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Abstract
The interior of a crater should have a lower mean areal density of smaller impact craters 
than nearby plains have, because the impacts are spread out over a larger surface area, and 
because the crater’s wall partially shields its interior. Inside a crater shaped like a spheri-
cal bowl (a spherical cap turned upside-down), smaller primary impact craters should be 
spread uniformly, but secondary craters have a more complicated distribution, usually con-
centrated near the center. These results may help to distinguish between populations of 
primary and secondary craters, and should be of interest for interpreting counts of craters 
within craters.

Keywords Cratering · Geological processes · Impact processes

1 Introduction

Crater counting is a key tool in the arsenal of planetology. Many planets, moons, asteroids, 
comets, etc. are pocked to a greater or lesser extent with impact craters, whose areal den-
sity and distribution reveals much about the geologic and dynamical history of the target.

Impact craters come in two main types: primary and secondary. Primary craters are 
made by the impact of interplanetary objects, at speeds greater than the target’s escape 
speed, and produce primary ejecta. Secondary craters are made by the re-impact of ejecta 
from primary craters, at speeds less than the target’s escape speed, and produce secondary 
ejecta.

An intermediate type also has been described: Dobrovolskis and Lissauer (2004) origi-
nally dubbed them “poltorary” craters, after the Slavic word for “one and a half”; but 
Zahnle et  al. (2008) re-labeled them “sesquinary”, after the corresponding Latin term. 
Sesquinary craters are produced by impacts of circum-planetary debris on planets or their 
satellites, at speeds greater than the target’s escape speed, but less than the speed of inter-
planetary bodies.

It is often difficult to distinguish among these types of craters. Sometimes pri-
mary and secondary craters can be distinguished by morphology; e.g., ellipticity, depth/
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diameter ratios, rim sharpness, ejecta blankets, blocks, chains, rays, herringbone patterns, 
etc. (Melosh (1989)). This paper presents another criterion which may help to distinguish 
among the different crater populations.

This paper shows that the interior of a crater should have a lower density of smaller 
impact craters per unit area than nearby plains would have, because the impacts are spread 
out over a larger surface area, and because the crater’s wall partially shields its interior. 
Inside a crater shaped like a spherical bowl (a spherical cap turned upside-down), smaller 
primary (and sesquinary) impact craters should be spread uniformly, but the distribution of 
secondary craters is more complicated, usually concentrated near the center. These results 
may help to distinguish between populations of primary and secondary craters, and should 
be of interest for interpreting counts of craters within craters.

The next section describes the cratering model used to obtain these results. Sect.  3 
derives the distribution of primary craters inside a larger crater, while Sect. 4 derives its 
distribution of secondary craters. The final section briefly discusses the implications of 
these results.

2  Model

Consider a crater shaped like a spherical bowl, with rim radius r and depth h below the rim 
plane, as sketched in Fig. 1. Symbols are defined in Table 1. The surface area of the bowl’s 
“lid” is then just �r2 , while the area of its interior is �r2 + �h2 (Ingersoll et al. (1992); see 

Fig. 1  Sketch of a crater shaped like a spherical bowl. Solid arc: interior of crater. Dashed arc: spherical 
bubble. Plus sign (+): center of bubble. Horizontal solid lines: plane of crater’s rim. Horizontal dotted line: 
lid of crater
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also Appendix A of Dobrovolskis (2021)). For example, the interior area 2�r2 of a hemi-
spherical crater ( h = r ) is twice the area �r2 of its lid.

Assume also that this crater is horizontal, and that it lies on a convex region of the 
planet, moon, etc., so that the rest of that body all lies below the plane of the crater’s rim, 
and there is no “impact shadowing” from outside the crater. Then the flux of impactors 
through the crater’s lid is the same as that on a nearby plain; but the impacts on the crater’s 

Table 1  Symbols
�B Area element of bubble
�C Area element of crater’s interior
c Angular radius of ceiling
f Angular radius of floor
G Newton’s constant of universal gravitation
g Acceleration of gravity at the surface
h Depth of crater below rim
L
P

Luminance of primary impactors
L
S

Luminance of secondary impactors
M Mass of target body
m̂ Unit vector along impact cone
n̂ Upward unit normal to �C
P Flux of primary impactors
P
′ Rectified primary impact flux

P
0

Primary flux on a flat plain
p Given by Formula (10)
q Distance between �B and �C
R Crater’s radius of curvature
R
T

Radius of target body
r Radius of crater’s rim
S Flux of secondary impactors
S
′ Rectified secondary impact flux

S
0

Secondary flux on a flat plain
V Launch speed or impact speed
V
C

V when Coriolis effects matter
V
E

Escape speed
x, y, z Cartesian coordinates
� Cone angle of rim from bottom of crater
� Emission angle
� Impact angle
Δ Horizontal distance traveled by ejecta
Δ

C
Δ when Coriolis effects matter

� Angular distance from bottom of crater
� Cone angle of primary ejecta
� Co-latitude from the zenith
� Angular radius of crater rim
� Azimuthal angle
�
0

Given by Formula (9)
� Rotation rate of target body
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interior are spread over a greater area than its lid. Therefore, the interior of a crater has a 
lower mean density of smaller craters than nearby plains would have, by a factor of

3  Primaries

This raises the question, how are these interior craters distributed? This section shows 
that primary impacts should be spread uniformly over the crater’s interior. In order to 
demonstrate this, first complete the sphere by constructing a “bubble”: a virtual geo-
desic dome or radome atop the crater’s rim, with the same center and radius of curvature 
R = (r2 + h2)∕(2h) ≥ r as the bowl, as shown by the dashed arc in Fig. 1.

Also assume that the incoming flux of primary (and sesquinary) impactors from space is 
isotropic (independent of direction). Note that this assumption is fair for sesquinary impac-
tors, but poor for primary impacts on tidally locked satellites, which often show leading/
trailing cratering asymmetries (e.g., Horedt and Neukum (1984)).

When upward impactors (those originating below the horizon) are ignored, every area 
element �B of the bubble is exposed to the same impact flux; i.e., the sky has a uniform 
radiance of primary impactors. Then by analogy with radiative transfer, each element �B of 
the bubble acts like a pinhole camera, and may be regarded as radiating downward impac-
tors isotropically, and with equal impact luminance LP (primary impactors per unit solid 
angle per unit area per unit time).

Each area element �C of the crater’s interior receives an infinitesimal flux 
�P = LP cos(�) cos(�)�B∕q

2 from every area element �B of the bubble, where � is the angle 
of emission from the normal to �B , � is the angle of impact from the normal to �C , and q is 
the distance between �B and �C , as sketched in Fig. 1. By geometry, cos � = cos � = q∕(2R) 
(Ingersoll et al. (1992)); so �P becomes just LP�B∕(2R)2 . Note that Fig. 1 is drawn for a 
vertical cross-section, but the above result applies for any area elements �B and �C.

It is possible to integrate �P over the surface area of the bubble; but it is simpler to 
notice that the above formula for �P is independent of the location of �C , so that every ele-
ment of the crater’s interior is exposed to the same flux from �B . Then the flux of primary 
impactors inside the bowl still must remain uniform when integrated over the bubble. If we 
assume that the efficiency of cratering is independent both of the impact angle �1, and also 
of the surface slope (perhaps plausible for small strength-dominated craters), then the den-
sity of primary craters inside the bowl must be uniform as well.

For example, consider a hemispheric crater of radius r = h = R , subject to a primary 
impact luminance LP . Then each unit of area of the crater’s lid is subject to a primary 
impact flux of P0 = �LP . This lid has an area of �r2 , so it intercepts �r2P0 impactors per 
unit time; but these are spread out uniformly over an interior area of 2�r2 , for an effective 
flux P of just P0∕2 . As a simple check, an element �C of the crater’s wall just below the 
rim is exposed to exactly half of the sky, while the lid and nearby plains see the whole sky.

(1)�r2 + �h2

�r2
= 1 + h2∕r2.

1 Zahnle et al. (2003) suggest that the diameter of a simple impact crater should be roughly proportional to 
the cube root of cos �.
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As a more general check, consider the impact flux P at the very bottom of the cra-
ter. This point is exposed to a cone of sky with opening angle � = Arctan(r/h) = Arc-
sin(r∕

√

r2 + h2) (see Fig.  1). Because the sky (dotted semicircle in Fig.  1) has uniform 
primary impactor luminance LP , integrating LP over the solid angle of the sky cone gives

where � is azimuth and � is co-latitude from the zenith.
In the limit h = 0, Formula (2) above reduces to P = �LP , the classic result for a flat 

plain. For a hemisphere ( h = r ), Formula (2) gives P = �LP∕2 , as derived above. In fact, 
Formula (2) gives the same result as Formula (1) for all depth/radius ratios; and it applies 
over the entire interior of the crater, not just at its bottom.

4  Secondaries

Like primary and sesquinary craters, secondaries should have a lower areal density inside 
larger craters than on nearby plains. Unlike primaries and sesquinaries, though, secondar-
ies should not be distributed uniformly. This section derives an approximate distribution of 
secondary craters inside larger craters.

Secondary impacts differ from primary (and sesquinary) impacts not only in their 
impact speed, but also in their impact angles. The vast majority of ejecta from primary 
impacts are launched in a narrow cone typically ∼ 45◦ from the normal to the surface. 
However, some variations of this angle do occur; for example, see Anderson et al. (2004) 
and Luther et al. (2018). Thus for greater generality, henceforth I will use � as the angle of 
launch from the vertical.

On a spherical target of radius RT and mass M, primary ejecta with launch speeds V 
less than the escape speed VE =

√

2GM∕RT  promptly return to its surface (or re-enter its 
atmosphere) as secondary impacts at the same speed V as their launch speed; and with 
impact angles equal to their launch angles � , as long as Coriolis effects are unimportant.

4.1  Coriolis effects

From Dobrovolskis (1981), for launch angles near 45◦ , Coriolis effects seem to be unim-
portant when

or in terms of the range Δ (the horizontal distance traveled by the ejecta),2 when

at least over the hemisphere centered on the impact. Here g is the surface gravity of the 
target body, and � is its rotation rate.

(2)P = ∮
�

−� ∫
�

0

LP sin(�) cos(�)d�d� = �LP[sin
2 �]�

0
= �LP sin

2 � =
�LP

1 + h2∕r2
,

(3)V < VC ≈ 0.2 g∕𝜔 ;

(4)Δ < ΔC = V2

C
∕g ≈ 0.04 g∕𝜔2,

2 In Dobrovolskis (1981), I forgot to mention that Formula (8) for the range implies sin(Δ∕2) = vhvz∕e . In 
the near-field limit, when the horizontal and vertical components vh and vz of the launch velocity both are 
much less than the escape speed, this reduces to the classic result Δ = 2vhvz∕g on a flat planet.
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Table  2 lists the above parameters for selected near-spherical bodies of inter-
est, along with their radii RT and escape speeds VE , for comparison. Note that 
g = GM∕R2

T
= V2

E
∕(2RT ) , where G is Newton’s constant of universal gravitation.

Of all 20 bodies listed in Table 2, only the rapidly rotating dwarf planet Ceres, with a 
spin period of 2�∕� ≈ 9.074 hours, has VC and ΔC slightly less than its escape speed VE 
and its mean radius RT , respectively. Thus Ceres’ secondary ejecta may be somewhat influ-
enced by Coriolis effects, as indeed found by (Schulzeck et al. (2017, 2018)). All of the 
other tabulated moons and planets have VC > VE and ΔC > RT , so their secondary ejecta 
should not be significantly influenced by Coriolis effects.

4.2  Crater classes

Henceforth I shall neglect Coriolis effects, and assume that every surface element of the 
target body is exposed to an intermittent hail of non-local primary ejecta incoming at an 
angle of � with respect to the vertical. To illustrate, Fig. 2 again shows a crater shaped like 
a spherical bowl, but now the area element �C of its interior receives a flux of secondary 
impacts along a cone of opening angle � (drawn as 45◦ here) with respect to the vertical.

Figure 2 is drawn for the special case when the impact cone is just tangent to the rim of 
the crater. In this case, the level of the area element �C defines the “floor line” of the crater. 
I call the portion of the crater below this floor line the “floor”, and the portion of the crater 
above the floor line the “wall”. Then surface elements of the floor are fully exposed to the 

Table 2  Parameters for selected bodies

Planet Radius Escape speed Surface gravity Current rotation rate V
C

Δ
C

or moon R
T
 (km) V

E
 (km/s) g (m/s2) � ( 10−6rad/s) (km/s) (km)

Mercury 2 440 4.25 3.70 1.24 600 96×106

Earth 6 371 11.19 9.81 72.9 27 74 000
Moon 1 737 2.83 1.62 2.66 120 9.2×106

Mars 3390 5.03 3.72 70.9 11 30 000
Ceres 470 0.516 0.284 192 0.30 310
Ganymede 2 634 2.74 1.43 10.2 28 20 000
Callisto 2 410 2.44 1.24 4.36 57 2.6×106

Mimas 198 0.159 0.0637 77.2 0.17 430
Enceladus 252 0.239 0.113 53.1 0.43 1 600
Tethys 531 0.394 0.146 38.5 0.76 3 900
Dione 561 0.510 0.232 26.6 1.7 12 000
Rhea 764 0.635 0.264 16.1 3.3 41 000
Miranda 236 0.193 0.079 51.4 0.31 1 200
Ariel 579 0.559 0.269 28.9 1.9 13 000
Umbriel 585 0.539 0.249 17.5 2.8 33 000
Titania 788 0.773 0.379 8.35 9.1 220 000
Oberon 761 0.727 0.346 5.40 13 470 000
Triton 1 353 1.46 0.779 12.4 13 200 000
Pluto 1 188 1.21 0.620 11.4 11 190 000
Charon 606 0.591 0.288 11.4 5.1 89 000
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flux of primary ejecta; but to belabor the radiative analogy, surface elements of the wall are 
partially “shaded” from the primary ejecta by the crater wall itself.

Figure 3 shows the same bowl-shaped crater again, where now � is defined as the angu-
lar distance of the area element �C from the bottom of the crater, as measured from the 
center of the bubble; note that � is also the slope of �C with respect to the horizontal. Like-
wise, � is the angular radius of the crater’s rim as well as the slope there, while |f| is both 
the angular radius and the slope of its floor line.

Fig. 2  Sketch of a Deep crater shaped like a spherical bowl. Solid arc: interior of crater. Horizontal solid 
lines: plane of crater’s rim. Horizontal dotted line: lid of crater. Vertical dotted line: axis of impact cone. 
Diagonal dashed lines: impact cone. Horizontal dashed line: floor level

Fig. 3  Sketch of a Deep crater shaped like a spherical bowl. Solid arc: interior of crater. Dashed arc: spheri-
cal bubble. Plus sign (+): center of bubble. Horizontal solid lines: plane of crater’s rim. Horizontal dashed 
line: floor level. Dotted lines are vertical
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Note that the angular radius � is a measure of a crater’s shape rather than its size; 
it might be called the crater’s “profundity”. Note also that sin � = r∕R = 2rh∕(r2 + h2) , 
cos � = (R − h)∕R = (r2 − h2)∕(r2 + h2) , tan � = 2rh∕(r2 − h2) , and

Figure  4 graphs relation (5) above between a crater’s profundity � and its depth/radius 
ratio h/r, or its depth/diameter ratio h/(2r). Thus, for example, h/r = 0 when � = 0, 
h∕r =

√

2 − 1 ≈ 0.414 when � = 45◦ , h/r = 1 when � = 90◦ , h∕r =
√

2 + 1 ≈ 2.414 when 
� = 135◦ , and h/r approaches infinity as � approaches 180◦.

The solid isosceles triangle in Fig. 3 shows that

provided that 0 < f < 𝜌 ; this is equivalent to 90◦ − 𝜁 ≈ 45◦ < 𝜌 < 180◦ − 2𝜁 ≈ 90◦ . In 
this case, the crater has both a wall and a floor, as in Fig. 3; I call such craters “Deep”. 
However, if f > 𝜌 , then 𝜌 < 90◦ − 𝜁 ≈ 45◦ , the crater wall vanishes, and its whole interior 
becomes floor, fully exposed to primary ejecta; I call such craters “Shallow”. For Shallow 
craters, h∕r ≈ ��∕360◦ ≈ �∕114.6◦ , as graphed by the dotted line in Fig. 4.

On the contrary, if 𝜌 > 180◦ − 2𝜁 ≈ 90◦ , then f turns out to be negative. In this case, 
the entire floor is shielded from primary ejecta ! In addition, if 𝜌 > 90◦ + 𝜁 ≈ 135◦ , 
the uppermost portions of the crater also are completely shielded from primary 
ejecta, as sketched in Fig.  5. Pursuing the architectural analogy further, I define 
c ≡ 180◦ + 2� − � ≈ 270◦ − � as the “ceiling line”, and the portion of the crater above 
this level as the “ceiling”. The floor and ceiling of the crater in Fig. 5 are denoted by the 
thick arcs.

I call craters with 180◦ − 2𝜁 < 𝜌 < 90◦ + 𝜁 “Profound”, for lack of a better term, and 
those with 𝜌 > 90◦ + 𝜁 “Cavernous”, although such cavities hardly deserve the name of 

(5)h∕r = (1 − cos �)∕ sin � = sin(�)∕(1 + cos �).

(6)180◦ = � + f + 2� ⇔ f = 180◦ − 2� − � ≈ 90◦ − �,

Fig. 4  Solid curve: Relation 
between a crater’s profundity 
� and its depth/radius ratio h/r, 
or its depth/diameter ratio h/
(2r). Dotted line: Approximation 
h∕r ≈ �∕114.6◦
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“craters”; they would resemble the “skylights” seen on the Moon and Mars (e.g., Cush-
ing et al. (2007)), while their lids resemble the oculus of a dome such as the Pantheon 
in Rome.

In terms of a crater’s depth h below its rim of radius r, Cavernous craters have 
h∕r > (1 + sin 𝜁 )∕ cos 𝜁 , Profound craters have (1 + cos(2� ))∕ sin(2� )< h∕r < (1 + sin 𝜁 )∕ cos 𝜁 , 
Deep craters have (1 − sin 𝜁 )∕ cos 𝜁 < h∕r < (1 + cos(2𝜁 ))∕ sin(2𝜁 ) , and Shallow cra-
ters have h∕r < (1 − sin 𝜁 )∕ cos 𝜁 . If we set � = 45◦ , then Cavernous craters have 
h∕r >

√

2 + 1 ≈ 2.414, Profound craters have 1 < h∕r <
√

2 + 1 ≈ 2.414, Deep craters 
have 0.414 ≈

√

2 − 1 < h∕r < 1 , and Shallow craters have h∕r <
√

2 − 1 ≈ 0.414. By this 
standard, most measured craters on moons and planets are Shallow.

4.3  Floor

Although the floor of a profound or cavernous crater receives no secondary impacts, an 
area element �C on the floor of a Shallow or Deep crater is exposed to a flux of secondary 
ejecta

where � is the azimuthal angle around the impact cone. Note that LS in Formula (7) above 
is a one-dimensional impact luminance (i.e., secondary impactors per unit angle per unit 
area per unit time), rather than two-dimensional, like the primary impact luminance LP.

In order to evaluate the impact angle � , I define a right-handed Cartesian coordinate 
system x, y, z, originating at the center of the bubble, with corresponding unit vectors 
x̂, ŷ, ẑ , such that ẑ points straight upwards. Now without loss of generality, consider an 

(7)S = ∮
�

−�

LS cos(�)d�,

Fig. 5  Sketch of a Cavernous cra-
ter shaped like a spherical bowl. 
Solid arc: interior of crater. Thick 
arcs: floor and ceiling of crater. 
Horizontal solid lines: plane of 
crater’s rim. Horizontal dashed 
line: floor level. Horizontal dot-
ted line: ceiling level. Diagonal 
dashed lines: trajectories of 
incoming primary ejecta
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area element �C of the crater floor, lying at (x, 0, z) = (R sin �, 0,−R cos �) . Then the unit 
vector normal to �C in the upward direction is n̂ = ẑ cos(𝛿) − x̂ sin 𝛿.

For convenience, let � = � in the direction of x̂ , so that the unit vector m̂ along the 
impact cone can be written m̂ = ẑ cos(𝜁 ) − [x̂ cos(𝜙) + ŷ sin𝜙] sin 𝜁 . Then cos 𝛾 = m̂ ∙ n̂ , 
and Formula (7) becomes

Here S0 ≡ 2�LS cos � is the flux of secondary impacts at any point of the crater’s lid, or on 
a nearby plain.

4.4  Wall

Although Formula (8) above for the secondary flux on the floor of a crater is rather sim-
ple, the result for crater walls is more complicated, because of impact shadowing. This 
may best be visualized by considering the intersection of the crater’s lid with the impact 
cone having its apex at an area element �C of the wall, as sketched by the dashed arc of 
radius p in Fig. 6. Here the solid circle of radius r represents the rim of the crater, while 
x is the distance between the vertical symmetry axes of the impact cone and of the crater 
itself.

(8)
S = L

S ∮
𝜋

−𝜋

[m̂ ∙ n̂]d𝜙 = L
S ∮

𝜋

−𝜋

[cos(𝜁 ) cos(𝛿) + cos(𝜙) sin(𝜁 ) sin 𝛿]d𝜙

= 2𝜋L
S
cos(𝜁 ) cos 𝛿 = S0 cos 𝛿.

Fig. 6  Lid of a bowl-shaped crater. Solid circle: crater rim. Dashed arc: intersection of secondary impact 
cone with lid. This is drawn for the convenient triplet of x = 6, p = 10, and r = 14, so that �

0
= 120

◦ ; then 
R =

√

205 ≈ 14.318 if � = 45
◦
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Note that the dashed arc is no longer a complete circle, as it was for area elements of the 
floor. Therefore the complete loop integral from −� to � in Formula (8) for the secondary 
flux at �C must be replaced by an integral from −�0 to �0:

Note how Formula (9) above reduces to Formula (8) on the floor of a crater, where �0 = �.
From the Law of Cosines,

while from simple trigonometry,

4.5  Distribution

Figure  7 graphs the impact impact flux S of primary ejecta (normalized by S0 ) inside a 
crater shaped like a spherical bowl, from Formulae (8) and (9), as a function of the angular 
distance � (normalized by � ) for several values of the crater’s angular radius � , as labeled. 
This figure is drawn for an impact angle of � = 45◦ from the vertical.

(9)

S = L
S ∫

�0

−�0

[cos(� ) cos(�) + cos(�) sin(� ) sin �]d�

= 2L
s
[�0 cos(� ) cos(�) + 2 sin(�0) sin(� ) sin �] = S0[cos(�)�0 + sin(�) tan(� ) sin�0]∕�.

(10)r2 = x2 + p2 − 2xp cos�0 ⇔ cos�0 =
x2 + p2 − r2

2xp
;

(11)p = [h − z − R] tan � .

Fig. 7  The flux S of secondary 
impactors (normalized by the 
secondary flux S

0
 on a flat plain) 

as a function of the angular 
distance � from the bottom of a 
crater of angular radius �
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The curves for � = 45◦ , 30◦ , and 15◦ all lie in the Shallow regime, where the interior of 
the crater is all floor, fully exposed to the flux of primary ejecta. In the limiting case � = 0 
of a completely flat “crater”, S = S0 everywhere.

The curves for � = 60◦ , 75◦ , and 88◦ all correspond to Deep craters, with both a fully 
exposed floor and a partially shielded wall. Note how S drops abruptly (continuously but 
non-differentiably) at the floor level between the floor and wall.

For 𝜌 <∼ 88◦ , S decreases monotonically with increasing � ; but in the narrow range 
88◦ < 𝜌 < 90◦ , S has one local minimum and one local maximum on the crater wall. The 
curve for � = 90◦ , representing a hemispheric crater, is S∕S0 = sin(�)∕� + cos(�)∕2 ; 
this reaches a single peak of S∕S0 = (�∕2 + 2∕�)∕

√

4 + �2 ≈ 0.5927 at � = 
arctan(2∕�) ≈ 32.48◦ ( �∕� ≈ 0.3609).

The curves for � = 105◦ , 120◦ , and 135◦ correspond to Profound craters, with a floor 
fully shielded from primary ejecta (S = 0). The curves for � = 150◦ and 165◦ correspond 
to Cavernous craters, with a ceiling as well as a floor, both fully shielded from secondary 
impacts.

In both Profound and Cavernous craters, note how S reaches a single peak partway up 
the crater wall. In the limiting case � = 180◦ of a spherical cavity with a pinhole opening 
at the very top, the floor and ceiling meet at � = 2� ≈ 90◦ , so the entire cavity is shielded 
from primary ejecta, and S vanishes everywhere.

The left-hand axis of Fig. 7 ( � = 0) represents the very bottom of the crater. In Shallow 
and Deep craters ( 𝜌 < 90◦ ), this point is fully exposed to primary ejecta, so S = S0 there; 
but in Profound and Cavernous craters ( 𝜌 > 90◦ ), this point is fully shielded from primary 
ejecta, so S vanishes there.

The right-hand edge of Fig. 7 ( � = � ) represents points just below the rim of the crater. 
Here S vanishes for all Cavernous craters, but reduces to S0 cos � for Shallow craters. For 
Deep and Profound craters, Formula (8) for S is not simple, but Formula (9) approaches the 
limit cos�0 = − cos(�) cos(� )∕[sin(�) sin � ] ≈ − cos(�)∕ sin � for a plane with slope �.

4.6  Rectification

The angular radius � of a crater and the angular distance � from its bottom are unfamiliar 
constructs, and may be inconvenient for many purposes. For most work on craters, more 
convenient parameters include a crater’s radius r or diameter 2r, its depth h, and the hori-
zontal distance x from its center. Note that x = r sin � , and � = Arcsin(x/r).

Furthermore, craters are often viewed from near the zenith, and most mapping and cra-
ter counting is done in plan view, projecting all features onto a horizontal plane (or sphere). 
So it is of interest to consider the density of small craters inside a larger crater in plan view, 
in terms of r, h, and x.

When projected vertically, the density of craters is amplified by the secant of the local 
slope. The following considers only Shallow or Deep craters with � ≤ 90◦ , so the slope is 
� , and its secant is 1∕ cos � = 1∕

√

1 − x2∕r2 . Then the rectified density of primary craters 
is just proportional to their rectified impact flux P� ≡ P∕ cos � = P∕

√

1 − x2∕r2.
Likewise, the rectified density of secondary craters is proportional to their rectified 

impact flux S� ≡ S∕ cos � . Dividing Formula (8) for the floor of a Shallow or Deep crater 
by cos � gives just the constant S� = S0 , the same as the secondary flux on a nearby plain. 
In contrast, dividing Formula (9) for the wall of a Deep crater by cos � gives the more com-
plicated formula
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Again, note how Formula (12) above reduces to Formula (11) on the floor of a crater, 
where �0 = �.

Figure 8 graphs the rectified impact flux S′ of primary ejecta inside Deep craters from 
Formula (12), for � = 45◦ . As in Fig. 7, curves are labeled with the crater’s angular radius 
� ; recall that h∕r = sin(�)∕(1 + cos �) . The curve labeled 90◦ for a hemispheric crater 
( h = r = R , �0 = �∕2 ) is S�∕S0 = 1∕2 + tan(�)∕� = 1∕2 + (x∕r)[1 − (x∕r)2]−1∕2∕� . This 
curve actually crosses the curve for � = 88◦ at x∕r ≈ 0.965, S�∕S0 ≈ 1.685; but the upper 
halves of both curves are almost indistinguishable in Fig. 8.

As Fig.  8 shows, projecting the secondary crater density onto the horizontal renders 
S′ completely uniform on the entire floor of the crater. On the crater’s wall, S′ first drops 
because of the shielding effect, but then rises with secant(� ). Inside Shallow craters 
( 𝜌 < 90◦ − 𝜁 ≈ 45◦ ), S� = S0 everywhere.

5  Discussion

We have seen that the density S of secondary craters inside Shallow and Deep bowl-shaped 
craters decreases nearly monotonically with distance from the center, but their rectified 
density S′ is uniform over the crater floor. In contrast, the density P of primary (and sesqui-
nary) craters inside any bowl-shaped crater is uniform; but their rectified density P′ increases 

(12)S� = S0[�0 + tan(�) tan(� ) sin�0]∕�.

Fig. 8  The rectified flux S′ of 
secondary impactors (normal-
ized by the secondary flux S

0
 on 

a flat plain) as a function of the 
horizontal distance x from the 
center of a Deep crater of radius 
r. Each curve is labeled with the 
crater’s angular radius �
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monotonically with distance from the center. In principle, this may provide a statistical means 
of distinguishing primary and secondary crater populations.

There are several obstacles to this application, though. Most glaringly, most craters are not 
shaped like ideal spherical bowls or woks; many resemble skillets or frying pans instead. This 
can be due to a variety of effects, including slumping of walls, isostatic rebound of floors, 
flooding by lava, and infilling by ejecta.

Another questionable assumption is that the primary impact flux is isotropic. Leading/trail-
ing asymmetries contribute to this effect on tidally locked moons (e.g., Horedt and Neukum 
(1984)), but gravitational focussing does not.

Conversely, another dubious assumption is that all ejecta from primary craters are launched 
at a unique zenith angle � . In fact, their launch angles span range of zenith angles; this could 
smear the distribution of secondary craters inside craters, and reduce its statistical contrast 
with the distribution of primaries.

A subtler difficulty concerns the level of crater saturation. When the density of craters is 
so great that they begin to obliterate one another (usually at the smallest sizes), crater counts 
underestimate the impact flux. This may obscure the true distribution of impacts, and might 
also complicate its interpretation.

Most of the above diffuculties may be treatable, with the possible exception of slumping at 
higher slope angles. If so, this approach may provide a new tool for interpreting crater counts.

Acknowledgements I thank Kevin Zahnle and Jack Lissauer for previewing the manuscript, and Greg Michael 
and Jamie Gilmour for reviewing it.
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