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1 Introduction

1.1 Directed Growth Models

In this article we study a generalisation of two specific models of directed last pas-
sage percolation, namely the longest common subsequence model concerning the size
of the longest common subsequence between words drawn uniformly from a finite
alphabet [8], and an independent version introduced in [40] as an exactly solvable
discrete analogue of the Hammersley process [20]. We call the latter the independent
model.

We study these models near directions for which the corresponding shape function
starts developing a flat segment, which is called the soft edge of the model. Both
models fit in the general framework [14], namely there is:

(i) The random environment ω ∈ R
Z

2
, whose law we denote by P. Each marginal

ωu should be viewed as a random weight placed on site u ∈ Z
2.

(ii) A collection � of admissible paths on Z
2. A path π from u to v is uniquely

identified by an ordered sequence of integer sites, so when necessary we write
π = {u = u0, u1, . . . , u� = v}. A path π is admissible if and only if its
increments zk = uk −uk−1 are contained in a finite set R ⊂ Z

2. For u, v ∈ Z
2

we denote the set of admissible paths from u to v by �u,v . It is a requirement
that P is stationary and ergodic under shifts Tz, z ∈ R.

(iii) A measurable potential function V : R
Z

2 × R� → R. For the two models
under investigation we always have � = 1 and V is a bounded function, thus
satisfying the technical assumptions of [14].

The point-to-point last passage time from u to v is the random variable GV

defined by

GV
u,v = max

π∈�u,v

{∑
uk∈π

V
(
Tuk

ω, zk+1
)}

. (1.1)

A well studied version of the model is the corner growth model, for which R =
{e1, e2}, the coordinates of ω are i.i.d. under P and the potential V for the corner
growth model is defined by

V (ω, z) = ω0, z ∈ R = {e1, e2}. (1.2)

Whenever we are referring to last passage time under this potential and these admis-
sible steps, we will use T instead of GV . It is expected that under some regularity
assumptions on the moments and continuity of ω0, the asymptotic behaviour of
T (e.g. fluctuation exponents for T and the maximal path, distributional limits,
etc) is environment-independent. This is suggested by results available for the two
much-studied exactly solvable models when ω0 is exponentially or geometrically dis-
tributed and further evidenced by the general theory in [14–16] and the edge results
of [7, 31], as we discuss later.

The main models in this article have set of admissible steps R = {e1, e2, e1 + e2}
and the coordinates of the environment take values in {0, 1}. Our choice of potential
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is a two-parameter family of bounded functions, indexed by two non-negative
parameters α and β:

Vα,β(ω, z) =
{

ω0 − α (1 − ω0) ifz = e1 + e2
−β ifz ∈ {e1, e2} .

(1.3)

This particular choice of potential is inspired by a problem which appears in compu-
tational molecular biology, computer science and algebraic statistics, as we explain
at the end of this introduction. Our strongest results are obtained when α = β = 0
and the marginals of ω are i.i.d. Bernoulli random variables on {0, 1} with parameter
p ∈ (0, 1), because we then obtain a solvable model [39]. This will be referred to as
the independent model, and the passage time from (0, 0) to (m, n) is denoted G

(α,β)
m,n

when both α and β are important. When α = 0 we further simplify notation by
G

(β)
m,n = G

(0,β)
m,n . The special case α = β = 0 was studied in [5, 13, 40]. Asymptotic

results as p tends to zero were obtained in [25].
We consider a rectangle of height n and width mn = n

p
− xna for a ∈ (0, 1) and

show that the fluctuations of G
(0)
mn,n converge, suitably rescaled, to the Tracy–Widom

GUE distribution. The size of the rectangle is not arbitrary. A justification for this
option comes by looking at the limiting shape function

gpp(t) = lim
n→∞

G
(0)
�nt�,n
n

,

continuous in t . When t > 1
p

the function has a flat edge: gpp(t) = 1.When p < t <

1/p, gpp(t) is strictly concave and when t < p, gpp has another flat edge, namely

gpp(t) = t . Fluctuations of G
(0)
�nt�,n are of order n1/3 when t ∈

(
p, 1

p

)
, so by looking

at the rectangle mn × n we study these fluctuations at the onset of the flat edge, but
macroscopically we converge to the critical point t = 1/p.

1.2 Edge Results

There is a coupling of G
(0)
n
p

−xna,n
with Tn,n2a−1 , which we describe in Section 4. This

mapping was exploited in [13] to obtain the local weak law of large numbers

lim
n→∞P

⎧⎨
⎩
∣∣∣∣∣∣
n − G

(0)

p−1n−xna,n

n2a−1
− (px)2

4(1 − p)

∣∣∣∣∣∣ < ε

⎫⎬
⎭ = 1 (1.4)

for all a ∈
(

1
2 , 1
)

. We use the same coupling to obtain a distributional limit for the

edge. The coupling classifies results for G
(0)

p−1n−xna,n
as “edge results”. The termi-

nology “edge results” is motivated by the fact that the last passage time T is studied
in a thin rectangle, either with dimensions n × yn and letting y → 0 after sending
n → ∞ [31], or with only one macroscopic edge, namely of dimensions n × xnγ

with γ < 1.
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Several results near the edge are universal, in the sense that they do not depend
on the particular distribution of the environment. In the sequence we denote the envi-
ronment for the corner growth model by ζ = {ζu}u∈Z2+ . An approximation of i.i.d.
sums with a Brownian motion [26] was used in [17] to obtain the weak law of large
numbers,

Tn,xnγ − nE(ζ0)√
Var(ζ0)n1+γ

=⇒ c
√

x, (n → ∞),

and simulations lead to the conjecture that c = 2. The conjecture was proved in
[41] via a coupling with an exclusion process and later in [4] using a random matrix
approach. A coupling with the Brownian last passage percolation model [4, 36] allow
[7] to obtain

Tn,nγ − nE(ζ0) −√Var(ζ0)n1+γ

n
1
2 − γ

6
√

Var(ζ0)
=⇒ W, (n → ∞), (1.5)

where W is has the Tracy-Widom GUE distribution [43]: the limiting distribution of
the largest eigenvalue of a GUE random matrix. If ζ0 has exponential moments, (1.5)
holds for all a ∈ (0, 3

7 ).

1.3 The Alignment Model

The problem of sequence alignment [34, 42] can be cast in this framework. Consider
two words ηx = ηx

1 . . . ηx
m and ηy = η

y
1 . . . η

y
n formed from a finite alphabet A.

We consider the case where each letter of ηx and ηy is chosen independently and
uniformly at random from A. We are looking for a sequence of elementary operations
of minimal cost that transform ηx to ηy. These operations are:

(1) replace one letter of ηx by another, at a cost α

(2) delete a letter of ηx or insert another letter, each at a cost of β.

Assign a score of 1 for each match and subtract the costs for replacements, deletions
and insertions. Each sequence of operations taking ηx to ηy is thus assigned a score
L

(α,β)
m,n , also often called the objective function. We will also write L

(β)
m,n for L

(0,β)
m,n .

A problem arising in molecular biology [1, 21, 35, 37, 44, 46] is to maximise
this alignment score. In that context the words ηx and ηy can be DNA strands (with
A = {A, C, G, T }), RNA strands (A = {A, C, G, U}) or proteins (with A the set
of amino acids that make up a protein), and the elementary operations correspond to
mutations. A choice of the parameters α and β corresponds to a judgement on how
frequently each type of mutation occurs. The optimal score for an alignment of ηx

with ηy can then be considered a measure of similarity between these words. The
question also appears in algebraic statistics [38]: there the objective function is the
tropicalisation of a co-ordinate polynomial of a particular hidden Markov model.

The special case α = β = 0 corresponds to the problem of finding longest com-
mon subsequence (LCS) of the words ηx and ηy, which has been intensively studied
by computer scientists [6, 22, 29, 32] and mathematicians [2, 8, 18, 23, 27, 28].
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On the other hand, the alignment score L
(α,β)
m,n is the last passage time (1.3) in

environment

ωij =
{

1 if ηx
i = η

y
j

0 otherwise,
(1.6)

i.e. the marginals of ω are (correlated) Bernoulli random variables with parameter
|A|−1. The model with this choice of environment is referred to as the alignment
model.

A deletion of a character in ηx corresponds to a horizontal step (e1) in the last
passage model, whereas an insertion of a letter into ηx corresponds to a vertical step
(e2). Replacing a letter in ηx by another corresponds to a diagonal step (e1+e2) onto a
point (i, j) where ωij = 0, whereas any letter left alone (i.e. a successful alignment)
corresponds to a diagonal step onto a point (i, j) where ωij = 1. The path in Fig. 1
corresponds to the alignment

ηx : AAB A −B A

ηy : −AB AAB A

in which the bar under the first A of ηx corresponds to deleting the letter A from
ηx while the bar in ηx corresponds to inserting the letter A there. A convenient
way to look at this is that the bars, called gaps, are used to stretch the two words
appropriately so that different matchings are obtained.

1.4 Optimality Regions

Which paths are optimal depends on the choice of parameters α, β. In molecular
biology these parameters are often chosen ad hoc and it is not clear that there is
a single ‘right’ choice [44]. An alternative approach is to consider the space C =
[0, ∞) × [0, ∞) of all possible parameters (α, β) and to analyse how the optimal

Fig. 1 Environment generated by the two strings AABABA and ABAABA. Colored dots correspond
to the value 1, white dots to the value 0. The thickset path is a maximal path in this environment, from
(0, 0) to (6, 6) with minimal number of vertical or horizontal steps (just 2 in this case). When α = 0, the
illustrated path has score 5 − 2β since the environment only contributes to the weights if collected by a
diagonal step. The score coincides with the last passage time for β ≤ 1/2. For α = 0 and β > 1/2 the
main diagonal is optimal, with score equal to 4. These are the only two optimal paths, so there are two
optimality regions
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paths change as (α, β) varies. A maximal subset of C on which the set of optimal
paths does not change is called an optimality region of C. The shape of optimality
regions in C are semi-infinite cones bounded by the coordinate axes and by lines of
the form β = c+α(c+1/2) for certain values of c. So it suffices to study the number
of regions with one parameter fixed; we will set α = 0.

Denote the number of optimality regions in this model by R
(al)
m,n. Naturally the

(expected) number of optimality regions attracted a lot of interest both theoretically
[12, 19, 45] and in applications [10, 24, 30, 33]. The current conjecture [11, 38] is
that E(R

(al)
n,n ) = O(

√
n), but the complexity of the random variable does not allow

for direct calculations. In this article we obtain an asymptotic lower bound for the
optimal score when a is fixed, as well as upper bounds for the number of optimality
regions when the rectangle is of dimensions mn × n. With random words of this size
the biological applications are unrealistic but the results offer some insight from a
theoretical perspective. Moreover, we prove that O(

√
n) for the expectation is not the

correct order in this case, at least for a < 3/4.
Optimality regions can be studied in the independent model as well, and in fact

we can obtain stronger results, again when the rectangle is of dimensions mn × n.

1.5 Outline

The paper is organised as follows: in Section 2 we state our main results. Section 3
contains preliminary results that do not depend on the specific choice of environment
and therefore hold for both the alignment and the independent model. The results
concerning the independent model are proved in Section 4 whereas in Section 5 we
prove our results about the alignment model.

1.6 Notation

We briefly collect the pieces of notation discussed so far and list the most common
notation used in the paper. Letters T , G and L all denote last passage times: T is for
passage times under potential (1.2), G is the passage time for the independent model
and L its counterpart for the alignment model. The letter R is reserved for the number
of optimality regions, and we distinguish the regions in each of the two models by
R

(ind)
m,n the regions in the independent model, and by R

(al)
m,n the regions in the alignment

model. We omit the superscripts when results hold for both models (see for example
Section 3).

Throughout, p is a parameter in the interval (0, 1) and q = 1−p. A is the alphabet
in the alignment model and |A| is its size.

2 Results

In this section we have our main results, first for the independent model and then the
softer ones for the alignment model.
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2.1 Independent Model

See Section 4 for a proof of Theorems 2.1, 2.3, 2.4 and Corollary 2.2.
We consider the last passage time G

(0)
mn,n with mn =n/p−xna for suitably chosen x.

When the exponent a is small we obtain tightness without rescaling, for any choice of x:

Theorem 2.1 Let x ∈ R and a ∈
(

0, 1
2

]
. The sequence

(
n − G

(0)
n/p−xna,n

)
n∈N is

tight and

lim
n→∞P

{
n − G

(0)
n/p−xna,n ≥ k

}
≤
{

2−k, a < 1/2(
�
(
xpq− 1

2

))k

, a = 1/2.
(2.1)

where� is the cumulative distribution function of the standard Gaussian distribution.

We will see in (3.12) that R
(ind)
m,n < n − G

(0)
m,n. As a corollary we obtain an asymp-

totic bound on the expected number of optimality regions. A Monte Carlo Simulation
for the expected number of regions can be seen in Fig. 2.

Fig. 2 Monte Carlo simulations for the empirical maximum, minimum and expected number of regions
for up to n = 1000 in the independent model for a = 0.8 with varying p = 0.05, 0.5, 0.8 from left to
right. For each n, 25 independent environments were sampled. n grows in increments of size 10
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Corollary 2.2 Let a ∈
(

0, 1
2

]
. Then

lim
n→∞E

[
R

(ind)
n/p−xna,n

]
≤
{

2, a < 1/2(
1 − �

(
xpq− 1

2

))−1
, a = 1/2.

. (2.2)

For a > 1/2 we state a bound on the number R
(ind)
m,n of optimality regions. The

optimal results and the relevant scaling of m in terms of n differ according to the
value of a.

Theorem 2.3 Let a ∈ (0, 1).

(1) If a ∈
(

0, 1
2

]
,

lim
n→∞P

{
R

(ind)
n/p−xna,n ≥ k

}
≤
{

2−k, a < 1/2(
�
(
xpq− 1

2

))k

, a = 1/2.
(2.3)

(2) If a ∈
(

1
2 , 3

4

]
there exists a constant C1 = C1(x, p) so that

lim
n→∞P

{
R

(ind)
n/p−xna,n > C1n

2a−1
}

= 0. (2.4)

(3) If a ∈
(

3
4 , 1
)
there exists a constant C2 = C(x, p) so that,

lim
n→∞P

{
R

(ind)
n/p−xna,n > C2n

2a/3
}

= 0. (2.5)

In the theorem above, (2.4) holds also when a > 3/4, however the bound n2a/3 is
sharper.

Finally when a ∈
(

1
2 , 5

7

]
we obtain Tracy-Widom fluctuations. It is worth noting

that we do not take the standard approach of scaling by the variance. Instead, we

change the size of the rectangle, by subtracting a term of size n
2−a

3 from the width
(Fig. 3).

Fig. 3 Tracy-Widom fluctuations to the last passage time of the independent model depend on position

of the endpoint in the thickset red line. When a ∈
(

1
2 , 2

3

)
the Tracy-Widom reveals itself just by centering

according to the first and second order macroscopic approximation of the LLN for G. However when a ∈
( 3

2 , 5
7 ), a third order approximation to the law of large numbers, cn3a−2, is necessary for the Tracy-Widom

fluctuations
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Theorem 2.4 For s ∈ R define x = 2√
p

(
q
p

)a

and y(s) = s
√

p

q

(
p
q

) 1+a
3
. Then

(1) For 1/2 < a < 2/3,

lim
n→∞P

{
G

(0)

n
p

−xna−y(s)n
2−a

3 ,n

≤ n −
(

qn

p

)2a−1
}

= FT W (s). (2.6)

(2) For 2/3 ≤ a ≤ 5/7,

lim
n→∞P

{
G

(0)

n
p

−xna−y(s)n
2−a

3 ,n

≤ n−
(
qn

p

)2a−1

+ax

(
q

p

)2a−2

n3a−2

}
=FT W (s).

(2.7)

Remark 2.5 The case a ≥ 5
7 corresponds to an exponent γ = 2a − 1 ≥ 3

7 in (1.5)
(see [7]) and the result cannot be extended further with these techniques. In Section
3.1 of [7] the authors explain why their result should extend at least up to exponent
γ = 3

4 . The independent Bernoulli model here, while equivalent to the edge of the
corner growth model may be a bit more sensitive to these cut-offs and indeed γ = 3

7
seems to be critical and manifests itself in the proof.

From the two cases of Theorem 2.4 we see that we need to amend the right-hand
side of the event in (2.6) by a term O(n3a−2), in order to get the non-trivial result

in (2.7). This gives a new cut-off a = 2
3

(
or γ = 1

3

)
. The term is there for case 2 as

well, but when a ≤ 2
3 the term is bounded and plays no role, while it must be dealt

with, for higher a.

Second, from the proof of Theorem 2.4, the exponent a = 5
7

(
γ = 3

7

)
seems to

be critical, since it is necessary to have 2a − 1 < 2−a
3 to balance the various orders

of magnitude that appear. Assuming that the scaling in (1.5) remains the same for

γ ∈
(

3
7 , 3

4

)
, this change implies a corresponding correction term of size O(nγ ) at

the numerator of (1.5).

2.2 Alignment Model

Throughout we fix a finite alphabet A with |A| ≥ 2, from which the letters of
words ηx and ηy are chosen uniformly at random, independently of each other and
let a ∈ (0, 1) and α, β ≥ 0. The proofs of Theorems 2.6, 2.7 and 2.8 can be found in
Section 5.

Define

g(a)(n) =
{√

n log n, a ≤ 1/2,

na, a > 1/2.

Theorem 2.6 Let x > 0 and β ≥ 0. For P-a.e. ω we have the upper bound

lim
n→∞

n(1 + β − β|A|) − L
(β)

�n|A|−xna�,n
g(a)(n)

≤
{ √

2
|A|−1 − 1

|A| , a ≤ 1/2,
1

|A|(|A|−1)
− βx, a > 1/2.
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and the lower bound

lim
n→∞

n(1 + β − β|A|) − L
(β)

�n|A|−xna�,n
g(a)(n)

≥
{

0, a ≤ 1/2,

−βx, a > 1/2.

Finally, we turn to the number of optimality regions for the alignment model. The
first result gives an upper bound on the asymptotic growth of the number regions:

Theorem 2.7 Let x > 0. There exists a constant C1(|A|, x) that only depend on x

and |A| so that

lim
n→∞

R
(al)
�|A|n−xna�n

(g(a)(n))
2
3

≤ C1(x, |A|), P − a.s. (2.8)

The constant tends to 0 as the alphabet size tends to ∞.

We also have a bound of the same order for the expected number of optimality
regions.

Theorem 2.8 There exists a constant C2(x, |A|), i so that

lim
n→∞

E
[
R

(al)
|A|n−xnan

]
(g(a)(n))

2
3

≤ C2(x, |A|). (2.9)

The constant tends to 0 as the alphabet size tends to ∞.

Remark 2.9 These results are also valid for the independent model. Given the
stronger bounds for the independent model, we do not expect (2.9) to be sharp, par-
ticularly for small values of the exponent a, and this is supported by Monte Carlo
simulations. For example these suggest that for a ≤ 1/2 the number of expected
regions is bounded (see Fig. 4). This is also the case for the independent model as we
see in Theorem 2.2. For a > 1/2, the simulations in Fig. 5 show that the expected
number of regions is growing for small alphabet sizes, but again the exponent of
growth is smaller than 2a/3 and it seems to depend on the alphabet size.

3 Model Independent Results for Optimality Regions and Maximal
Paths

In this section we present preliminary results about the two models that do not
depend on the correlation structure of the weights. We therefore write Rm,n to mean
either R

(al)
m,n or R

(ind)
m,n . We also introduce the vocabulary usually used in the sequence

alignment literature.
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Fig. 4 Monte Carlo simulations for the empirical maximum, minimum and expected number of regions
for up to n = 1000 in the alignment model for small values of a. For each n, 25 independent pairs of
strings were uniformly chosen. n grows in increments of size 10
(Left) |A| = 20, a = 1/3, x = 1. (Right) |A| = 2, a = 1/2, x = 1. The simulations suggest the expected
number of regions is bounded, and in agreement with the theoretical bound obtained for the independent
model

Let π = {u0, . . . , uM } ∈ �0,(m,n) denote an admissible path and recall that the
increments zk = uk − uk−1 ∈ R = {e1, e2, e1 + e2}. Thus for each increment there
are three possibilities:

(1) zk = e1 + e2 with ωuk
= 0, called a mismatch,

(2) zk ∈ {e1, e2}, called a gap,
(3) zk = e1 + e2 with ωuk

= 1, called a match.

Let x = x(π) be the number of mismatches, y = y(π) the number of gaps and
z = z(π) the number of matches of π . We also denote this triplet by s(π) =
(x(π), y(π), z(π)).

Fig. 5 Monte Carlo simulations for the empirical maximum, minimum and expected number of regions
in the alignment model when a is close to 1. For each n, 25 independent pairs of strings were uniformly
chosen. n grows in increments of size 10. (Left) |A| = 20, a = 0.8, x = 1. (Right) |A| = 2, a = 0.8, x =
1. The simulations suggest that the expected number of regions is bounded for large alphabet sizes, but for
small size alphabets we see growth
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Fix parameters α, β ≥ 0. Under potential Vα,β the score of the path π is then given
by

wα,β(π) = z − αx − βy. (3.1)

Since any diagonal step is equivalent to an e1 step followed by a e2 step or vice versa,
we have

m + n = 2x(π) + 2z(π) + y(π) for all π ∈ �0,(m,n). (3.2)

The last passage time G
(α,β)
m,n (or L

(α,β)
m,n , depending on the environment) under

potential defined in (1.3) can now be rewritten as

G(α,β)
m,n = max

π∈�0,(m,n)

{wα,β(π)}.

Our focus will be on the minimal-gap maximisers (MGM): paths whose score attains
the last passage time with the smallest possible number of gaps. Since any two MGM
paths have the same number of gaps and the same score it follows from (3.2) that

Lemma 3.1 All MGM paths have the same number of gaps, matches and mis-
matches.

We denote the set of MGM paths by 
(α,β)

0,(m,n). When α = 0 we write 
(β)

0,(m,n).

Definition 3.2 Two points (α1, β1) and (α2, β2) belong in different optimality
regions of the parameter space for a fixed terminal point (m, n) if and only if


(α1,β1)

0,(m,n) ∩ 
(α2,β2)

0,(m,n) = ∅.

For future reference we record the following observations:

(1) For fixed α ≥ 0 and any β1 ≤ β2 we have

wα,β1(π) ≥ wα,β2(π) (3.3)

and therefore this inequality also holds for the passage times:

G(α,β1)
m,n ≥ G(α,β2)

m,n and L(α,β1)
m,n ≥ L(α,β2)

m,n (3.4)

(2) For α = −1 and β = −1/2, the weight of any path π ∈ �0,(m,n) is given by

w−1,−1/2(π) = m + n

2
(3.5)

Lemma 3.3 All optimality regions in the (α, β)-positive quadrant are semi-infinite

cones bounded by the coordinate axes and lines of the form β = c + α
(
c + 1

2

)
.

This result was first proved in [19]; we give a simplified proof here:

Proof Pick any (α, β) ∈ R
2+ and let (0, β ′) be the point of intersection of the linear

segment connecting (α, β) and (−1, −1/2) with the y-axis, i.e.

β = (α + 1)β ′ + α

2
. (3.6)
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We will show that the optimal paths associated with (0, β ′) are the same as
those associated to (α, β). Consider any π ∈ �0,(m,n) with s(π) = (x, y, z).
Then

wα,β(π) = z − xα −yβ = z − xα −yβ + yβ ′ −yβ ′ = w0,β ′(π) −xα −(β − β ′)y

= w0,β ′(π) − xα −
(
(α + 1)β ′ + α

2
− β ′)y, by (3.6),

= w0,β ′(π) − α

(
m + n

2
− w0,β ′(π)

)
, by (3.2),

= (1 + α)w0,β ′(π) − α
m + n

2
. (3.7)

So the weight of any path with parameters (α, β) is an affine function of the weight
with parameters (0, β ′) and the two parameters must belong to the same optimality
region.

Under a fixed environment ω, we define the critical penalties

0 < β1 < · · · < βRm,n < ∞ (3.8)

to be the the gap penalties for α = 0 at which the optimality region changes. We will
also write β∞ for the last threshold βRm,n .

Lemma 3.4 (Critical penalties) For each k ≤ Rm,n let π(βk) ∈ 
(βk)

0,(m,n), with

s(π(βk)) = (xβk
, yβk

, zβk
). Then

βk+1 = zβk
− zβk+1

yβk
− yβk+1

. (3.9)

Proof Continuity of the optimal score in the parameter β implies that at βk+1 the
weights will be the same whether βk+1 is approached by above (considering scores
of paths in 

(βk+1)

0,(m,n)) or from below (scores of paths in 
(βk)

0,(m,n)). Therefore

zβk
− βk+1yβk

= zβk+1 − βk+1yβk+1

which yields the conclusion.

Upper bounds for the maximal value of Rm,n can be found in [11]. For the LCS
model these are sharp when the alphabet size grows to infinity. The results and
arguments in [11] can be extended to give the upper bound

R�ns�+o(n),�nt�+o(n) ≤ Cn2/3, (3.10)

that holds in any fixed realization of the environment, any (s, t) ∈ R
2+ and n large

enough. They also proved that environments that actually generate so many regions
exist, at least when the alphabet size was infinite. This was later verified also for
finite alphabets in [45].
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Lemma 3.5 For β0 = 0 and each critical βk in (3.8), choose an MGM path πi ∈


(βi)

0,(m,n) with s (πi) = (xi, yi, zi) for 0 ≤ i ≤ Rm,n. Then

Rm,n ≤ min
{
z0 − zRm,n,

xRm,n − x0

2
,
y0 − yRm,n

2
, n ∧ m − z0

}
. (3.11)

Proof Since the paths πi correspond to different penalties βi , they must differ in the
number of diagonal steps and the number of gaps. Since a diagonal step is equivalent
to two gaps, we have yi − yi+1 ≥ 2. Furthermore it must be the case that zi − zi+1 ≥
1; otherwise πi would violate the MGM condition. Equation (3.2) and the last two
inequalities give xi+1 − xi ≥ 2. Adding each inequality over i gives the first three
terms in the minimum of (3.11). For the last term note that yRm,n = n ∨ m − m ∧ n.
Since x0 ≥ 0 (3.2) yields 2(n ∧ m − z0) ≥ y0 − yRm,n .

Remark 3.6 Notice that the last bound in (3.11) can be written as

R(al)
m,n ≤ n − L(0)

m,n and R(ind)
m,n ≤ n − G(0)

m,n. (3.12)

Finally, we present a lemma that gives a useful bound on the number of regions if
a bit more information is available.

Lemma 3.7 Let m = m(n) so that m(n) → ∞ as n → ∞. Let g(n) be a deter-
ministic function so that limn→∞ g(n) = ∞. Then, there exists an N > 0 and a
non-random constant C0 so that for all n > N we have the inclusion of events

An = {z0 − zR + y0 − yR ≤ g(n)} ⊆ {Rm,n ≤ C0(g(n))
2
3 }. (3.13)

In particular,

(1) If P{Ac
n i.o} = 0, then the number of optimality regions Rm,n satisfies

lim
n→∞

Rm,n

g(n)
2
3

≤ C0, P − a.s. (3.14)

(2) If P{An} → 1, then the number of optimality regions Rm,n satisfies

lim
n→∞P

{
Rm,n

g(n)
2
3

≤ C0

}
= 1. (3.15)

Proof Statements (3.14), (3.15) are immediate corollaries of (3.13) which we now
show. Fix an environment ω ∈ An. Then we have that

z0 − zR + y0 − yR =
Rm,n−1∑

i=0

{(zβi+1 − zβi
) + (yβi+1 − yβi

)} ≤ g(n).

The sum above has as terms the numerators and denominators of the critical penalties
(see Lemma 3.4).

Each critical penalty is a distinct rational number and it corresponds to a change
of optimality region. The bound g(n) is independent of the environment, so we
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can obtain an upper bound on the number of regions that is independent of the
environment, if we maximize the number of terms that appear in the sum.

Since the terms in the sum are integers, the maximal number of terms is the
maximal number of integers k that can be added so that the bound g(n) is not
exceeded. Those integers k need not be distinct but they need to able to be writ-
ten as a sum of integers a, b, k = a + b so that a/b are different. This is because
the ratio a/b corresponds to critical penalties and those are distinct. Take each
successive integer k and compute the number of irreducible fractions a/b so that
a + b = k.

The number of irreducible fractions satisfying this is ϕ(k), where ϕ is Euler’s
totient function [3]. The number of distinct values k that can be used is Mmax, which
must satisfy

Mmax∑
k=1

kϕ(k) ≤ g(n) <

Mmax+1∑
k=1

kϕ(k).

These inequalities imply that Mmax will be bounded above, up to a lower order term,
by cg(n)1/3. This follows by the asymptotics of ϕ for large arguments, and we direct
the reader to the proof of Theorem 5 in [11] for the details. The bound on Mmax is
true for all n > N1 large enough. Then an upper bound for the number of admissible
pairs (a, b) (and therefore for the maximal number of regions) is

Mmax∑
k=1

φ(k) ≤ c1M
2
max ≤ Cg(n)2/3.

This last estimate is again the result of an analytic number theory formula (see [3])
which also works for n > N2 large enough. So both deterministic bounds hold for all
n > N = N1 ∨ N2.

The difficulty with the alignment model is the correlated environment. Therefore,
the soft techniques below try to avoid precisely this issue. The same techniques work
for the independent model and give identical bounds, but the exact solvability of that
model often allows sharper results.

Our strategy is to construct a path with a score that is near-optimal under any
penalty β and which attempts to minimize as much as possible the number of vertical
steps. This will be important for the lower bound for the passage time under penalty
βR , where we know that the optimal path takes no vertical steps. We present the
construction and results for alignment model, but re-emphasize that they hold for
both.

3.1 Construction of the Path

Fix an environment ω on N
2, defined by two infinite words ηx, ηy, where each letter

is chosen uniformly at random. ωi,j is defined according to (1.6).
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Consider the following strategy (S) to create a path πS :

(1) For some appropriate constants c1 and c2 (to be determined later), move with
e1 + e2 steps from 0 up to a fixed point

un(a)=

⎧⎪⎨
⎪⎩
(⌊√

c1n log n
⌋

,
⌊√

c1n log n
⌋)

, ifa ≤ 1
2 ,(⌊

1
|A|−1xna

⌋
+
⌊√

c2n log n
⌋

,
⌊

1
|A|−1xna

⌋
+
⌊√

c2n log n
⌋)

, ifa > 1
2 .

(3.16)

(2) Now, construct the path as follows, depending on the current position un(a):

(a) If the path is on site (i, j) with j < n and ωi+1,j+1 = 1 then move
diagonally with an e1 + e2 step, and now the path is on site (i + 1, j + 1).

(b) If the path is on site (i, j) with i < �|A|n − xna� and ωi+1,j+1 = 0 then
move horizontally with an e1 step, and now the path is on site (i + 1, j).

(c) If j = n or i = �|A|n − xna�, move to (�|A|n − xna� , n).

From this description it is not clear whether we can enforce the condition that no
vertical steps will be taken by πS . However, this will happen for eventually all n,
by choosing constants c1, c2 appropriately. Consider an infinite path π̄S that moves
according to strategy (S) but without the restrictions i < �|A|n − xna� for (3)-(b)
and without step (3)-(c).

Let Yj be the random variables that give the amount of horizontal steps path π̄S

takes at level y = j + un(a) · e2,

Yj = |{i ∈ N : (i, j + un(a) · e2) ∈ π̄S}|. (3.17)

Because π̄S does not have a target endpoint, we have

Yj ∼ Geom

(
1

|A|
)

, P{Yj = �} = 1

|A|
(

1 − 1

|A|
)�−1

. (3.18)

By construction, the Yj are i.i.d. with mean |A|.
Path π̄S coincides with πS up until the point that π̄S hits either the north or

east boundary of the rectangle [0, �|A|n − xna�] × [0, n]. When π̄S touches the
north boundary first, we can conclude that πS has no vertical steps up to that point.
We will estimate precisely this probability, using the following moderate deviations
lemma [9].

Lemma 3.8 Let (XN)N∈N an i.i.d. sequence of random variables with exponential
moments. If Nλ2

N → ∞ and Nλ3
N → 0 then

P

{∣∣∣∣∣ 1

N

N∑
i=1

Xi − E(X1)

∣∣∣∣∣ > λN

}
∼ 2√

2πNλ2
N

e−Nλ2
N/2. (3.19)
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From the equality of events

{π̄S exits from the north boundary} =
⎧⎨
⎩

n−un(a)·e2∑
j=1

Yj ≤⌊|A|n − xna
⌋−un(a) · e1

⎫⎬
⎭ ,

(3.20)
we estimate for a ≤ 1/2 and for n sufficiently large for the asymptotics in (3.19) to
be accurate,

P

⎧⎨
⎩

n−un(a)·e2∑
j=1

Yj ≤ ⌊|A|n − xna
⌋−

⌊√
c1n log n

⌋⎫⎬
⎭

≥ P

⎧⎪⎪⎨
⎪⎪⎩

n−
⌊√

c1n log n
⌋

∑
j=1

(Yj − |A|) ≤ −xna + (|A| − 1)
√

c1n log n − 3

⎫⎪⎪⎬
⎪⎪⎭

≥ 1 − c0
1√

log n
n−c1(|A|−1)2/4. (3.21)

For the last inequality, we used Lemma 3.8 for

N = n −
⌊√

c1n log n
⌋

andλN = (|A| − 1)
√

c1

√
log n

n
+ O(nα−1).

The constant c0 only depends on |A| which is assumed to be strictly
larger than 1. Choose c1 > 2

(|A|−1)2 so that the probabilities of the event
{π̄S exits from the east boundary} are summable in n. Then by the Borel-Cantelli
lemma, we can find an M = M(ω) so that for all n > M path π̄S hits the north
boundary first.

The situation for a > 1/2 is similar. Starting from (3.21), we have

P

⎧⎨
⎩

n−un(a)·e2∑
j=1

Yj ≤ ⌊|A|n − xna
⌋−

⌊
1

|A| − 1
xna

⌋
−
⌊√

c2n log n
⌋⎫⎬
⎭

≥ P

⎧⎪⎪⎨
⎪⎪⎩

n−
⌊

1
|A|−1 xna

⌋
−
⌊√

c2n log n
⌋

∑
j=1

(Yj − |A|) ≤ (|A| − 1)
√

c2n log n − 3

⎫⎪⎪⎬
⎪⎪⎭ . (3.22)

Then the proof goes as for the previous case, and again it suffices that c2 > 2
(|A|−1)2 .
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From the definition of πS and the above discussion, we have shown the following:

Lemma 3.9 For P- a.e. ω there exists M = M(ω) so that for all n > M(ω), path πS

exits from the north boundary of the rectangle [0, |A|n − xna] × [0, n]. In that case,
(1) it has no vertical gaps until the point of exit,
(2) the number of horizontal gaps it has is (|A|−1)n−xna (the minimal possible),

and
(3) it collects n − un(a) · e2 +∑un(a)·e2

k=1 ωk,k positive weight.

Since πS has the smallest number of gaps possible, it can be optimal under any
penalty β.

4 The Independent Model

In this section we prove results about the independent model. We begin with a cou-
pling between the longest common subsequence in the independent model, with the
corner growth model in an i.i.d. Geom(1 − p) environment. This is achieved via
the following identity. Recall that Tm,n denotes the last passage time in an m × n

rectangle, with admissible e1 or e2 steps only, under potential (1.2).

P
{
G(0)

m,n ≤ m − N
} = P

{
Tn−m+N,N ≤ n + N − 1

}
. (4.1)

The result follows from the arguments in [13], and we briefly present the main idea.
The discrete totally asymmetric simple exclusion process (DTASEP) with back-

ward updating is an interacting particle system of left-finite particle configuration
on the integer lattice, i.e. such that sites to the left of some threshold are empty (see
Fig. 6). Label the particles from left to right and denote the position of the j th particle

Fig. 6 Space-time realisation of DTASEP (Graphical construction). Particles move to the left, according
to exclusion rules (1) and (2). Symbols ⊗ denote Bernoulli(p) weights 1, and particle underneath an ⊗
symbol cannot jump during that time, i.e. particles jump with probability 1−p = q as long as the exclusion
rule is not violated. The trajectory of particle 4 is highlighted for reference
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at time � ∈ N by ηj (�). At every discrete time step � ∈ N each particle independently
attempts to jump one step to the left with probability q = 1 − p. Particle i performs
the jump if either

(1) the target site was unoccupied by particle i − 1 at time � − 1 or,
(2) the target site was occupied by particle i − 1, but it also performs a jump at

time �.

In words, particles are forbidden to jump to occupied sites and we update from left
to right. Start DTASEP with the step initial condition ηi(0) = i so that initially the
i-th particle is at position i. Let τi,j be the time it takes particle j to jump i times:

τi,j = inf{� ≥ 0 : ηj (�) ≤ j − i}.
Then the following recursive equation holds

τi,j = τi,j−1 ∨ (τi−1,j + 1) + ζ̃i,j .

where the ζ̃i,j are independent Geometric variables with parameter q = 1 − p,
supported on N0.

By setting ζi,j = ζ̃i,j + 1 ∼ Geom(1 − p) ∈ {1, 2, . . .}, the τi,j can be coupled
with the last passage time in the corner growth model (cf. [13], Lemma 5.1), giving
the equality in distribution

τi,j
(d)= Ti,j − j + 1. (4.2)

We embed DTASEP in the two-dimensional lattice Z × N+, using its graphical
construction as follows: Let

{
bk,� : (k, �) ∈ Z × N+

}
be a field of i.i.d. Bernoulli(q)

random variables and assign to each site (k, �) the random weight bk,�. Particles are
placed initially on N+ × {0}, with particle i at coordinate (ηi(0), 0). The Bernoulli
marked sites signify which particles will attempt to jump in the DTASEP process.

After the spatial locations in the DTASEP at time � = 1 are determined, the parti-
cles in the graphical construction are at positions (ηi(1), 1). We iterate this procedure
for all times � ∈ N.

Then, the environments between graphical DTASEP and BLIP may be coupled via

1 − ωk,� = bk+�,�.

In [13] the following combinatorial identity was proved:

G(0)
m,n = m − max{k : (m − n) ∨ 1 ≤ k ≤ m, τk+n−m,k ≤ n}. (4.3)

Set k∗ = max{k ≤ m : k ≥ (m − n) ∨ 1, τk+n−m,k ≤ n} ∨ 0. Then

{G(0)
m.n ≤ m − N} = {N ≤ k∗} = {τN+n−m,N ≤ n}, (4.4)

where the last equality comes form the fact that τN+n−m,N is an increasing random
variable in N For a clear pictorial explanation about the coupling, look at Fig. 7.
Finally compute

P

{
G(0)

m,n ≤ m − N
}

= P
{
N ≤max{k : (m − n) ∨ 1 ≤ k ≤ m, τk+n−m,k ≤ n}} , by (4.3)

= P{τN+n−m,N ≤ n}, by (4.4)

= P{TN+n−m,N ≤ n + N − 1}, by (4.2).
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Fig. 7 The DTASEP transformed in the BLIP setting. Symbols ⊗ denote Bernoulli weights 1 to the north-
east corner of their square. The coloured balls on each horizontal level is the realization of particles that
are still in the 7 × 7 grid. At t = 7 there are 4 particles in the square. From this and (4.3, 4.4) we have that
G

(0)
7,7 = 7 − 4 = 3

4.1 Proof of Theorem 2.1

Recall that mn = n/p − xna and a ∈
(

0, 1
2

]
. Our goal is to prove that the sequence

of random variables n − G
(0)
n,mn

is tight. The main ingredient in the proof is identity
(4.1). Set N = nq

p
− xna + k. Then

n − mn + N = n − n

p
+ xna + nq

p
− xna + k = k. (4.5)

Since N(n) is eventually monotone, we can invert the expression above and find n in
terms of N for sufficiently large n (and hence N). In particular,

n = n(N) = p

q
N + xNa

(
p

q

)a+1

+ O(N2a−1). (4.6)

To see this we compute

N(n(N)) = q

p
n(N) − xn(N)a + k

= q

p

(
p

q
N + xNa

(
p

q

)a+1

+ O(N2a−1)

)
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−x

(
p

q
N + xNa

(
p

q

)a+1

+ O(N2a−1)

)a

+ k

= N +
(

p

q

)a

xNa − x

(
p

q
N

)a (
1 + xNa−1

(
p

q

)a

+ O(N2a−2)

)a

+ O(1)

= N +
(

p

q

)a

xNa−x

(
p

q
N

)a (
1 + axNa−1

(
p

q

)a

+ O(N2a−2)

)
+ O(1)

= N + O(1).

Therefore, n + N − 1 = N
q

+ x
(

p
q

)a+1
Na + O(N2a−1). Combining (4.1) and (4.5)

P{k ≤ n − G(0)
mn,n} = P

{
G(0)

mn,n ≤ mn − N
}

= P

{
Tk,N ≤ N

q
+ x

(
p

q

)a+1

Na + O(N2a−1)

}

≤ P

{
max

j :1≤j≤k

N∑
i=1

ζi,j ≤ N

q
+ x

(
p

q

)a+1

Na + O(N2a−1)

}

= P

{
N∑

i=1

ζi,1−NE(ζ11)≤ x

(
p

q

)a+1

Na +O(N2a−1)

}k

. (4.7)

Divide both sides of the inequality inside the probability in (4.7) by
√

p

q

√
N . The

left-hand side of the inequality always converges weakly to a standard Gaussian
random variable.

When a < 1/2, the right hand side tends to 0 and therefore the probability in (4.7)
converges to 1/2. When a = 1/2 the right-hand side in the probability converges to

xpq− 1
2 and the probability in (4.7) to �(xpq− 1

2 ). Thus we obtain (2.1).

4.2 Proof of Corollary 2.2

We first show the result when a < 1/2. Using (3.12) from Remark 3.6 and (4.7) from
the proof of Theorem 2.1, we have

P

{
k < R

(ind)
n
p

−xnan

}
≤ P

{
k < n − G

(0)
n
p

−xna,n

}

=
(
P

{∑N
i=1 ζi,1 − E(ζi,1)N√

Var(ζi,1)N
< C1N

a−1/2

})k

(4.8)

for C1 large enough. As in the proof of Theorem 2.1 we have N = nq
p

− xna + k and
let � denote the cumulative distribution function of the standard normal distribution.
Fix a tolerance δ > 0 satisfying �(δ) + δ < 1 and let n1(δ) large enough so that
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C1N
a−1/2 < δ for all n > n1(δ). Applying the Berry-Esseen theorem to the last line

of the last display,

P{k ≤ R
(ind)
n
p

−xnan} ≤
(

�(δ) + C√
n

)k

≤ (�(δ) + δ)k , for all n > n2(δ). (4.9)

For n ≥ n0(δ) = n1(δ) ∨ n2(δ) the right hand side of (4.9) is uniformly summable in
k. Moreover, by (4.9) and the reverse Fatou’s Lemma we compute

lim
n→∞E

[
R

(ind)
n
p

−xnan

]
= lim

n→∞

∞∑
k=0

P

{
k ≤ R

(ind)
n
p

−xnan

}

≤
∞∑

k=0

lim
n→∞P

{
k < n − G

(0)
n
p

−xna,n

}
≤

∞∑
k=0

2−k = 2,

where the penultimate inequality follows from (3.12) and the last from Theorem 2.1.
The case a = 1

2 is slightly more delicate, but the ideas are exactly the same. As
before,

P

{
k < R

(ind)
n
p

−x
√

n
n

}
≤
(
P

{∑N
i=1 ζi − E(ζ1)N√

Var(ζ1)N
< x

p√
q

+ C0N
−1/2

})k

. (4.10)

The right-hand side converges to (�(xpq− 1
2 ))k and with the same arguments as

before,

lim
n→∞E

[
R

(ind)
n
p

−xnan

]
≤ 1

1 − �(xpq− 1
2 )

.

4.3 Proof of Theorem 2.3

When a ≤ 1/2 the result follows from (4.8) and (4.10). For a ∈ ( 1
2 , 3

4 ]

lim
n→∞P

{(
(px)2

4(1 − p)
+ ε

)
n2a−1 ≤ R

(ind)

p−1n−xnan

}

≤ lim
n→∞P

{(
(px)2

4(1 − p)
+ ε

)
n2a−1 ≤ n − G

(0)

p−1n−xna,n

}
= 0.

The last inequality follows from (3.12) and the last equality is from (1.4). This gives
the second part of the statement.

When a ∈
(

3
4 , 1
)

we can obtain a sharper bound using Lemma 3.7.

From the proof of Lemmas 3.5 and 3.9 we can find a constant C1 such that n −
G

(βR)

p−1n−xna,n
= n−zR < C1n

a in probability, as n grows. Therefore, with probability
tending to 1 as n grows,

z0 − zR < C1n
a. (4.11)

Moreover, since the the number of vertical steps at β = 0 cannot exceed n −
G

(0)

p−1n−xna,n
, (1.4) gives that with probability tending to 1

y0 − yR ≤ n − G
(0)

p−1n−xna,n
< C2n

2a−1. (4.12)
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Equations (4.11) and (4.12) now yield a constant C such that

lim
n→∞P{z0 − zR + y0 − yR < Cna} = 1. (4.13)

Let An be the event in the probability above. On An,
∑R−1

i=0 {(zi − zi+1) + (yi −
yi+1)} < Cna. Now we are in a position to use Lemma 3.7 and finish the proof.

4.4 Proof of Theorem 2.4 (Edge Fluctuations for the Independent Model)

We will once more use (4.1). Recall that

x = 2√
p

(
q

p

)a

and y = s

√
p

q

(
p

q

) 1+a
3

, s ∈ R.

We further define an auxiliary parameter N that will go to ∞ when n goes to infinity.

N = N(n) = q

p
n − xna − yn

2−a
3 + cn, (4.14)

where cn is given by

cn =

⎧⎪⎨
⎪⎩
(

q
p

)2a−1
n2a−1, 1/2 < a < 2/3,(

q
p

)2a−1
n2a−1 − (2a − 1)x

(
q
p

)2a−2
n3a−2, 2/3 ≤ a < 5/7.

(4.15)

Note that with mn = 1
p
n − xna − yn

2−a
3 we have the relation

mn − n = N − cn. (4.16)

Our goal now is to change n to N and compute mn, n, cn in terms of N , similarly to
the proof of Theorem 2.1.

(1) Step 1: mn − n and cn as a function of N: Start from (4.14) and raise it to the
power 2a − 1. Then, apply Taylor’s theorem to obtain

N2a−1 =
(

q

p
n

)2a−1(
1−(2a−1)

px

q
na−1 + O

(
n− 1+a

3

))
= cn +O(n

5a−4
3 ).

Note that the equation above holds, irrespective of the value of a, as long as
a < 5/7; for a ∈ [0, 5

7 ) the exponent 5a−4
3 < 0, so

cn = N2a−1 + o(1)

follows. Therefore, a substitution in (4.16) yields

mn − n = N − N2a−1 + o(1). (4.17)

(2) Step 2: n as a function ofN : We begin by writing n as a function of N . Observe
that N(n) in (4.14) is an eventually monotone function. Therefore, for N large
enough, there is a well defined inverse n = n(N) (so that N(n(N)) = N).
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We cannot directly use a closed formula for the inverse, so we define the
approximate inverse �(N) by

�(N) = p

q
N + 2

√
p

q
Na + y

(
q

p

) 1+a
3

N
2−a

3 .

To see that �(N) plays the role of the inverse n(N), substitute �(N) in (4.14)
and estimate using a Taylor expansion the distance

|N−N(�(N))| = |N− q

p
�(N)+xp,a�(N)a+y�(N)

2−a
3 | = O(N2a−1). (4.18)

This implies that |n(N) − �(N)| = o(N
2−a

3 ); in fact we will show that =

|n(N) − �(N)| < cNβ, (4.19)

for any β ∈
(

2a − 1, 2−a
3

)
. Assume for a contradiction that (4.19) does not

hold for some c > 0 and for some β > 2a − 1. Then

|N − N(�(N))| = |N(n(N)) − N(�(N))|
=
∣∣∣∣ qp (n(N) − �(N)) − x(n(N)a − �(N)a)

−y(n(N)
2−a

3 − �(N)
2−a

3 ) + cn(N) − c�(N))

∣∣∣∣
≥ q

p
|n(N)−�(N)|−x|n(N)−�(N)|a−|y||n(N) − �(N)| 2−a

3

−|cn(N) − c�(N)|
≥ CNβ for some C > 0 and N large enough.

This contradicts (4.18) since β > 2a − 1. In particular we have shown that

lim
N→∞

|n(N)− �(N)|
N

2−a
3

= lim
N→∞

n(N) − p
q
N − 2

√
p

q
Na − y

(
q
p

) 1+a
3

N
2−a

3

N
2−a

3

= 0,

(4.20)
and we may write

n = p

q
N+ 2

√
p

q
Na+y

(
q

p

) 1+a
3

N
2−a

3 +o(N
2−a

3 ) = �(N)+o(N
2−a

3 ). (4.21)

To finish the proof we need to be a bit cautious with the integer parts. Define kN

to be
kN = �mn� − n − �N� +

⌊
�N�2a−1

⌋
.

It follows from (4.17) that kN is bounded in N (and n). Also set N = �N� + εN so
that εN ∈ [0, 1). Substituting these in (4.1) we compute

P

{
G

(0)
�mn�,n ≤ n −

⌊
�N�2a−1

⌋}
= P{T⌊�N�2a−1⌋,�N�+kN

≤ n + �N� − 1}
= P

{
T⌊�N�2a−1⌋,�N�+kN

≤ �(N) + o
(
N

2−a
3

)
+ N − 1 + εN

}
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= P

{
T⌊�N�2a−1⌋,�N�+kN

≤ p

q
N + 2

√
p

q
Na

+y

(
q

p

) 1+a
3

N
2−a

3 + N + o
(
N

2−a
3

)}

= P

⎧⎨
⎩

T⌊�N�2a−1⌋,�N�+kN
− 1

q
�N� − 2

√
p

q
�N�a

√
p

q
�N� 2−a

3

≤ s + o(1)

⎫⎬
⎭ . (4.22)

The passage time in the probability above can be compared with T�N2a−1�,�N� and
satisfies

|T⌊�N�2a−1⌋,�N� − T⌊�N�2a−1⌋,�N�+kN
| <

⌊�N�2a−1⌋∑
i=0

kN∑
j=−kN

ζi,�N�+j .

Since a < 5
7 , the number of geometric random variables in the right-hand side of

the inequality is of lower order than N
2−a

3 and when scaled by it, the double sum
vanishes P-a.s. This allows us to remove kN from (4.22) and (1.5) now gives the
result by taking n → ∞.

5 Optimality Regions in the Alignment Model

In this section we prove our results about the alignment model. Because of Lemma
3.3 and (3.7) it is enough to consider the case where α = 0.

Now it is straight-forward to prove Theorems 2.6 and 2.7.

5.1 Proof of Theorem 2.6

Restrict to the full measure set of environments so that Lemma 3.9 is in effect. Fix
one such environment and assume n is large enough so that statements (1)-(3) of
Lemma 3.9 hold. Let

g(a)(n) =
{√

n log n, a ≤ 1/2,

na, a > 1/2.

Path πS is admissible under any penalty β, therefore by part (c) of Lemma 3.9,

L
(β)

�n|A|−xna�,n ≥ n − un(a) · e2 +
un(a)·e2∑

k=1

ωk,k − β((|A| − 1)n − xna).

Re-arranging the terms we obtain

un(a) · e2 −
un(a)·e2∑

k=1

ωk,k − βxna ≥ n(1 + β − β|A|) − L
(β)

�n|A|−xna�,n.
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Now divide both sides by g(a)(n) and take the lim as n → ∞ to obtain

lim
n→∞

n(1 + β − β|A|) − L
(β)

�n|A|−xna�,n
g(a)(n)

≤
{√

c1 − 1
|A| , a ≤ 1/2,

1
|A|(|A|−1)

− βx, a > 1/2.
(5.1)

Let c1 ↘ 2
(|A|−1)2 to obtain the upper bound in the theorem.

For the lower bound, recall that the maximum possible positive weight for
L

(β)

�n|A|−xna�,n is n and the smallest possible gap penalty is β(�n|A| − xna� − n).
Therefore

lim
n→∞

n(1 + β − β|A|) − L
(β)

�n|A|−xna�,n
g(a)(n)

≥
{

0, a ≤ 1/2,

−βx, a > 1/2.

This completes the proof.

5.2 Proof of Theorem 2.7

From the previous theorem, we have that for β = 0, for P-a.e.ω and any ε > 0, we
can find an N = N(ω, ε) so that for all n > N

n ≥ L
(0)

�n|A|−xna�,n ≥ n − (C(x, |A|) + ε)g(a)(n).

From (3.2) and the equation above, we immediately obtain, by setting x0 = 0, that

z0 ≤ n, y0 ≤ 2(C(x, |A|) + ε)g(a)(n) + ⌊|A|n − xna
⌋− n. (5.2)

We briefly explain the upper bound for y0. First, any maximal path will always take
the minimum number of gaps, which is �|A|n − xna� − n. After that, it has to take
the correct number of diagonal steps to gain weight equal to L

(0)

�n|A|−xna�,n. Now all
the remaining steps can either be gaps or mismatches, so we obtain an upper bound
if we assume the number of mismatches is zero. The bound then follows from (3.2).

Similarly, for β = βR , since πS can be optimal under this penalty, Lemma 3.9
implies

zR ≥ n − un(a) · e2 +
un(a)·e2∑

k=1

ωk,k ≥ n − un(a) · e2, andyR = ⌊|A|n − xna
⌋− n.

(5.3)
Combine (5.2) and (5.3) to obtain for some uniform constant C

z0 − zR + y0 − yR ≤ un(a) · e2 + 2(C(x, |A|) + ε)g(a)(n) ≤ Cg(a)(n),

and the result follows from Lemma 3.7.

5.3 Proof of Theorem 2.8

Lemma 3.9-(3) implies that if π̄S exits from the north boundary,

zβ(π̄S) ≥ n − un(a) · e2 +
un(a)·e2∑

k=1

ωk,k ≥ n − un(a) · e2, for all β > 0. (5.4)
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Let Bn denote the event (5.4) and Dn the event that π̄S exits from the north boundary.
Choose c1 = c2 = 12/(|A| − 1)2 in the definition of un(a) in (3.16). Then it follows
from (3.21) and (3.22), using Lemma 3.8, that π̄S exits from the north boundary with
probability at least 1 − c0(n

3 log n)−1. Now, since z0 ≤ n,

Dn ⊆ Bn ⊆ {z0 − zR ≤ un(a)}. (5.5)

On the other hand, since z0 ≥ n − un(a) · e2, (3.2) implies that

y0 ≤ 2un(a) · e2 + ⌊|A|n − xna
⌋− n = 2un(a) · e2 − yR.

Therefore
Dn ⊆ {y0 − yR ≤ 2un(a) · e2}. (5.6)

Combine (5.5) and (5.6) to deduce

Dn ⊆{y0−yR ≤ 2un(a)·e2}∩{z0−zR ≤ un(a)·e2}⊆{z0−zR+y0−yR ≤ 3un(a)·e2}.
Finally, use (3.13) to obtain that for all n > N = N(a, x),

Dn ⊆ {Rm,n ≤ C(un(a) · e2)
2/3}. (5.7)

On the complement of Dn we bound R by n, by virtue of (3.12). Then for n large
enough,

E

(
R

(al)
�n|A|−xna�n

)
≤ E(R

(al)
�n|A|−xna�n11{Dn}) + nP{Dc

n}
≤ E(R

(al)
�n|A|−xna�n11{R(al)

�n|A|−xna�n≤C(un(a)· e2)
2/3})+ nP

{
Dc

n

}
≤
{

C(x, |A|)(n log n)1/3 a ≤ 1/2,

C(x, |A|)n2a/3, a > 1/2.

This gives the result.
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15. Georgiou, N., Rassoul-Agha F., Seppäläinen, T.: Stationary cocycles and Busemann functions for

the corner growth model. Probab. Theory Relat. Fields. https://doi.org/10.1007/s00440-016-0729-x
(2016)
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26. Komlós, J., Major, P., Tusnády, G.: An approximation of partial sums of independent RV’s, and the
sample DF. II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34, 33–58 (1976)

27. Lember, J., Matzinger, H.: Standard deviation of the longest common subsequence. Ann. Probab.
37(3), 1192–1235 (2009)

28. Lember, J., Matzinger, H., Vollmer, A.: Optimal alignments of longest common subsequences and
their path properties. Bernoulli 20(3), 1292–1343 (2014)

29. Maier, D.: The complexity of some problems on subsequences and supersequences. J. ACM 25(2),
322–336 (1987)

30. Malaspinas, A.S., Eriksson, N., Huggins, P.M.: Parametric analysis of alignment and phylogenetic
uncertainty. Bull. Math. Biol. 73(4), 795–810 (2011)

31. Martin, J.B.: Limiting shape for directed percolation models. Ann. Probab. 32(4), 2908–2937 (2004)
32. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci.

20(1), 18–31 (1980)
33. Myers, E.W., Miller, W.: Optimal alignments in linear space. Comput. Appl. Biosci. 4(1), 11–17

(1988)
34. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the

amino acid sequence of two proteins. J. Mol. Biol 48, 443–453 (1970)

https://doi.org/10.1007/s00440-016-0729-x
https://doi.org/10.1007/s00440-016-0734-0
http://arxiv.org/abs/1506.06067


Math Phys Anal Geom (2018) 21: 22 Page 29 of 29 22

35. Ng, P.C., Henikoff, S.: Predicting deleterious amino acid substitutions. Genome Res. 11(5), 863–874
(2001)

36. O’Connell, N., Yor, M.: Brownian analogues of Burke’s theorem. Stoch. Proc. Appl. 96, 285–304
(2001)

37. Pachter, L., Sturmfels, B.: Parametric inference for biological sequence analysis. Proc. Natl. Acad.
Sci. U.S.A. 101(46), 16138–16143 (2004)

38. Pachter, L., Sturmfels, B.: Algebraic statistics for computational biology. Cambridge University Press,
New York (2005)
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