other ones F .
Furthermore, since the 23 contained in the second leg of the twist commutes with
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we conclude that and for all 1
3 and 1 3. For the same reason one gets for all 1 3

.

On the other hand by (109) we obtain

3 2 23

2 1 3
1

1 2 3

3 2
1

for all 1 3. The commutation relations respectively follow. Furthermore
this means we can express the generators of the Lie algebra in terms of the twisted
module action, namely 12

1
2

1
2, 13

1
3 1

1
3 1

and 23 2, while 1
2

1 2 3 1
2

1 1 3 , d
1 1 3 1 1 3 and

2 1
23 12 2 1

23 12

hold. Again by (109) 12 23 0, 12 23 0, 12 23 0 for all
1 2 3, which implies that the -structure on Q remains the same as on Q :
.

B.4 (b) Family of Elliptic Paraboloids

Proof of Proposition 5

Since 13 23 are commuting anti-Hermitian vector fields F is a unitary abelian
twist on g. By a direct calculation one finds F2 F1
exp 13 23 . The commutation relations (114) also imply F 13

13 F , F 23 23 F , resulting in F 13 13 and F 13

13 , respectively. Moreover,

13 12 12 13 23
1

13 and 23 12 12 23 13
1

23

for 0, which follow by iteratively applying (114). Then

F 12 1
0

13 12 23

12 1
1

12 13 23
1

23
1

13 23

12 1 F 23 23 F
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F 1 12 1 12

1
13 23 12

1 12

1
13 12 23

1
13 13

1
23

1 12 F 13 13 F

imply (117)1. The twisted antipodes (117)2 follow using the properties F
id F id F F . The twisted tensor and star products coincide
with the untwisted ones as soon as one of the factors is 13 or 23. This is because
the latter commute with both legs of the twist. Among all star products of generators
of g only the one

12 12

0
13 12 23 12 12 12 23 13

is different. By a similar direct calculation one can prove (118). The latter imply (119-
120) and that the submanifold constraints coincide with their twisted analogues,
namely (121) holds. The twisted star involutions coincide with the untwisted ones,
since 13 23 13 23 13 23 0. This concludes the proof of
the proposition.

B.5 (c) Family of Elliptic Cylinders

Proof of Proposition 16 in [32], see Section 4.3

Since 3 12 0 and 3 12 are anti-Hermitian, F exp 3 12 is
a unitary abelian twist on g. As 3 12 commute with both legs of the twist,

F 3 3 , F 12 12 , F 3 3 , F 12 12
and all twisted tensor and star products as well as Lie brackets where one of the
factors is 3 12 coincide with the untwisted ones. Furthermore the star products
of 12 coincide with the classical ones unless the first leg of the twist
acts on 3. Consequently, (115) 0 implies (124) and the equations (125) coin-
cide with their classical analogues. The twisted star involutions are trivial since
3 12 3 12 3 12 0. This concludes the proof.

B.6 (d) Family of Hyperbolic Paraboloids

Proof of Proposition 7

The anti-Hermitian vector fields and satisfy (133), which implies that F
exp 2 log 1 is a unitary Jordanian twist on g. We note that

2
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for all 0, which follows by iteratively applying (133). In particular this implies

log 1
1 1

2
1

log 1 2
1

1 log 1 2
1

1

where we have made use of the expansions

log 1
1

1
1

0

.

Both are well-defined in the -adic topology. Applying this result iteratively we
obtain

log 1 log 1 2
1

log 1 1

for all 0, whence

F 1
0

1

2
log 1

0

1

2
log 1 2

1
2 1

log 1 1

1 F
1

F .

This and F 1 1 F determine F as in (137). For the twisted
coproduct of we first remark that 2 2 1 for all 0, which is
proven by induction. Then

F 1
0

1

2
log 1

1
0

1

2
1 log 1

1 exp
2

1 log 1

1 exp 1 log 1 exp
2

log 1

1 F .

This and F 1 1 F determine F as in (137). Similarly one proves

F 1 1 exp 1 log 1 exp
2

log 1

1
1

F (176)
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and F 1 1 F , which determine F as in (137). Next, it is straight-
forward to check that the coproducts F , with , and the antipode
property F id F 1 0 determine the twisted antipodes F
as in (137). To compute the twisted tensor and star products we first make only the
first leg F1 of F to act on its eigenvectors (generators of g and of
Q), and find

F1 F2 1

F1 F2 exp log 1 1 1

F1 F2 exp log 1 1

F1 F2 exp
2
log 1 1 2

F1 F2 exp
2
log 1 1 2

for all , 1 3; note that the exponents 2 take the values 1 0.
This simplifies the computation of the action of the second leg F2 on the second
factor; using (133) and (136) and noting that only the terms of degree lower than two
in the power expansion of 1 1 contribute to its action on the ,
by a direct computation one thus finds the star products (138-140). In particular the
twisted tensor and star products are trivial if 3 or 3 appears in the first factor. The
twisted commutation relations (141)-(142) and the twisted submanifold constraints
(143) follow. For the twisted star involution note that

0

1
log 1

2
1 2 2 2

0

1
log 1

2
1 2 1 3

since 3
1 2 2 and 3 0, 2 1, while 1 3, and

1 1.

B.7 (d-e-f) Elliptic Cone and Hyperboloids

B.7.1 Proof of Proposition 17 in [32], see Section 4.6

From the anti-Hermiticity of the vector fields and from 2 it follows
that F exp 2 log 1 is a unitary Jordanian twist on g and that the
coproducts and antipodes of are exactly as in case (d). Similarly, (176) holds,
because it is only based on the relation 2 .
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To compute F we first determine F 1 . We use 2 ,
, and find by induction first that 2 , then

1 1 2 2 2 1

1 2 2 1

2 1 2 1 1

1 1 1

for all 0, by the “little Gauss” 1
1

2

2 . Consequently, using the series
expansions

log 1
1

1
1

0

1
1 2

1

1

we obtain

log 1
1 1

2 log 1
2

1

log 1
1

1 1

1

2

1 1

log 1
2

1 2 1

and in turn

log 1 log 1 1 log 1
2

1
log 1 1

log 1 2
1

log 1 1

log 1 log 1 1 log 1
2

1 2 1

log 1 1 log 1
2 log 1 1

1 2

log 1 1

1
2 1

2

1 2
log 1 2

log 1
2 log 1 1

1 2

log 1 1

1

2 1 2 1
2 log 1 2

1 2

log 1
2

1
log 1 1

1
1

2 log 1 2

1 2
.
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Hence

F 1
0

1

2
log 1

0

1

2
log 1

2

1
log 1 1

1

1
2 log 1 ] 2

1 2

1
2

2

1
1

1 2

2 2

1 2
F .

On the other hand, using 2 2 1 we obtain

F 1
0

1

2
log 1

0

1

2
1 log 1

1 exp
2

1 log 1
1

1
F .

Summing the last two equations we find that F is as in (151). The antipode
F follows from the antipode property F id F 0.
To compute the twisted tensor and star products we first make only the first legF1

of F to act on its eigenvectors (generators of g and of Q), and find

F1 F2 1

F1 F2 exp log 1 1 1

F1 F2 exp log 1 1

F1 F2 exp 2 log 1 1 2

1 1 1 if 1
2 1 if 2
3 1 if 3

(177)

where , 1 3; note that the exponents 2 take the values
1 0. By the first relation the twisted tensor or star products are trivial if or

some 2 is the first factor. The following two imply (153). Moreover, for all
, we find

1 1 2 2

2

3 1

1 2 1 2 3
2 2 2

3
1 if 1

2 if 2
3

2
1 1 2 3

2 if 3.

By explicit calculations these imply relations (154-159), as well as (160), once one
notes that

2 3 1 2 3 1 2 1 2 1 1 .
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To determine recall that F1 F2 . Then

F2 F1

0

1
log 1

2

0

1
log 1

2
1 2

0
1

2

1 3

1 if 1
2 if 2
3 2 2 if 3.

B.7.2 Metric and Principal Curvatures on the Circular Hyperboloids and Cone

One can easily check the statements of the first paragraph of Section 4.6.1 using e.g.
the basis 1 2 3 of , where

1 12 2
2

3
3 1

1
2

2 3
(178)

we have abbreviated 2 1 2 2 2. is orthogonal with respect to g, while
1 2 is an orthogonal basis of with respect to g , since, by an easy

computation,

g

2 if 1
E 2 if 2

E if 3
0 otherwise

(179)

where E . Since E 2 on , is indeed Riemannian if
0, Lorentzian if 0, whereas the metric induced on the cone 0 is degenerate.

One can easily check (161), (162) on such a by explicit computations. The dual
basis consists of

1 1
2

1 2 2 1 2 1

E 2
3 1 1 2 2 2 3 3 1

E
.

(180)
The principal curvatures on are indeed sign 2 , 1 2 , because in the
‘orthonormal’ basis 1 2 3 , with 1

1
1, 2

1
E 2, 3

1
E

, one finds

g

1 if 1
sign E if 2

sign E if 3
0 otherwise

sign E

E
g 3. (181)

On the metric gives

g 1 2 g 3 2 g 8 1 3

g E 2 2 g 2 1 2 g 2 2 3 (182)
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and the same results in the last line if we flip the arguments. To prove (165) we
use (67), (56), (177), the X -linearity of g. To prove (163) we use (67), (177). The
undeformed version of (164) follows from (162) byX -linearity.We prove (164) using
(67), (18), the definition ofR:

RF R F1 F2 F3 2 where

F2 g F1 F3 F1 2 F2 g F1 1 F1 F2

F1 1 F1F1 F2 g F1 2 F2F2 F1 F2

F1F1 F2 g F2 1 F1F2 F1 F2 2 F2

F1R1 g F2 1 F1R2 F2 2 F2 F1R1 F2 g F1R2 F2

R1 g R2

F1 g F2 F3 F1 g F2 1 F1 F2 2 F2

F1 F2 g F1 F2 g .

To prove (166) we note that classically is the Levi-Civita covariant derivative
and F , F

for all , while by (177), (146) F 2 ,
F 2 2 , F
2 and F .

Proof of Proposition 10

g 0 implies F 1 1 F for all g. Moreover, since F 1
1 F , F 1 1 F , it follows that F , F

, F , F . On the other hand,
2 , 2 imply

F 1 exp 2 1 1 exp 2 1 F
F 1 exp 2 1 1 exp 2 1 F

which together withF 1 1 F and F id F 0 for
imply (168).

g 0 also implies F1 F2 1 for all g, whence
for all g Q, in particular for the appearing in the formulas of

the proposition. , for imply F1
F2

2, F1 F2
2, whence 2 ,

2 . Since and (generators of Q) are all
eigenvectors of , choosing as each of them, we immediately find the remaining
formulae in (169-170). One finds the involution using the following results:

F2 F1 0 2
2

2 2 .
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The commutation relations (171), the realization of as combinations of
, and the relations (172) characterizing Q follow from (169-170) by direct

computations.
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