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Abstract
In today’s gravity research there exists a number of gravitational theories which predict the 
existence of various corrections to the classical gravitational potential. In this paper using 
the different potentials that exist in the literature and with the help of Gauss’ planetary 
equations we examine the time rate of change of the Tisserand parameter as a function of 
the time rate of change of the three orbital elements involved. We find that the Tisserand 
parameter remains constant over a full orbital revolution in all the different potential result-
ing from the various theories. This fortifies and generalises the use of Tisserand parameter 
not only in case of Newtonian dynamics but also in more extended theories of gravity, 
thus ensuring its validity in determining the identity of a returning comet. Furthermore, we 
find that the parameter remains unchanged even in the case where a gravitational potential 
derived from a D-dimensional gravitational force, in the case where D = 4. Next quantiza-
tion of orbits calculation is performed and the constancy of the Tisserand parameter is also 
recovered. Finally, assuming fractal orbits we obtain an expression for the fractal dimen-
sion of three well known Jupiter family comets in terms of their orbital elements and the 
constancy of the Tisserand parameter is also recovered.

Keywords Tisserand parameter · Jupiter family comets · Gauss planetary equations · 
Gravity theories · Fractals

1 Introduction

Comets that move in elliptical orbits periodically appear in the vicinity of the solar system. 
For these types of comets their eccentricities and semi-major axes are usually large. As a 
result, their periodic orbits carry them away in the far ends of the solar system. Under these 
conditions no comet can be really followed visually all the way as planets do in their orbits. 
To follow a comet in every point of its orbit it’s not an easy task. In the the appearance of a 
new comet, it is always hard to identify the comet with an old periodic one. In other words, 
the identification of an old comet with a new one is always a problem.

The simplest method consists in the comparison of the comet’s previous orbital ele-
ments with the orbital elements of the newly discovered comet. But this method it’s not 
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always acceptable since comets travelling in elliptical orbits pass near the large planets 
such as Jupiter, can suffer gravitational perturbations that can significantly change their 
orbit from elliptic to parabolic or vice versa (Gurzadyan 1996). Because comets can suffer 
greatly at any perihelion passage their physical characteristics can be significantly altered, 
therefore their natural appearance cannot be really preserved on the cosmological time 
scale as the appearance of the planets, with solar radiation pressure to be one of the most 
important perturbations. The action of energetic photons emanating from the sun along 
with elementary particles can significantly change the comet’s physical appearance. For 
example, cometary characteristics that can change is brightness, the size of the core, or the 
tail, and as a result the identification of the comet based on these it’s not possible.

A method often used is the computation of the orbital elements of the initial comet con-
sidering all possible perturbation and the comparison with the orbital elements of the new 
comet. However, this is a very long and time-consuming method and therefore some other 
method or probably a new criterion would be more suitable for reaching such a conclusion. 
We say that such a criterion exists, and it is called Tisserand’s criterion. It involves a com-
bination of the orbital elements semimajor axis a, eccentricity e, and inclination i and the 
function Φ(a, e, i) = C0 composed from these orbital elements and preserves its constancy 
regardless of any perturbations acting on the comet’s orbit. Furthermore, for such a combi-
nation it’s always true that Φ

(

a0, e0, i0
)

= Φ

(

a1, e1, i1
)

= C0 a relation that is also satisfied 
during all the appearances of the orbiting comet. A violation of this criterion would imply 
that the new comet is a different one.

Next, let us suppose that a comet is to be observed before and after its close approach to 
Jupiter. Let us assume that a0,e0, i0 and a1,e1, i1 refer to the orbital elements of the old and 
new orbit. Therefore following (Bertotti et al. 2003) we can write Tisserand’s criterion in 
the following way:

This is the mathematical formula for Tisserand’s criterion. Furthermore, following (Ber-
totti et al. 2003) and for a comet in a frame rotating with Jupiter’s, we can write Tisserand’s 
criterion in slightly different way (ibid 2003):

where aJ is the semimajor axis of Jupiter, a is the semimajor axis of the comet, e it’s eccen-
tricity and i is its inclination with respect to Jupiter’s orbital plane, and r2 is the distance of 
the comet from Jupiter, and m its mass. Therefore, in two different apparitions the comet is 
far enough from Jupiter, the expression in the left-hand side of Eq. (2) has to approximately 
have the same value, regardless of any close approach to Jupiter that has already occurred 
in the meantime which has altered the orbital elements. The constancy of Tisserand’s 
invariant is very useful in the restricted 3Body treatment whenever it requires some con-
straint on the orbital changes that might result to a close encounters. In an early paper by 
Carusi et al. (1995) the authors check the conservation of various formulations of the Tis-
serand parameter and investigate the relations between T-values and the dynamical behav-
iours at close encounters with Jupiter. Next, in Bottke et al. (2002) the authors investigate 
the orbital and absolute magnitude distribution of the near-Earth objects (NEOs), some-
thing that is difficult to compute partly because only a modest fraction of the entire NEO 
population has been discovered so far, but also because the known NEOs are biased by 
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complicated observational charactetristics. Similarly, in Angor and Lin (2011) the authors 
examine how the late divergent migration of Jupiter and Saturn may have perturbed the 
terrestrial planets. The authors identify six secular resonances between the apsidal eigen-
frequency of Jupiter and Saturn and the four eigenfrequencies of the terrestrial planets to 
values larger that the observed ones. Finally, in a recent paper by Hsieh and Haghighipour 
(2016) the authors present the results of "snapshot" numerical integrations of test particles 
representing comet-like and asteroid-like objects in the inner solar system, aimed at inves-
tigating the short-term dynamical evolution of objects close to the dynamical boundary 
between asteroids and comets as defined by the Tisserand parameter with respect to Jupiter, 
TJ (i.e., TJ = 3). More recently data and analysis various interferometric gravitational wave 
detectors is already on the way. The goal of the scientific community aimed for the detec-
tion of gravitational waves (Corda 2009). There is no doubt that such a detector can and 
will open a new window in the observation of the universe also confirm or rule out the 
theory of general relativity as well as any other know theories of gravitation. (Corda 2008)

In this paper, the constancy of the Tisserand parameter is examined for several different 
gravitational potentials, resulting in various gravity theories in a two-body orbital scenario 
including also the case of a dimensionality D = 4 space gravitational force. Furthermore, 
using three well known Jupiter family comets we attempt the examination of the Tisserand 
parameter in the case where the cometary orbits can be represented as fractal orbits of 
a fractal dimension that is expressed as a function of orbital elements. Concluding, we 
say the main idea of this contribution is the examination of any possible deviations on 
cometary Tisserand parameter in gravitational potential derived from various gravitational 
theories if any.

2  The Logarithmic Potential

Four fundamental forces govern the universe, one of which is gravity, long known to be 
an inverse square field. On the other hand, Einstein’s theory of gravitation is a more com-
plete theory where gravitation is related to the space–time curvature of the universe. Hav-
ing said that today’s scientists know that Einstein’s theory help us to understand the nature 
of astronomical and astrophysical phenomena, where at the same time the theory fails in 
understanding and explain certain types. For recent critical overviews of general relativity 
(GR) look Iorio, (2015). One of the major difficulties that the theory of gravitation faces, 
is that of the flat rotation curves in spiral galaxies. As an explanation today’s science has 
postulated the idea of dark matter which mathematically enters as a gravitational potential 
modification in the weak field approximation. The assumption is that dark matter is made 
up of non-baryonic matter which populates the galactic halos of various galaxies, with dark 
matter distributions above the galactic plane of our Galaxy and other spiral galaxies. The 
first evidence of dark matter was first found by Zwicky in 1937 (Binney and Tremaine 
1987). Zwicky’s work was based on radial velocity measurements of galaxies belonging 
to the Coma cluster (ibid 1987). In the limit of the very weak field approximation dark 
matter is treated as a modification of the gravitational potential, in which case Modified 
Newtonian Dynamics (MOND) was first proposed by Milgrom (1983). In his theory Mil-
grom postulates that Newtonian gravitational force is strengthened for the accelerations 
within the range that is below the usual Newtonian gravitational force. He further gives an 
empirical value for this acceleration that is approximately equal to a0 ∼ 1.2 ×  10−10 m/s2. In 
another paper Sanders and Noordermeer (2007) indicate that this acceleration is adequate 
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when applied to the galactic rotation curves. Finally, in a paper by Haranas et al. (2020) 
the authors study the motion of a secondary celestial body under the influence of a cor-
rected gravitational potential in a modified Newtonian dynamics scenario. Specifically, the 
authors examine in orbits within the Milky-Way galaxy, where the application of a modi-
fied Poisson equation results into two new potential terms one of which is logarithmic and 
the other involves the cosmological constant lambda Λ which in the region of influence of 
the logarithmic correction to the potential is related to the condition, r > rmax the logarith-
mic correction is also related to the term (∇�)2 in the modified Poisson equation for the 
gravitational field (ibid 2020).

3  Rate of Change and Variation of the Tisserand Parameter

Let us now consider a Jupiter family comet, orbiting around the Sun with aphelion in the 
vicinity of Jupiter in an elliptical orbit. Let a be the semimajor axis, e its eccentricity, and 
i its inclination with respect to Jupiter’s orbital plane. Using Eq. (2) and, taking the deriva-
tive of Tc we obtain the following expression:

Next, following Haranas et al., (2015) from Gauss’ equations for da/dt we have that:

where R and T  are the radial and transverse components of this acceleration per unit mass, 
and f is the true anomaly, a the semimajor axis, and e is the eccentricity and n is the mean 
anomaly of the comet. Similarly, following Vallado (2001) we write that:

Since logarithmic field is a radial field, the radial acceleration Rlog is the only not zero 
acceleration along the radial direction, such that T and W = 0 therefore Eqs.  (4), (5), (6) 
become:
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Using Eqs. (7), (8), (9) Eq. (3) can be written as:

Next, the radial component of the logarithmic acceleration is given by the equation 
(Haranas et al. 2020):

Next, we express the time rate of change of the Tisserand parameter (10) in terms of the 
eccentric anomaly E by using the well-known relations (Murray and Dermott 1999):

Substituting Eqs. (12) into (11) we obtain that:

Next using (13) and (14) Eq. (10) takes the form:

where:

And Eq. (16) can be simplified as follows:
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Integrating over a full revolution

To integrate

we use substitution letting (1-ecosE) = u the integral becomes:

and therefore, by a basic rule of the definite integrals, we obtain that:

Therefore, in the case of a logarithmic potential the Tisserand parameter remains 
constant.

4  The Yukawa Potential

The force of gravitation is one of the four fundamental forces of nature. When compared 
to electromagnetic, strong and weak forces, gravitation still resists a quantum mechani-
cal explanation that involves the exchange of some kind of bosons. In spite the fact that 
various theoretical models have proposed, its unification with the rest of the physical 
forces still remains impossible. Deviations from the Newtonian gravitational potential 
can be described with an additional Yukawa correction (Fischbach et al. 1986, 1992).

The effects of gravity on the secondary in the presence of the Yukawa correction can 
be described in terms of the modified potential (Haranas et al., 2010):

In this relation, r denotes the distance between the two bodies, G is the Newtonian 
gravitational constant, α = kK/GMm, where k and K are the coupling constants of the 
new force to the bodies relative to the gravitational one (Iorio 2002), and λ is the range 
the mediating the interaction particle (Haranas et al. 2010). The corresponding force per 
unit mass can be written as:
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Kolosnitsyn and Melnikov (2004) have calculated that for the artificial Earth satel-
lites LAGEOS and LAGEOS II, a minimum value of the Yukawa coupling constant is 
of the order of αmin = 1. 38 ×  10−11 for λ = 6. 081 ×  106  m. Haranas et  al. (2010). We 
have also mention that in earlier papers by Iorio (2002) and Lucchesi (2003), the 
authors dealt with the perigee motion rate for the same LAGEOS satellites. Moreover, 
Pitjeva (1999) has estimated using radar measurements that random Mercury perihe-
lion motions are of order 0. 052 arcsec/cycle, which implies that, αmin = 3. 57 ×  10−10 
for λ = 2. 89 ×  1010  m. She extended such research to other solar-system bodies, also 
tackling the problem of the solar-system dark matter and its influence on other plan-
ets dynamics (Pitjeva 2009). In connection with Pitjeva’s results, we must quote Iorio’s 
(2007) paper, which put severe constraints on λ, showing that the range cannot exceed 1 
AU. This finding may have important consequences on all gravity theories that involve 
Yukawa-type corrections with range parameters much larger than the solar-system size. 
Next, the radial component of the Yukawa acceleration is given by the equation (Hara-
nas et al. 2010):

Substituting Eqs. (12), (13), (14) and (26) and then into (10) after a little algebra and 
simplification we obtain the following equation that gives the rate of change of the Tis-
serand parameter as a function of the eccentric anomaly E to be:

where:

To find the Yukawa effect correction in the Tisserand parameter we integrate Eq. (20) 
for a full revolution, and therefore we obtain that:
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Next consider the following cases of a and λ. First consider the case a = � . In this 
case Eq. (30) takes the form:

which under the same transformation given under Eq. (32) results again to the same inte-
gration limits and therefore the integral in Eq. (32 ) is again zero, and therefore

5  Tisserand Criterion in Potentials of Higher D Dimensions

To approach such a question, it will be necessary to have an idea of what a gravita-
tional force in higher dimensions might be. For that let us consider a point in a 
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hypersphere the volume is given by (Rabinowitz 2001), where Γ(D∕2) is the gamma 
function of the indicated argument to be:

Similarly, the D dimensional space gravitational force is given by (ibid 2001):

As a first example of higher dimension potential let us consider the D = 4 case. 
Therefore, the radial acceleration or force per unit mass can be written as function of the 
eccentric anomaly takes the form:

where the gravitational constant G4 is model depended if D > 3 (Rabinowitz 2001). There-
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And therefore

In the general D dimensional case we have that the radial acceleration per unit mass RD 
takes the form

Using Eq. (4) Eq. (10) as a function of eccentric anomaly takes the form:

Therefore, integrating over one revolution we have the following integral:

and therefore, the final Tisserand parameter after one revolution becomes:

And therefore

At this point we say that since the dimensionality D must be an integer number even or 
odd the integral in Eq. (42) is equal to zero.

6  Tisserand Parameter in Fractal Dimensionality
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dimensions and fractal geometry could be used to describe not just quantum mechanics but 
also relativity. Moreover, efforts in establishing physics beyond the standard model has also 
indicated the need of extra dimensions. Next, we will try to shed some light in explaining 
the concept of fractal space–time and for its mathematical description the reader could refer 
to Nottale, (1995). At this point we say that a fractal space–time theory it’s not yet com-
pleted when compared to other theories such as special and general relativity and quantum 
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mechanics. Recent theories of quantum gravity space–time have a fractal structures. At Planck 
scales the theory predicts a two-dimensional space–time which eventually evolves into a four 
dimensional one at later times in the evolution of the universe. This is an effort of “trying to 
understand how a gravitation space with fractional dimensions couples with gravitation” (Hel-
leman, 2006). Next, let us briefly mention how a fractal space–time can be represented math-
ematically. First, consider a small distance differential dXi of a no differentiable 4-coordinates 
along one of the geodesics lines. Following Nottale (1996) we can decompose dXi in terms of 
its mean, < dXi >  = dxi and a fluctuation respective to the mean, d�i(such that < d�i >  = 0 by 
definition) and therefore we can write that:

In this definition, the variables dxi generalizes the classical variables, and d�i describe the 
new, non-classical, fractal behaviour (ibid 1996). Next according to the laws of fractal geom-
etry (Mehaute 1990) this type of behaviour depends on the fractal dimension D according to 
the relation below:

where D is the dimensionality of the fractal space and an existing number of different frac-
tal dimensions in the literature (Falconer 1990). To estimate the fractal dimension, we use 
the definition (Hanan and Radu 2007)

when � → 0 , where N(ε) is the minimal number of boxes of size ε needed to cover the 
fractal set. In practice one estimates d the fractal dimensionality. In this work we assume an 
orbiting comet with aphelion pass Jupiter distance. Let now assume the radial distance of 
the comet from the sun in AU be given by:

where r0 is the cometary perihelion distance in AU and �0 = ⟨aperi⟩ in AU and D is fractal 
dimension, and N is the number of comets. We can think of the solar system as a system/
structure that has fractal nature, which also exhibits scaling properties. If this proves true it 
will be a great help in understanding the origin of the solar system. Next, writing that the 
radial distance in terms of the eccentric anomaly E using Eq. (14) and equating to Eq. (48) 
solving for the fractal dimensionality we obtain that:

Using Eq. (49) we can write Eq. (42) in the following way:

where � =
a

N
 , � =

r0

N
,� =

ae

N
 and � = � − � =

a−r0

N
 . Again, making the transformation 

u = (1 − e cosE) we obtain the following integral

(45)dXi
= dxi + d�i

(46)d� = dt
1

D ,

(47)d = lim
ln (N(�))

ln (1∕�)

(48)rAU = r0 + �0N
D,

(49)D =

ln
[

a(1−e cosE)−r0

�0

]

ln (N)
,

(50)I0 =

2�

∫
0

sinE

(1 − e cosE)�(�−� cosE)
dE,
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Therefore, we conclude that in even in D dimensional space where D is a fractal dimension 
the Tisserand parameter remains constant.

7  Tisserand Parameter and Orbit Quantization

To examine the invariability of Tisserand parameter to a quantized orbit let as use the result 
given in Rabinowitz (2001) in which the author considers quantized non-relativistic gravita-
tional orbits in a D-space, analogous to electrostatic atomic orbitals (ibid 2001). Moreover, the 
author proceed by saying that ordinary matter does not have a density that is high enough to 
make orbits like this possible. Using a Bohr-Somerfield condition the author derives that the 
orbital radius around a primary body of mass M is given by:

Equating Eq. (52) with the radial vector Eq. (12) we have the following equation:

solving for an we obtain the equation:

Next assuming an orbiting comet/ planet for which the semi-major axes is quantized 
according to (54) and substituting in Tisserand parameter equation after some simplification 
we obtain that:

Looking at Eq. (56) we realize that for given values of the comet/planet eccentricities ep, ec 
and eccentric anomalies Ep,Ec and cometary inclination i this equation is just a constant, 
therefore it does not change.

Next, we will continue in deriving analytical expressions with the help of which we can 
obtain the dependence of Tisserand’s parameter on the semi major axis and the eccentricity of 
the orbit. Thus, using Eq. (3) and multiplying through by dt we obtain:

dividing Eq. (56) both by da we obtain:

(51)I0 =

1−e

∫
1−e

du

u
� ln

(

�−
�

e
(1−u)

) = 0

(52)rn =

[

nℏ

m
(

2GDM Γ(D∕2)
)1∕2

]
2

(4−D)

(53)an(1 − e cosE) =

[

nℏ

m
(

2GDM Γ(D∕2)
)1∕2

]
2

(4−D)

,

(54)an =
nℏ�

(

D

4
−

1

2

)

2
1

(D−4)

[

m
(

GDM Γ(D∕2)
)]

2

(D−4)

(1 − e cosE)

(55)T =

(

1 − ec cosEc

)

(

1 − eJ cosEJ

) + 2 cos i

√

√

√

√

(

1 − e2
c

)

(

1 − eJ cosEJ

)

(

1 − ec cosEc

)

(56)dTc = A0da − B0de,
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similarly, w. r. t to eccentricity we obtain the following equation:

where A0 and B0 are given by Eqs. (28) and (29) and the fact that

Using Eqs. (28), (29), 59, and (60) Eqs. (58) and (59) become:

and solving the differential Eq.  (61) subjected to the initial condition T
(

a0
)

= Tinit we 
obtain the following solution:

Similarly, integrating Eq. (62) subjected to T
(

e0
)

= Tinit we obtain:

If T(a)fin = Tinit then ΔT = 0 , using Eq. (64) this is possible if

and

Which from Eq. (65) and (66) implies that a0 = a and from Eq. (57) a → ∞ or e0 = e.

(57)
dTc

da
= A0 − B0

de

da
,

(58)
dTc

de
= A0

da

de
− B0,

(59)
da

de
=

2ea
(

1 − e2
)

(60)de

da
=

(

1 − e2
)

2ea

(61)
dT

da
=

aJ

a2

(62)
dT

de
=

2eaJ

a
(

1 − e2
)

(63)T(a)fin = Tinit + aJ

(

1

a0
−

1

a

)

(64)T(e)fin = Tinit +
2aJ

a
ln

(

1 − e2
0

1 − e2

)1∕2

(65)aJ

(

1

a0
−

1

a

)

= 0,

(66)
2aJ

a
ln

(

1 − e2
0

1 − e2

)1∕2

= 0,
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8  Tisserand Parameter in a Non‑Singular and Quantum Correction 
to the Gravitational Potential

A non-singular gravitational potential can be represented by the following mathematical 
formula (Haranas and Pagiatakis 2010; Williams 1997, and 2001)  of the following form:

and the constant λ <  < r is defined as follows:

where c is the speed of light, G is Newton’s gravitational constant, Mp is the mass of the 
primary body, r is the radial distance of the secondary from the center of the primary body. 
We can easily see that this potential its almost identical to the Yukawa potential, with the 
only exception that the Yukawa potential scales as e−r∕� the non-singular potential scales as 
e−�∕r . For radial distances greater than λ it takes the familiar 1/r form. If r = 0 the potential 
is zero due to the overriding effect of the exponential. In the case of this potential the radial 
component of the acceleration becomes:

And therefore the equation of the rate of change of the Tisserand parameter with respect 
to the eccentric anomaly E becomes:

Integrating we have

and therefore

In the case of circular orbits Eq. (71) is equal to

And again

(67)V(r) = −
GM

r
e
−

�

r ,

(68)� =
GM

c2
,

(69)Rns(r) = −
GM

r

(

1 −
�

r

)

e
−

�

r = −
GM

a(1 − e cosE)

(

1 −
�

a(1 − e cosE)

)

e
−

�

a(1−e cosE) ,

(70)
dT

dE
= −GM

[

2eA0

n2a
−

B0

(

1 − e2
)

n2a3

]

[

sinE

(

1 −
�

a(1 − e cosE)

)

e
−

�

a(1−e cosE)

]

(71)

Tfin = Tini −

2�

∫
0

GM

[

2eA0

n2a
−

B0

(

1 − e2
)

n2a3

]

[

sinE

(

1 −
�

a(1 − e cosE)

)

e
−

�

a(1−e cosE)

]

,

(72)Tfin = Tini −

[

(1 − e cosE)e
−

�

a(1−e cosE)

e
+

2�

ae
Ei

(

−
�

a(1 − e cosE)

)

]2�

0

= 0,

(73)Tfin = Tini = constant.

(74)Tfin = Tini +

2�

∫
0

GM

[

B0

n2a3

]

[

sinE
(

1 −
�

a

)

e
−

�

a

]

dE = 0,
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Finally in the case where � = a , again the Tisserand parameter remains constant.
The Newtonian potential energy that is usually describes the motion of two bodies of 

mass Mp and m which are separated by a distance r:

where G is the Newtonian constant of gravitation. This is an approximately valid poten-
tial (e. g., Donoghue 1994). In the case of large masses or large velocities, General Rela-
tivity theory predicts that relativistic corrections exist, which can be calculated and also 
verified experimentally (e. g., Bjorken and Drell 1964). Similarly, in the microscopic dis-
tance domain, we could expect that Quantum Mechanics predicts a correction to the gravi-
tational potential in similar way that corrections of Quantum Electrodynamics lead to a 
modification of the Coulomb interaction (t’Hooft and Veltman 1974). Even though General 
Relativity constitutes a well-defined classical theory, it is not possible yet to combine GR 
with Quantum Mechanics to create a satisfactory theory of Quantum Gravity. In reference 
to Hamber and Liu (1995) and Haranas and Mioc (2009), and taking into account that 
Mp >  > m and following Haranas et al. (2015) the corrected potential energy valid to order 
G2 is given by:

And therefore the radial acceleration per unit mass is:

where �2
pl
=

Gℏ

c3
 is the Planck length = 1. 616 ×  10−35 m, and therefore we have that:

Integrating over a full revolution we obtain:

The quantum correction to the gravitational potential leaves the Tisserand parameter 
invariant. Finally, in the case of a Newtonian potential V(r) = −GM∕r we obtain the fol-
lowing equation:

Integrating over one revolution the integral involving the trigonometric terms is 
again equal to zero and therefore the Tisserand parameter remains constant again.

(75)Tfin = Tini = constant.

(76)Vp(r) = −

GMp

r
,

(77)V(r) = −

GMpm

r

(

1 −
GMp

2c2r
−

122Gℏ

15�c3r3

)

,

(78)Rqu(r) = −

�Vqu(r)

�r
=

122G2Mpℏ

15�c3r4
=

122GMp�
2
pl

5�r4
,

(79)dT

dE
=

GMp�
2
p

5�n2a4

(

244eA0 −
122B0

a

(

1 − e2
)

)(

sinE

(1 − e cosE)4

)

(80)Tfin = Tini +
GMp�

2
p

5�n2a4

(

244eA0 −
122B0

a

(

1 − e2
)

)

2�

∫
0

sinE

(1 − e cosE)4
= 0

(81)
dT

dE
=

GMp sinE

n2a2(1 − e cosE)2

(

2eA0 +
B0

a

(

1 − e2
)

)

,
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9  Discussion and Numerical Results

Consider Jupiter like comets with inclinations i ≤ 30◦ periods in the range 3–10 years and 
eccentricities in the range 0.5 ≤ e ≤ 0.7 (Cole and Woolfson, 2013). In this contribu-
tion more exact values of the orbital elements of the comets Tempel-2, Grigg-Skjellerup, 
Giacobini-Zinner (ibid 2013) are used as they are given in (https://ssd. jpl. nasa. gov/tools/
sbdb_lookup. html#/). In Table  1 we tabulate the orbital elements used in our numerical 
calculation. We use the JPL-NASA results for the semimajor axes given in Table 1 and we 
assume that these values have been calculated using a Newtonian potential. In Table 2 we 
calculate the Tisserand parameters of the three comets and we find that they are in the range 
2.46518 ≤ TJF ≤ 2.96445 . In Table 3 we calculate the encounter velocities of the three Jupi-
ter family comets. The velocities appear to be kind of low something that agrees with what 
has been said in a paper by Tancredi and Lindgren (1991) where the authors find that Jupiter 
family comets tend to have low encounter velocities at the encounter with Jupiter where their 
heliocentric orbital velocities at the moment of encounter are similar to the velocity of Jupiter.

It is known that comets with T ≤ 3 corresponds to very slow comets with further implies 
a very strong Jupiter encounter. On the other hand, objects with T > 3 cannot cross Jupiter’s 
orbit in the circular restricted case. Therefore, the comets can e bconfined either to totally 
exterior or interior orbits (Duncan 2008). According to Levison (1996), a significant cate-
gory is based on the Tisserand parameter. In this classification comets with T > 2 are called 
ecliptic comet because of their small inclinations. Similarly, comets for which the follow-
ing relation holds i.e. 2 < T < 3 are associated with Jupiter-crossing orbits that are dynami-
cally dominated by Jupiter (ibid 1996). Comets with T < 2 it is believed they originate in 
the Oort cloud (Oort 1950) are designated nearly isotropic comets (NIC). In the case of 
Jupiter family comets, the relative velocity between the comet and Jupiter is given by the 
relation (Carusi et al. 1995)

where vJup is Jupiter’s velocity around the sun taken to be as the mean orbital velocity of 
Jupiter to be vJup = 13. 0697 km/s (Vallado, 2001) and aJ is approximately constant, and 
T is the Tisserand parameter. Therefore the acceleration of the comet relative to Jupiter 
becomes:

which in the case of circular orbits e = 0 becomes:

(82)vrelcom = vJup

√

3 − T = vJup

⎡

⎢

⎢

⎣

3 −

⎛

⎜

⎜

⎝

aJ

a
+ 2 cos i

�

a
�

1 − e2
�

aJ

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

1∕2

,

(83)ac =
dvc

dt
=

�

2aJ

a2
+ cos i

�

(1−e2)

aaJ

�

da

dt
−

2ae cos i
√

aaJ(1−e
2)

de

dt
+ 2 sin i

�

a(1−e2)

aJ

di

dt

2

�

3 −
aJ

a2
− 2 cos i

�

a(1−e2)

aJ

� ,

(84)ac =
dvc

dt
=

�

2aJ

a2
+

cos i
√

aaJ

�

da

dt
+ 2 sin i

�

a

aJ

di

dt

2

�

3 −
aJ

a2
− 2 cos i

�

a

aJ

�
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Similarly, if we consider the velocity of Jupiter to also vary with time the acceleration 
expression becomes:

and for circular orbits Eq. (84) becomes:

where Q0 is given by:

Using a mean orbital velocity of Jupiter to be vJup= 13. 0697 km/s (Vallado 2001) to 
tabulate the relative velocities of the three comets relative Jupiter comets to be:

Next, we try to write a fractal equation for the radius of the cometary orbits and cal-
culate the fractal orbital dimension D. We use Eqs.  (48) and (12) where r0 is the peri-
helion, e the orbital eccentricity, E is the eccentric anomaly, a the semimajor axis, and 
�0 = ⟨api⟩ = 1.18392 AU or the average of the perihelia distances,

And therefore we obtain:

Solving the above equations for the fractal dimension D of each come we obtain that:

(85)ac = vJQ0 +

(

vc

vJ

)

dvJ

dt
,

(86)ac = vJQ0(e = 0) +

(

vc(e = 0)

vJ

)

dvJ

dt

(87)Q0 =

⎛

⎜

⎜

⎝

2aJ

a2
+ cos i

�

�

1 − e2
�

aaJ

⎞

⎟

⎟

⎠

da

dt
−

2ae cos i
�

aaJ
�

1 − e2
�

de

dt
+ 2 sin i

�

a
�

1 − e2
�

aJ

di

dt

(88)
D =

ln
�

a(1−e cosE)−r0i

�0

�

ln 3
=

ln

�

a(1−e cosE)−rpi

⟨
api⟩

�

ln 3

(89)
1.1425197419594 + 1.18392 × 3D = 3.065339291995363(1 − 0.5362602835158699 cosE)

(90)
1.116736323909562 + 1.18392 × 3D = 3.043315833693677(1 − 0.6330527671345312 cosE)

(91)
1.013493750730936 + 1.18392 × 3D = 3.500440355594361(1 − 0.710466784811464412 cosE)

(92)DTemp−2 =

ln
[

1.42151974197594+3.065339291995363(1−0.5362602835158699 cosE)

1.18392

]

ln 3

Table 1  Orbital elements of the three Jupiter family comets used in this paper

Jupiter family comets Orbital eccentricity e Orbital inclination 
[io]

Semi-major axis a 
[AU]

Perihelion distance 
ap [AU]

Temle-2 0.5362602835158699 12.02539399414482 3.065339291995363 1.42151974197394
Grigg-Skjellerup 0.6330527671345312 22.35649066304651 3.043315833693677 1.116736323909562
Giacobinni-Zinner 0.7104667848114644 32.00303376160798 3.500440355594361 1.013493750730936
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In Fig. 1 Eqs.  (92) (93) (94) represent the change of the fractal dimension of the three 
Jupiter family comets in a full orbital revolution as a function of the eccentric anomaly 
namely Tempel-2 (blue), Grigg-Skjelderup (magenta), Giacobini-Zinner (yellow). The 
value of the Tissearand parameter is different for each comet and varies periodically as a 
function of the eccentric anomaly E of the cometary orbit. The peak value corresponds to 
the eccentric anomaly at  1800. Moreover, we find that around the orbit the comets Tem-
pel-2 (blue), Giacobini-Zinner (yellow) share a common dimensionality value at a certain 
range of eccentric anomaly namely which can be obtained from the graph by reading the 
coordinates at the points using the Mathematica software function. For example, for the 
comets Tempel-2/Giacobini-Zinner and in the left graph point of intersection is bounded 
between the following values eccentric anomaly E = 88. 04° D(E) = 1. 248 and E = 98. 52° 
D(E) = 1. 315 and in the right intersection of the graph point we obtain that.

E = 272. 1° D(E) = 1. 247 and E = 260. 4° D(E) = 1. 318. Similarly in Fig. 2 we plot 
the cometary interaction velocity with Jupiter as a function of the orbital eccentric 
anomaly E of the three Jupiter family comets given above. Our graph resembles that 
of Carusi et  al. (1995) in the domain of lower values of cometary interaction veloci-
ties. The graph demonstrates that the velocity of the comet periodically varies with the 
eccentric anomaly of the comet, having a maximum velocity value at aphelion, which in 
the case of these three comets being close to Jupiter and Jupiter’s gravitational attrac-
tion is greater than that of the sun. Finally, in Fig.  3 we plot the interaction velocity 
versus values of the Tisserand parameters in the range that also includes the calculated 
Tisserand parameters of the three comets used in this contribution. We find that higher 
Tisserand parameters correspond to lower Jupiter encounter velocities.

(93)DGri−Skj =

ln
[

1.116736323909562+3.043315833693677(1−0.6330527671345312 cosE)

1.18392

]

ln 3

(94)DGia−Zin =

ln
[

1.013493750730936+3.500440355594361(1−0.7104667848114644 cosE)

1.18392

]

ln 3

Table 2  For the three Jupiter 
family comets of known orbital 
elements we tabulate the 
Tisserand parameters

Orbital eccentricity (e) Tisserand 
parameter(T)

Temle-2 2.96445
Grigg-Skjellrup 2.80450
Giacobinni-Zinner 2.44652

Table 3  Relative velocities of 
comets with respect to Jupiter

Jupiter comets Comet encounter 
velocityven [km/s]

Temle-2 2.46247
Grigg-Skjellrup 5.77457
Giacobinni-Zinner 9.55096
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Next let us consider the case of the variability of the fractal dimension let us consider 
the fractal dimension D to be a function of time and let us rewrite Eq. (48) in the follow-
ing way:

Taking the time derivative of (96) and equating to vc = vJ

√

3 − T  we obtain:

First assuming that de
dt

 <  < 1 in other words if there is a negligible effect on the eccen-
tricity we obtain the following equation:

For circular orbits e = 0 and comets with Tisserand parameter T = 3 we have the follow-
ing equation:

which can be written in the following way:

Equation (93) subjected to the initial condition that a(0) = a0 has a general solution of 
the form:

Using the initial condition that a(0) = a0 we obtain that:

For comets that T < 3 and e ≠ 0 we obtain that:

(95)r(t) = r0(t) + �0N
D(t)

= a(t)(1 − e(t)) + �0N
D(t)

(96)(1 − e)
da

dt
− a

de

dt
+ �0N

D(t) lnN
dD(t)

dt
= vJ

√

1 − T

(97)
da(t)

dt
+

�0 ln 3

(1 − e)
ND(t) dD(t)

dt
= vJ

√

1 − T

(98)
da(t)

dt
+ �0N

D(t) ln 3
dD(t)

dt
= 0

(99)
d

dt

[

a(t) + �0N
D(t)

]

= 0

(100)a(t) = c0 − �0N
D(t)

(101)a(t) = a0 + �0
(

ND(0)
− ND(t)

)

Fig. 1  In this figure we plot the 
fractal dimension D as a function 
of the eccentric anomaly E of 
the three Jupiter family comets 
namelyTampel-2 (blue), Grigg-
Skjelderup (magenta), Giacobini-
Zinner (yellow)
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Substituting for D Eq.  (49) using that r0(t) = rp(t) = a(t)(1 − e(t)) and finally D 
becomes:

This is a more general equation for expressing the interaction velocity as function of the 
time rates of change of the orbital elements of the comet. Our work will follow up a paper 
soon.

(102)a(t) = a0 −
ND(t)�0

(1 − e)
+ vJ

�
√

3 − T
�

t

(103)D =
1

lnN
ln

[

ae(1 − cosE)

�0

]

,

(104)

da

dt
+

�0a(1 − e cosE)
�

1 + �0e(1 − cosE)
�

de

dt
+

�0e sinE
�

1 + �0e(1 − cosE)
�

dE

dt
=

vJ

√

3 − T
�

1 + �0e(1 − cosE)
�

Fig. 2  In this figure we plot the 
cometary interaction veloc-
ity with Jupiter as a function 
of the eccentric anomaly E of 
the three Jupiter family comets 
namely Tampel-2 (blue), Grigg-
Skjelderup (magenta), Giacobini-
Zinner (yellow)

Fig. 3  Plot the comet closest 
approach velocity vc as a function 
of the Tisserand parameter in the 
range 2.0 ≤ T ≤ 3.0
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10  Conclusions

The main goal in this contribution is the examination of the constancy of the Tisserand 
parameter under the potentials that various gravitational theories predict. For, for example 
theories that try to explain major difficulties in recent theory of gravitation, such as the 
problem of the flat rotation curves in spiral galaxies. Given that all these potentials are 
radially depended, we can calculate corresponding radial accelerations per unit mass and 
then the time rate of change of the basic orbital elements. Using Gauss’ planetary equa-
tions, we derive an expression for the time rate of change of the Tisserand parameter as a 
function of the corresponding orbital time rates. Next, integrating over one orbital revolu-
tion we prove that the Tisserand parameter remains constant over one revolution for all the 
examined gravitational potentials. We also examine a D–dimensional gravitational poten-
tial resulting in a more generalized gravitational force in D dimensions and in the case of a 
D = 4-dimensional space. We find that in a four-dimensional space gravitational force the 
Tisserand parameter remains unchanged in one orbital revolution of the comet. Moreover, a 
fractal dimensional scenario is introduced which results from the effort in the bibliography 
to establish a physical understanding beyond the standard model. The radial distance of the 
comets is expressed of the fractal dimension D, which is also expressed as function as a 
function of the orbital elements of the comet. In the case of a quantized orbit the Tisserand 
parameter also remains unchanged. Finally, considering a time varying fractal dimension 
we derive and solve the time variability of the same- major axis of the comet as a function 
of a time variable fractal dimension.
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