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Abstract In this paper we consider a hydrodynamic model for the matter density distri-

bution in a self gravitating, isentropic 2-d disk of gas where the isentropy coefficient is

allowed to be a function of position. For this model we prove analytically the existence of

steady state and time dependent solutions in which the matter density in the disk is

oscillatory and pattern forming. This research is motivated in part by recent astronomical

observations and Laplace conjecture (made in 1796) that planetary systems evolve from a

family of isolated rings that are formed within a primitive interstellar gas cloud.

Keywords Interstellar cloud � Pattern formation � Isentropic gas

1 Introduction

In the last few decades many researcher explored different kinds of systems which self-

organize and lead to pattern formation. Physical systems which display such phenomena

include magnetization, Benard convective cells, cloud formations in stripes or rolls and

many others. The challenge in all these instances is to find an appropriate mathematical

model for the emergence of patterns in these self-organizing systems (Chandrasekhar 1946;

Kiguchi et al. 1987; Lissauer 1993; Matsumoto and Hanawa 1999; Petigura et al. 2013;

Spitzer 1968; Von Weizsacker 1944; Woolfson 2000).

One of the first conjecture about pattern formation under the action of gravity was

formulated by Laplace (2010). He put forward the hypothesis that a primitive interstellar

gas cloud evolve under gravity to form a system of isolated rings which may in turn lead to

the formation of planetary systems. More recently Belrage (1968) and Prentice (1978)

followed on Laplace hypothesis and explored possible mechanisms for the formation of

ring structure in the solar nebula.
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The issue of ring formation has become especially relevant and timely since the dis-

covery of a remarkable pattern of bright and dark rings in the circumstellar disc sur-

rounding the young solar analogue star HL Tau (ALMA Partnership 2015). It is also a

relevant issue due to the large number of exoplanetary systems that have now been dis-

covered. The orbital architecture of these systems is consistent with their condensation

from dense rings of gas in proto-stellar disks, just as is believed to be the case for our solar

system (Prentice 1978). The new astronomical data leads us to believe that there is a

fundamental physical process at work, not yet fully understood, in which ring pattern

formation is crucial to our understanding of the origin of planetary systems.

Many theories were put forward in the past about the origin of solar system. Currently

the leading theory about the formation of planetary systems is the ‘‘Nebula Theory’’

whereby a cloud of interstellar gas accreted under it own gravitation, to form in stages, the

protostar and the planets. Many of the results related to this theory were obtained through

elaborate modeling and large scale numerical simulations. These involve, in general,

thermodynamic considerations, magnetohydrodynamics modeling and turbulence (Ya

Marov et al. 2013).

In a series of paper we addressed the issue of pattern formation under gravity from

idealized analytical point of view (Humi 2006, 2009, 2016). In particular we showed that a

self-gravitating incompressible rotating 2-dimensional gas admits steady states with ring

structure in the matter distribution. It is our objective in this paper to examine this pattern

formation problem under the assumption that the gas is isentropic. This is motivated by the

desire to take into account (at least partially) the irreversible thermodynamic processes

taking place in the disk which lead to the emission of radiation and heat. Under this

idealized scenario the entropy produced within the disk due to the irreversible thermo-

dynamic and turbulent processes taking place is removed by heat and radiation and the gas

maintains a constant entropy. Obviously this assumption implies that this is a prototype

‘‘barebone’’ model that neglects many other important aspects of the processes taking place

in an actual primitive cloud of interstellar gas.

The plan of the paper is as follows: In Sect. 2 we present the basic model equations. In

Sect. 3 we consider the radial steady state of these equations and demonstrate that they

admit solutions with patterns of density oscillations. In Sect. 4 we discuss radial time

dependent states and establish again the existence of pattern forming solutions. We end up

in Sect. 5 with some conclusions and observations.

2 Basic Equations

The basic equations that govern the time dependent state of non-relativistic self gravitating,

compressible, inviscid two dimensional gas (in the x� y plane) are Prentice (1978), Humi

(2006), Humi (2009) and Li et al. (2006)

qt þ ðquÞx þ ðqvÞy ¼0 ð2:1Þ

ðquÞt þ ðqu2 þ pÞx þ ðquvÞy ¼� q/x þ qx2x ð2:2Þ

ðqvÞt þ ðquvÞx þ ðqv2 þ pÞy ¼� q/y þ qx2y ð2:3Þ

r2/ ¼4pGq ð2:4Þ
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where subscripts indicate differentiation with respect to the indicated variable, u ¼ ðu; vÞ is
the gas velocity, q is its density, p is the pressure, / is the gravitational potential, G is the

gravitational constant, t is time and x represents a solid body rotation of the gas.

In this set of Eq. (2.1) is the continuity equation, and (2.2–2.3) are the momentum

equations. Finally (2.4) is the equation for the gravitational potential.

We can nondimensionalize these equations by introducing the following scalings

t ¼ L~t

U0

; x ¼ L~x; y ¼ L~y; u ¼ U0~u; v ¼ U0~v; q ¼ q0 ~q;

p ¼ q0U
2
0 ~p; / ¼ U2

0
~/; G ¼ U2

0

q0L2
~G; x ¼ U0

L
~x:

ð2:5Þ

where L;U0; q0 are some characteristic length, velocity and mass density respectively that

characterize the gas under consideration. Substituting these scalings in Eqs. (2.1–2.4) and

dropping the tildes these equations remain unchanged (but the quantities that appear in

these equations become non-dimensional).

3 Radial Steady States

In this section we consider radial steady states of the isentropic gas. In polar coordinates

ðr; hÞ when all variables depend only on r. Eqs. (2.1–2.4) become;

u
dq
dr

þ q
du

dr
þ qu

r
¼ 0 ð3:1Þ

qv
du

dr
þ uv

dq
dr

þ 2quv
r

þ qu
dv

dr
¼ 0 ð3:2Þ

2qu
du

dr
þ u2

dq
dr

þ q
d/
dr

þ dp

dr
þ qðu2 � v2Þ

r
� qx2r ¼ 0 ð3:3Þ

d2/
dr2

þ 1

r

d/
dr

� 4pGq ¼ 0 ð3:4Þ

Solving (3.2) algebraically for dq
dr

and substituting in (3.1) it follows that

r
dv

dr
þ v ¼ 0; ð3:5Þ

and therefore

v ¼ c2

r
: ð3:6Þ

Similarly one can solve (3.1) for qu and obtain that

u ¼ c1

qr
: ð3:7Þ

(where c1, c2 are integration constants).

The classical relationship between pressure and density for isentropic gas is

p ¼ Aqa ð3:8Þ
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where A is a constant which can be normalized to one and a is the isentropy index. A more

general functional relationship between the pressure and density will allow the isentropy

coefficient A to be a function of r. That is

p ¼ AðrÞqa ð3:9Þ

This generalization is introduced to account for the possibility that the thermodynamic

processes taking place within the gas are position dependent. An additional generalization

can be obtained if we let a to be a function of r. However in this paper we shall consider

only the case where a is a constant.

Substituting (3.6, 3.7 and 3.9) in (3.3) and assuming that a is a constant we obtain (after

differentiation to eliminate /) the following equation for q

r2ðar2Aqaþ2 � c21qÞ
d2q
dr2

þ r2½ar2qaþ1Aða� 2Þ þ 3c21�
dq
dr

� �2

r3qaþ2½r dA
dr

ð2a� 1Þ þ aA� þ 3c21rq

� �
dq
dr

þ r3qaþ3 dA

dr
þ

r4qaþ3 d
2A

dr2
þ 2q2ð2pGr4q3 � r4x2q2 þ c22q

2 þ c21Þ ¼ 0

ð3:10Þ

In the following we present analytic solutions of (3.10) with density pattern.

3.1 Steady State Analytic Solutions with Density Patterns

When a ¼ 2 and A is a constant (3.10) becomes

r2qð2Ar2q3 � c21Þ
d2q
dr2

þ 3c21r
2 dq

dr

� �2

þrqð2Ar2q3 þ 3c21Þ
dq
dr

þ

2q2ðc22q2 þ 2pGr4q3 � x2r4q2 þ c21Þ ¼ 0

ð3:11Þ

When c1 ¼ c2 ¼ 0 (i.e. u ¼ v ¼ 0) this equation has an exact analytic solution,

q0 ¼ C1J0ðwrÞ þ C2Y0ðwrÞ þ
x2

2pG
ð3:12Þ

where w ¼
ffiffiffiffiffiffi
2pG
A

q
and J0, Y0 are zero order Bessel functions of the first and second kind.

Since Y0 is singular at the origin we let C2 ¼ 0. Assuming that the disk has a ‘‘central

body’’ of radius 1 and qð1Þ ¼ 0 the solution becomes

q0 ¼
x2

2pG
1� J0ðwrÞ

J0ðwÞ

� �
ð3:13Þ

For x ¼ 0:36, A ¼ 0:02 and G ¼ 0:05 this solution is positive and have oscillatory pattern

beyond the boundary of the central body viz. r[ 1 (See Fig. 1).

Analytic solution of (3.11) in terms of hypergeometric functions can be obtained also

when c1 ¼ 0 and c2 6¼ 0. To show the impact of this change on the solution we display the

difference between this solution with c2 ¼ 0:02 and the one above in Fig. 2 (Same values

for A, G and x and same strategy to determine the integration constants). We see that the

major difference between the two solutions happens in the region close to r ¼ 0.
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Another analytic oscillatory solution is obtained for AðrÞ ¼ br, c1 ¼ c2 ¼ 0 where b is a

constant. The general solution in this case can be written as

q ¼ 1

p2G2r
C1 sin 2

ffiffiffiffiffiffiffiffiffiffiffi
2pGr
b

s !
þ C2 cos 2

ffiffiffiffiffiffiffiffiffiffiffi
2pGr
b

s !
þ x2ð4pGr � bÞ

8

 !
ð3:14Þ

To avoid the singularity in this expression at r ¼ 0 we let C1 ¼ 0 and C2 ¼ bx2

8
. The

solution is then

q ¼
x2 b cos 2

ffiffiffiffiffiffiffiffi
2pGr
b

q	 

þ 4pGr � b

	 

8p2G2r
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10-3 Density as a function of r. Isentropic index=2×Fig. 1 Steady state density
pattern

Fig. 2 Difference in density
pattern when c2 ¼ 0:02
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For G ¼ 1, x ¼ 1, b ¼ 0:1 this solution displays some density fluctuations whose

amplitude decays as r increases.

One can obtain similar (but more complicated) analytic expressions for q when c2 6¼ 0.

These solutions demonstrate that steady state density patterns do arise in isontropic gas

under gravity.

For a ¼ 1 and x ¼ c1 ¼ c2 ¼ 0 we obtain the following analytic solution for q

q ¼ C1br
�2þd

2pGðrd þ bÞ2
ð3:15Þ

where d ¼
ffiffiffiffi
C1

A

q
and b ¼ C2d and C1; C2 are integration constants.

4 Time Dependent Radial Solutions

When all the variables in (2.1–2.4) depend only on r and t we obtain the following system

of equations:

oq
ot

þu
oq
or

þ q
ou

or
þ qu

r
¼ 0 ð4:1Þ

qv
ou

or
þuv

oq
or

þ 2quv
r

þ qu
ov

or
þ v

oq
ot

þ q
ov

ot
¼ 0 ð4:2Þ

u
oq
ot

þ2qu
ou

or
þ u2

oq
or

þ q
o/
or

þ op

or
þ qðu2 � v2Þ

r
� qx2r þ q

ou

ot
¼ 0 ð4:3Þ

o2/
or2

þ 1

r

o/
or

� 4pGq ¼ 0 ð4:4Þ

To simplify (somewhat) these equations we solve (algebraically) (4.2) for oq
ot
and substitute

in (4.1) to obtain

r
ov

ot
þ ru

ov

or
þ uv ¼ 0: ð4:5Þ

Similarly solving (4.3) algebraically for oq
ot
and substituting in (4.1) yields,

rq
ou

ot
þ qu

ou

or
þ r

op

or
þ rq

o/
or

� qx2r2 � qv2 ¼ 0 ð4:6Þ

4.1 Further Reductions for a ¼ 2

Assuming that v(r, t) is independent of t it follows from (4.5) that

vðrÞ ¼ c1

r
ð4:7Þ

where c1 is a constant. Equation (4.4) can be used to express / in terms of q.

/ðr; tÞ ¼
Z

4pG
R
qðr; tÞrdr þ f1ðtÞ

r
dr ð4:8Þ
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where f1ðtÞ is some function of t.

Substituting (4.7) in (4.6) and using the fact that a ¼ 2 (viz. p ¼ Aq2) leads to

ouðr; tÞ
ot

þ uðr; tÞ
r

ouðr; tÞ
or

þ 2Aoðqðr; tÞ þ /ðr; tÞÞ
or

� rx2 � c2=r3: ð4:9Þ

Solving this equation for qðr; tÞ þ /ðr; tÞ yields,

2Aqðr; tÞ þ /ðr; tÞ ¼ �
Z

r3
ouðr;tÞ
ot

þ r2uðr; tÞ ouðr;tÞ
or

� r4x2 � c2

r3
dr þ f2ðtÞ ð4:10Þ

where f2ðtÞ is arbitrary. Using (4.8) to substitute for /ðr; tÞ, differentiating the result with

respect to r, and then multiplying by r and differentiating again we obtain the following

differential equation for q

2Ar
o2qðr; tÞ

or2
þ 2A

oqðr; tÞ
or

þ 4pGrqðr; tÞ þ Hðr; tÞ ¼ 0 ð4:11Þ

where

Hðr; tÞ ¼ uðr; tÞ o
2uðr; tÞ
or2

þ r
o2uðr; tÞ
orot

þ ouðr; tÞ
or

þ ouðr; tÞ
or

� �2

�2rx2 þ 2c2

r3
: ð4:12Þ

The system (4.1), (4.11) for q and u can solved numerically. However it can be decoupled

also by solving (4.11) for q

qðr; tÞ ¼ J0ðarÞf3ðtÞ þ Y0ðarÞf4ðtÞ

� p
4A

J0ðarÞ
Z

Y0ðarÞHðr; tÞdr þ Y0ðarÞ
Z

J0ðarÞHðr; tÞdr
� � ð4:13Þ

where a ¼
ffiffiffiffiffiffi
2pG
A

q
and f3; f4 are arbitrary. However since Y0 is singular at the origin we let

f4 ¼ 0. Substituting this result in (4.1) yields a (complicated) intgro-differential equation

for u(r, t) . However the key point here is that qðr; tÞ in (4.13) is expressed in terms of

Bessel functions whose values are modulated by H(r, t). Since Bessel functions are

oscillatory it is plausible to assume that for proper functional values of u(r, t) this may lead

to time dependent pattern formations in the density.

4.2 Time Dependent Perturbations to a Steady State

The system (4.1–4.4) admits a steady state q ¼ q0ðrÞ and u ¼ v ¼ 0. We consider here a

perturbation from this steady state with a ¼ 2 in the form

qðr; tÞ ¼ q0ðrÞ þ �q1ðr; tÞ; u ¼ �u1ðr; tÞ; v ¼ 0: ð4:14Þ

Since a ¼ 2 the relevant equations to satisfy are (4.1) and (4.11). Substituting the

expressions in (4.14) in these equations we obtain to first order in � the following equations

oq1
ot

þ u1
oq0
or

þ q0
ou1

or
þ q0u1

r
¼ 0 ð4:15Þ

2Ar
o2q1
or2

þ 2A
oq1
or

þ r
o2u1

orot
þ ou1

ot
þ 4pGrq1 ¼ 0: ð4:16Þ
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Introducing the unsatz

q1 ¼ g1ðrÞemt; u1 ¼ g2ðrÞemt: ð4:17Þ

we find that the time dependence in (4.15), (4.16) factors out and we obtain the following

two equations for g1 and g2

r
oq0
or

g2 þ q0
og2

or
þ mrg1 þ q0g2 ¼ 0 ð4:18Þ

2Ar
o2g1

or2
þ 2A

og1

or
þ mr

og2

or
þ mg2 þ 4pGrg1 ¼ 0: ð4:19Þ

It is possible to reduce the system (4.18), (4.19) to a single equation by solving (4.18)

algebraically for g1 and substituting the result in (4.19). For the steady state q0 ¼ 1
2
x2

Gp this

procedure leads to the equation for g2,

Ax2r

pGm
d3g2

dr3
þAx2

pGm
d2g2

dr2
� mr � 2x2r

m
þ Ax2

pGmr

� �
dg2

dr

þ Ax2

pGmr2
þ 2x2

m
� m

� �
g2 ¼ 0

ð4:20Þ

The solutions for g2 and g1 (which have no singularity at r ¼ 0) are

g2 ¼ C1J1

ffiffiffi
p

p
lr

x

� �
; g1 ¼ �C1

xl
2Gm

ffiffiffi
p

p J0

ffiffiffi
p

p
lr

x

� �
; ð4:21Þ

Where J0 and J1 are Bessel functions of the first kind and

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

A
ð2x2 � m2Þ

r
:

This solution demonstrates that perturbations from the steady state q ¼ 1
2
x2

Gp yield patterns

of density oscillations within the cloud.

4.3 Explicit Solutions

To provide some explicit time dependent pattern forming solutions we consider the system

(4.1), (4.5), (4.6) and (4.4) under the assumption that pðr; tÞ ¼ Aqðr; tÞaðrÞ, viz. we let the

isentropy index to vary with r. To derive these solutions we use separation of variables on

this system of equations. That is we look for solutions in the form

uðr; tÞ ¼ f1ðrÞg1ðtÞ; vðr; tÞ ¼ f2ðrÞg2ðtÞ; qðr; tÞ ¼ f3ðrÞg3ðtÞ
/ðr; tÞ ¼ f4ðrÞg4ðtÞ; pðr; tÞ ¼ f5ðrÞg5ðtÞ

ð4:22Þ

From (4.1) we have

dg3
dt

g1g3
¼ l1; ð4:23Þ

f1
df3
dr

f3
þ df1

dr
þ f1

r
¼ �l1: ð4:24Þ

8 M. Humi
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(Here and in the following li are separation of variables constants). Similarly (4.5) leads to

dg2
dt

g1g2
¼ l2; ð4:25Þ

f1
df2
dr

f2
þ f1

r
¼ �l2: ð4:26Þ

Equation (4.4) yields that g3ðtÞ ¼ g4ðtÞ (up to a multiplicative constant which can be

normalized to 1) and f4ðrÞ; f3ðrÞ must satisfy

r
d2f4

dr2
þ df4

dr
� 4pGrf3 ¼ 0 ð4:27Þ

Finally substituting the ansatz (4.22) in (4.6) leads to

df1

dr
þ

df5
dr
g5

f1f3g3g
2
1

þ
df4
dr
g3

f1g
2
1

� f 22 g
2
2

rf1g
2
1

� rx2

f1g
2
1

þ
dg1
dt

g21
¼ 0 ð4:28Þ

To perform separation of variables on this equation it is obvious that additional assump-

tions are needed. We explore here two of these possibilities.

1. Assume that g5 ¼ g3g
2
1, g3 ¼ g21, x ¼ 0 and g1 ¼ g2. (Here and in the following we

ignore possible multiplicative constants which can be normalized to 1).

Using these assumptions we can perform separation of variables on (4.28) and obtain;

dg1
dt

g21
¼ l3 ð4:29Þ

df1

dr
þ

df5
dr

f1f3
þ

df4
dr

f1
� f 22
rf1

¼ �l3: ð4:30Þ

To solve for g1; g2 and g3 we use (4.23) and (4.25). Since we assumed that g1 ¼ g2 we can

solve (4.25) to obtain

g2 ¼
1

C1 � l2t
ð4:31Þ

Substituting this result in (4.23) leads to

g3 ¼ C2ðC1 � l2tÞ�l1=l2 : ð4:32Þ

where C1, C2 are an integration constants. However since we assumed that g3 ¼ g21 we

must have C2 ¼ 1 and l1 ¼ 2l2 These results will be consistent with (4.29) if we let

l2 ¼ l3.
This completes the determination of all the functions giðtÞ i ¼ 1; . . .; 5 (since g4 ¼ g3

and g5 ¼ g3g
2
1).

Equations (4.24), (4.26), (4.28) and (4.30) form a redundant system of four equations

for five functions fiðrÞ; i ¼ 1; . . .; 5. Therefore we can choose one of these functions as a

‘‘parameter function’’. For example if we let
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f1 ¼
�1

a� cos kr
; a[ 1;

then from (4.24) and (4.26) we have

f2 ¼
C4

r
exp

l2ðakr � sin krÞ
k

� �
; f3 ¼

C5ða� cos krÞ
r

exp
l1ðakr þ sin krÞ

k

� �

where C4, C5 are constants. The expressions for g3 and f3 imply that q is oscillatory in r but

the amplitude of these oscillations decays in time.

Substituting f3 in (4.27) we can solve for f4. Using all these results (4.29) becomes a first

order differential equation for f5 which can be solved numerically. A plot of the isentropic

index (at t ¼ 0) in this case with a ¼ 2, k ¼ 5p, C4 ¼ C5 ¼ 1, l2 ¼ l3 ¼ �1 l1 ¼ �2 is

shown in Fig. 3. In this figure the isentropic index has an approximate value of 2 at r ¼ 0

but then rises rapidly to a constant value of 2.6.

2. Assume that g5 ¼ g3g
2
1, g3 ¼ g21, x ¼ 0 and f 22 ¼ rf1.

Under present assumptions, separation of variables for (4.28) yields,

� g22
g21

þ
dg1
dt

g21
¼ l3; ð4:33Þ

df1

dr
þ

df5
dr

f1f3
þ

df4
dr

f1
¼ �l3: ð4:34Þ

To determine the functions giðtÞ i ¼ 1:::5 in this case we use first (4.23) and (4.25) to

obtain

dg3
dt

g3
¼ l1

l2

dg2
dt

g2
: ð4:35Þ

10−2 10−1 100
0

0.5

1

1.5

2

2.5

3

r

Is
en

tro
pi

c 
In

de
x

Isentropic Index as a function of r

Fig. 3 Isentropic index for a time dependent solution
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Hence

g3 ¼ C1g
l1=l2
2 : ð4:36Þ

However since we assumed that g3 ¼ g21 it follows that

g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1g

l1=l2
2

q
: ð4:37Þ

Substituting this result in (4.25) and solving for g2 yields

g2 ¼ 4l2=l1ð2C2 �
ffiffiffiffiffiffi
C1

p
l1tÞ�2l2=l1 ð4:38Þ

where C1; C2 are integration constants. Therefore

g3 ¼
4C1

ð2C2 �
ffiffiffiffiffiffi
C1

p
l1tÞ2

ð4:39Þ

These results will be consistent with (4.33) if we impose the constraints,

l1 ¼ 2l2 l3 ¼ � 1þ C1l2
C1

To solve for the functions fiðrÞ, i ¼ 1:::5 we use the assumption f 22 ¼ rf1 in (4.26) and solve

for f1. This yields

f1 ¼
E1 � l2r

4

2r3

where E1 is a constant. However to avoid the singularity at the origin we let E1 ¼ 0 and

hence f1 ¼ � l2
2
r. Substituting this in (4.24) and solving for f3 we find that

f3 ¼ E2r
2
l1�l2
l2

where E2 is a constant. However l1 ¼ 2l2, hence,

f3 ¼ E2r
2:

From (4.27) we obtain then (after applying the boundary conditions at r ¼ 0)

f4 ¼
1

4
E2pGr

4:

Similarly (4.34) yields a polynomial expression for f5.

5 Conclusions

In this paper we explored the solutions of a simple two dimensional hydrodynamic model

for a self gravitating and rotating isentropic gas cloud. Our main objective was to establish

the existence of solutions with density oscillations (viz. pattern formation).

It might be argued that this paper does not present a general theory for pattern formation

under gravity. However it should be pointed out that the existence and classification of

periodic solutions for a system of nonlinear differential equations is an open problem

(Wayne 1997). Nevertheless our results establish analytically the existence of such
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solutions for the steady and time dependent states of a rotating, isentropic self-gravitating

gas in two dimensions.

For the radial steady state case we were able to reduce the original set of four partial

differential equations to one differential equation for the density of the gas. The steady

state solutions of this equation were explored with constant isentropic index and isentropic

coefficient that is a function of r.

For the time dependent case we showed, perturbations from a steady state lead to

oscillation in the the density. Furthermore using separation of variables, we showed

explicitly that analytic oscillatory closed form solutions of the equations exist.
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