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Abstract In this paper we analyze the dynamical behavior of large dust grains in the

vicinity of a cometary nucleus. To this end we consider the gravitational field of the

irregularly shaped body, as well as its electric and magnetic fields. Without considering the

effect of gas friction and solar radiation, we find that there exist grains which are static

relative to the cometary nucleus; the positions of these grains are the stable equilibria.

There also exist grains in the stable periodic orbits close to the cometary nucleus. The

grains in the stable equilibria or the stable periodic orbits won’t escape or impact on the

surface of the cometary nucleus. The results are applicable for large charge dusts with

small area-mass ratio which are near the cometary nucleus and far from the Solar. It is

found that the resonant periodic orbit can be stable, and there exist stable non-resonant

periodic orbits, stable resonant periodic orbits and unstable resonant periodic orbits in the

potential field of cometary nuclei. The comet gravity force, solar gravity force, electric

force, magnetic force, solar radiation pressure, as well as the gas drag force are all con-

sidered to analyze the order of magnitude of these forces acting on the grains with different

parameters. Let the distance of the dust grain relative to the mass centre of the cometary

nucleus, the charge and the mass of the dust grain vary, respectively, fix other parameters,

we calculated the strengths of different forces. The motion of the dust grain depends on the

area-mass ratio, the charge, and the distance relative to the comet’s mass center. For a large

dust grain ([ 1 mm) close to the cometary nucleus which has a small value of area-mass

ratio, the comet gravity is the largest force acting on the dust grain. For a small dust grain

(\ 1 mm) close to the cometary nucleus with large value of area-mass ratio, both the solar

radiation pressure and the comet gravity are two major forces. If the a small dust grain

which is close to the cometary nucleus have the large value of charge, the magnetic force,
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the solar radiation pressure, and the electric force are all major forces. When the large dust

grain is far away from the cometary nucleus, the solar gravity and solar radiation pressure

are both major forces.

Keywords Dust grains � Relative equilibria � Characteristic multipliers � Periodic
orbits

1 Introduction

Recently, several space missions were devoted to the exploration of comets, including

Deep Impact and Rosetta (A’Hearn et al. 2005; Glassmeier et al. 2007). The NASA probe

Deep Impact constrained the composition of comet 9P/Tempel by droping a projectile that

collided with the nucleus of the comet at 5:52 UTC on July 4, 2005 (A’Hearn et al. 2005;

Lisse et al. 2006). The Rosetta mission encountered comet 67P/Churyumov–Gerasimenko

in 2014, finding that the nucleus consists of two lobes connected by a short neck

(Capaccioni et al. 2015; Sierks et al. 2015). Either the two lobes represent a contact binary

body, having formed about 4.5 billion years ago, or a single body has formed a gap by

mass loss (Sierks et al. 2015).

Space missions to comets revive the interest in the dynamics of dust in the potential of a

cometary nucleus. The spacecraft Stardust brought interstellar particles and grains from

comet 81P/Wild2 back to Earth on 2006 (Brownlee et al. 2003). There were 256 grains

found on the collector surface with sizes larger than 100 lm and about 1200 grains larger

than 1 lm (Burchell et al. 2008). The dust grains can be produced on active areas when

cometary ices evaporate if the comet is close enough to the sun (Belton 2010). Oberc

(1997) investigates only the ejection of secondary particles from larger aggregates already

flying in the coma, not the direct ejection from the nucleus. For the latter, both electrostatic

and centrifugal forces are likely of minor relevance. Fulle et al. (1997) discussed the

sunward structure in the comet 19P/Borrelly’s dust tail. The nucleus can have one or more

active areas producing gas and dust (Combi et al. 2012; Yu et al. 2016). Belton (2010)

discussed the active areas of 1P/Halley, 19P/Borrelly, 81P/Wild 2, and 9P/Tempel 1

respectively, and found there are 3 types of active areas. For Type I, H2O is sublimated

through the porous mantle. For Type II, super-volatiles from the interior is persistent

effused; while for Type III, super-volatiles from the interior is episodic released.

Richter and Keller (1995) studied the motion stability of dust particle with considering

the weak solar radiation pressure force and the gravitational force of a spherical body. Liu

et al. (2011) investigated the equilibrium points and periodic motion around a rotating

cube. However, cometary nuclei possess irregular shapes (Stern 2003; Jiang et al. 2014;

Wang et al. 2014; Jiang et al. 2015a). To understand the dynamical behavior of grains in

the gravitational potential of an irregularly shaped body, several models for irregular nuclei

have been investigated in the literature, including a straight segment (Romero et al. 2004;

Linder et al. 2010; Najid et al. 2011), a triangular plate and a square plate (Blesa 2006), a

homogeneous annular disk (Alberti and Vidal 2007; Fukushima 2010) and a circular ring

(Najid et al. 2012). Hughes (2000) studied the final velocity of dust particles emitted by a

nucleus, while Farnocchia et al. (2014) discussed the ejection velocity from comet C/2013

A1. Moreno et al. (2012) derived dust loss rates, ejection velocities, and power-law size

distributions as functions of the heliocentric distance. Rotundi et al. (2015) reported the

velocity distribution relative to comet 67P/Churyumov-Gerasimenko’s body-fixed frame of

grains as observed by the spacecraft Rosetta.
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The equations of motion around the cometary nucleus were derived applying the Hill

approximation (Scheeres and Marzari 2002). Using an expansion in Legendre polynomials

for the potential of the nucleus, the gravitational potential diverges within the Brillouin

sphere, and the spacecraft dynamics cannot be modeled close the surface (Takahashi et al.

2013; Wang et al. 2014). The characteristics of the interior gravity field are derived near

the surface of the asteroid and comet for the purpose of small body proximity operations

(Takahashi et al. 2013).

The dynamical behaviours around comets include equilibria and periodic orbits. The

equilibrium points are the critical points of the effective potential. The physical charac-

teristics of equilibrium points means that there exist a physical point in actual 3D space

where one can put a particle such that the resultant external force of the massless particle

relative to the body of the comet nucleus is zero. If an equilibrium points is stable, the

particle will not move (relative to the nucleus). In the body-fixed frame, the equilibrium

point is not the stable periodic orbit. However, relative to the inertia frame, the equilibrium

point is a periodic orbit. The Floquet multiplyers of a periodic orbit mean the eigenvalues

of monodromy matrix of the periodic orbit. The distribution of the Floquet multiplyers

confirms the stability of the periodic orbit. The topological cases of a periodic orbit confirm

its stable level. The grain may move in the stable periodic orbit relative to the comet, the

Floquet multiplyers can help one to confirm the stability of the periodic orbit and point out

if a periodic orbit can be possible for the grain. Wang et al. (2014) calculated the locations

and stability of equilibrium points of comet 1P/Halley, 9P/Tempel 1, and 103P/Hartley 2,

and found each of these three comets has five equilibrium points. Jiang et al. (2015b) found

two different periodic orbits with different topological cases around comet 1P/Halley.

Jiang and Baoyin (2016) investigated the continuation of periodic orbit family around 1P/

Halley, and pointed out that the collisions of Floquet multipliers may be maintained during

the continuation.

This paper investigates the dynamical behavior of large dust grains in the vicinity of a

cometary nucleus, including the types of local motion near equilibrium points, i.e.

stable global motion, unstable global motion, and resonant motion. In addition to the

irregular gravitational field, electric and magnetic fields are considered. The effect of gas

friction and solar radiation are neglected in a Hamiltonian approach to describe the dust’s

motion. The approximations are applicable for dusts with small area-mass ratio

(\ 1.0 9 105 m2 kg-1), large charge ([ 1.0 9 10-18 C), short distances of the dust grain

to the mass center of the cometary nucleus (\ 10 km), as well as long distances of the dust

grain to the Solar ([ 3–4 AU). The Lorentz force is thought to become relevant only under

very specific conditions far from the Sun (Kramer et al. 2014).

Linearised equations of motion for the dust particles around equilibrium points in the

potential of the cometary nucleus are derived. The characteristic equation of the dust

grains’ motion around equilibrium points is also presented. Furthermore, a corollary for a

sufficient condition of the linear stability is presented and proved. An identical equation

with regard to the number of non-degenerate equilibria in the gravitational field, electric

field, and magnetic field of the cometary nucleus is presented and proved. We find that the

number of non-degenerate equilibria for the dust grain only varies in pairs, and the number

of non-degenerate equilibrium points is an odd number.

We identify five equilibrium points in the combined gravitational, electric, and mag-

netic fields of the nucleus of comet 1P/Halley. Positions and eigenvalues of these equi-

librium points are calculated. Although Rosetta found indication of grains in orbit about

the nucleus in the early phase of the mission (Rotundi et al. 2015), these did not pose a

threat to the mission. The biggest problem was caused by a huge number of large grains on
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un-bound orbits that confused the software of the startracker sensors, disturbing the on-

board navigation. There exist stable non-resonant periodic orbits, stable resonant periodic

orbits and unstable resonant periodic orbits in the combined gravitational and electric field

of comet 1P/Halley. The periodic orbits with the 1:1, 1:2, and 1:8 resonances are discussed.

Perturbations acting on the dust grain are also considered. To compare different forces,

some parameters are fixed and let other parameters change. The comet gravity is the

biggest force when the dust grain is near the cometary nucleus. The comet gravity and the

electric and magnetic forces decrease rapidly while the distance from the dust grain to the

mass center of the cometary nucleus is increasing. When the dust grain is far away from the

cometary nucleus, the solar gravity and the solar radiation pressure are the major forces.

2 Dynamical Equation and Effective Potential

Consider a dust grain which orbits around the cometary nucleus. Denoting with r the radius
vector from the nucleus’s centre of mass to the dust grain, the first and second time

derivatives of r are expressed with respect to the body-fixed coordinate system of the

nucleus. The reference coordinate system used throughout this paper is the body-fixed

frame. Denoting with x the angular velocity vector of the cometary nucleus relative to the

inertial space, the generalised momentum of the dust grain is p ¼ _rþ x� rð Þ, and the

generalised coordinate is q ¼ r. Further, we denote with U rð Þ the gravitational potential of
the cometary nucleus, and with E rð Þ and B rð Þ the electric field intensity and the magnetic

flux density of the cometary nucleus, respectively.The gravitational fields and shape

models of cometary nuclei can be calculated using the polyhedral model (Werner 1994;

Werner and Scheeres 1997) using data from radar observations or spacecraft images

(Stooke 2002). Spacecraft images provide excellent data for shape models. With the

polyhedron method, the gravitational potential (Werner and Scheeres 1997) of a cometary

nucleus can be represented by

U ¼ 1

2
Gr

X

e 2 edges

re � Ee � re � Le �
1

2
Gr

X

f 2 faces

rf � Ff � rf � xf ; ð1Þ

where G = 6.67 9 10-11 m3 kg-1 s-2 is the gravitational constant and r is the cometary

nucleus’ density; Le is a factor of integration and xf is the signed solid angle; re and rf are
body-fixed vectors from the field point to fixed points on the edges and the faces,

respectively; Ee and Ff are dyads representing geometric parameters of edges and faces,

respectively. The electric field intensity of the cometary nucleus can be calculated from

E rð Þ ¼ 1

4pe0

Z

V

q r1ð Þ
r3s

rsdV r1ð Þ ¼ � r/ rð Þ; ð2Þ

where rs ¼ r� r1, e0 ¼ 8:854 � 10�12 Fm�1 is the vacuum permittivity, and q r1ð Þ and
/ are the charge density and electrostatic potential of the cometary nucleus, respectively.

The magnetic vector potential is

A rð Þ ¼ l0
4p

Z

V

J r1ð Þ
rs

dV r1ð Þ; ð3Þ

where l0 is the vacuum permeability. Then the magnetic flux density of the cometary

nucleus can be calculated by
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B rð Þ ¼ r� A rð Þ: ð4Þ

Let Q be the electrical charge of the dust grain. Then the total gravitational and electro-

magnetic force felt by the particle is given by

f ¼ �rU þ Q Eþ v� Bð Þ; ð5Þ

where v ¼ _r. In a frame that rotates with the comet nucleus, the equation of motion (Jiang

2015; Jiang and Baoyin 2016) for the dust grain reads

€rþ 2x� _rþ x� x� rð Þ ¼ � rU þ Q Eþ v� Bð Þ: ð6Þ

Then the integral of the relative energy is

H ¼ � p � p
2

þ U qð Þ þ p � _qþ Q/ qð Þ ¼ 1

2
p� x� qð Þ � p� x� qð Þ þ V qð Þ þ Q/ qð Þ:

ð7Þ

The nucleus of 1P/Halley is an irregular, potato-shaped body (Sagdeev et al. 1986). The

estimated bulk density of the nucleus is 0:6 g cm�3 (Sagdeev et al. 1988), its rotational

period is 52.8 h, and the overall dimension is 16:831� 8:7674� 7:7692 km (Peale and

Lissauer 1989; Stooke 2002). Figure 1 shows the 3D shape represented with the polyhedral

model (Werner 1994; Werner and Scheeres 1997) using shape data from Stooke (2002).

Figure 2 shows a contour plot of the effective gravitational potential (see ‘‘Appendix

A’’) of 1P/Halley calculated from this model. 1P/Halley has five equilibrium points (see

‘‘Appendix A’’), four of them lying outside the body and one inside the body. The

positions of these five equilibrium points in the body-fixed frame are listed in Table 1;

among them, E5 is inside the comet. Table 2 lists the eigenvalues of the equilibrium

points. The form of the eigenvalues for the equilibrium points E1 and E3 is k1;2 ¼
� ib1 b1 [ 0ð Þ; k3;4 ¼ �ib2 b2 [ 0ð Þ and k5;6 ¼ � a1 a1 [ 0ð Þ, while for the equilibrium

Fig. 1 The 3D shape of 1P/Halley. The shape was built with 5040 faces using the polyhedron model.
Convex surfaces are plotted in light color
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points E2 and E4 the eigenvalues have the form

k1;2 ¼ � ib1 b1 [ 0ð Þ;k3;4 ¼ � ib2 b2 [ 0ð Þ, k5;6 ¼ � ib3 b3 [ 0ð Þ. The motion of a dust

grain relative to the equilibrium points E1 or E3 of 1P/Halley can be expressed as

n ¼ Cn e
a1t; e�a1t; cosb1t; sinb1t; cosb2t; sin b2t½ �T

g ¼ Cg e
a1t; e�a1t; cosb1t; sinb1t; cosb2t; sin b2t½ �T

f ¼ Cf e
a1t; e�a1t; cosb1t; sinb1t; cosb2t; sin b2t½ �T

8
>><

>>:
; ð8Þ

Fig. 2 Contour plot of the effective gravitational potential for the nucleus of 1P/Halley. The unit of the
effective potential is m2 s-2

Table 1 Positions of the equi-
librium points for dust motion in
the effective gravitational poten-
tial of comet 1P/Halley

Equilibrium points x (km) y (km) z (km)

E1 24.946 -0.662 0.004

E2 0.945 24.341 -0.001

E3 -24.856 -1.052 0.005

E4 0.675 -24.322 0.000

E5 -0.577 0.142 0.008

Table 2 Eigenvalues of the
equilibrium points for dust
motion in the effective gravita-
tional potential of comet 1P/
Halley

�10�4 s�1 k1 k2 k3 k4 k5 k6

E1 0.340i -0.340i 0.346i -0.346i 0.131 -0.131

E2 0.124i -0.124i 0.306i -0.306i 0.331i -0.331i

E3 0.338i -0.338i 0.343i -0.343i 0.114 -0.114

E4 0.139i -0.139i 0.299i -0.299i 0.331i -0.331i

E5 4.739i -4.739i 4.448i -4.448i 2.880i -2.880i
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while the motion of the dust grain relative to the equilibrium points E2 or E4 follows a

quasi-periodic orbit, which is expressed as

n ¼ Cn cos b1t; sin b1t; cos b2t; sin b2t; cos b3t; sin b3t½ �T

g ¼ Cg cos b1t; sin b1t; cos b2t; sin b2t; cos b3t; sin b3t½ �T

f ¼ Cf cos b1t; sin b1t; cos b2t; sin b2t; cos b3t; sin b3t½ �T

8
>><

>>:
: ð9Þ

Here, Cn, Cg, Cf are 1� 6 vectors. The motion is unstable in the vicinity of equilibrium

points E1 and E3, and linearly stable in the vicinity of equilibrium points E2 and E4.

Assume the dust grain has N relative equilibria, which include equilibria inside the body

of the nucleus, and denote rj Ekð Þ as the j th eigenvalue of the k th equilibrium point. Then

we have the following theorem constraining the number of non-degenerate equilibria in the

combined gravitational, electric, and magnetic fields of a cometary nucleus.

Theorem 1 Eigenvalues of all the relative equilibria for the dust grain satisfy the

identical equation
PN

k¼1 sgn
Q6

j¼1 rj Ekð Þ
h i

¼
PN

j¼1 sgn det r2Vð Þð Þ½ � ¼ const.

The proof of theorem 1 can be seen in ‘‘Appendix B’’.

If an equilibrium point has at least one eigenvalue equal to zero, then the equilibrium

point is called a degenerate equilibrium point. Conversely, if all the eigenvalues of an

equilibrium point are non-zero, the equilibrium point is called a non-degenerate equilib-

rium point. For the non-degenerate equilibrium points of the dust motion we have the

following

Corollary 2 The number of non-degenerate equilibria in the gravitational field, electric

field, and magnetic field of the cometary nucleus only varies in pairs.

In addition, for the degenerate equilibrium points of dust motion, we know that the

change of the equilibrium type belongs to one of the following paths: (1) annihilate; (2)

transforms to arbitrary number of degenerate equilibrium points; (3) transforms to even

number of non-degenerate equilibrium points; (4) transforms to arbitrary number of

degenerate equilibrium points and even number of non-degenerate equilibrium points. For

instance, the degenerate equilibrium point perhaps varies to 4 non-degenerate equilibrium

points and 5 degenerate equilibrium points, or varies to 2 non-degenerate equilibrium

points, or vanishes. It is impossible for the degenerate equilibrium point of the dust grains

in these three fields of cometary nucleus varies to odd number of non-degenerate equi-

librium points.

Corollary 3 The number of non-degenerate equilibrium points in the gravitational field,

electric field, and magnetic field of the cometary nucleus is an odd number. It can be 1, 3,

5, 7, 9, …, etc.

3 Stability, Bifurcation, and Resonance of Periodic Orbits

In this section, the stability properties, bifurcations, and resonances of periodic orbits of

dust grains in the irregular gravitational field, electric field, and magnetic field of a

cometary nucleus are analyzed. First, we present the topological classification for

stable periodic and unstable periodic orbits; then conditions for occurrence of bifurcations

are discussed; furthermore, resonances are investigated, which take place when the orbital
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period of the grain and the rotation period for the nucleus form an integer ratio. In addition,

several numerical results about periodic orbits are presented and analyzed.

3.1 Stability of Periodic Orbits

We consider the set Sp Tð Þ of periodic solutions around a cometary nucleus, which can be

expressed as z tð Þ ¼ f t; z0ð Þ, f 0; z0ð Þ ¼ z0. Let Sp Tð Þ be the set of periodic orbits with the

period T . Denote the matrixrf :¼ of zð Þ
oz , then the state transition matrix of the periodic orbit

p 2 Sp Tð Þ is

U tð Þ ¼
Z t

0

rf p sð Þð Þds; ð10Þ

and the monodromy matrix of the periodic orbit is

M ¼ U Tð Þ: ð11Þ

Eigenvalues of the matrix M are the characteristic multipliers of the periodic orbit p. The

monodromy matrix M is a symplectic matrix, so if k is a characteristic multiplier of the

periodic orbit, then k�1, �k, and �k�1 are also characteristic multipliers of the periodic orbit.

Considering the topological classification for the periodic orbit of six characteristic mul-

tipliers on the complex plane, there are five classes of stable periodic orbits and six classes

of unstable periodic orbits. All the characteristic multipliers of a stable periodic orbit lie on

the unit cycle, while an unstable periodic orbit has characteristic multipliers that don’t lie

on the unit cycle. Figure 3 shows the topological classification for the stable periodic orbit

2

42 4 2

22

2

2

2

Fig. 3 The topological classification for the stable periodic orbits of six characteristic multipliers on the
complex plane
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of six characteristic multipliers on the complex plane, while Fig. 4 shows it for the

unstable periodic orbit.

3.2 Bifurcations of Orbit Families for Dust Grains

For a long time, the orbits of the grains will vary. During the variety of the orbits, if the

stability of the orbit remains unchanged, the grains will moves on the orbit; otherwise, the

grains will escape or impact on the surface of the cometary nucleus. The bifurcations is

related to the stability of the orbits, thus the analysis of the bifurcations of the orbits can

help one to understand the variety of the motion state of the grains, including the escape

and the impact. In this section, we first discuss bifurcations of orbit families in the grav-

itational field of cometary nuclei. Bifurcations of periodic orbits in the potential of a

cometary nucleus occur when the topological cases and stability of the periodic orbits vary.

There are four kinds of bifurcations, the tangent bifurcation, the period-doubling bifur-

cation, the Neimark–Sacker bifurcation and the real saddle bifurcation. If two character-

istic multipliers coalesce at k ¼ 1 we have a tangent bifurcation and if they coalesce at

k ¼ �1 a period-doubling bifurcation; in addition, if two complex conjugate pairs of

characteristic multipliers collide, we have the case of a Neimark–Sacker bifurcation or a

real saddle bifurcation. A collision point on the unit circle (k 6¼ �1) corresponds to the

Neimark–Sacker bifurcation while a collision point on the real axis (k 6¼ �1) corresponds

to the real saddle bifurcation. First we discuss the bifurcations of arbitrary orbit families,

then we discuss the bifurcations of periodic orbit families. Figure 5 shows appearance of

the period-doubling bifurcation. In Fig. 5, one can see that before the bifurcation, two

characteristic multipliers on the unit circle approach each other, and coincide at -1 when

2 2

2 2 2

422 2

Fig. 4 The topological classification for the unstable periodic orbits of six characteristic multipliers on the
complex plane
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the bifurcation occurred, after the bifurcation, these two characteristic multipliers enter the

real axis.

Now we focus on bifurcations of arbitrary orbit families for charged dust grains in the

cometary nucleus’ irregular gravitational field, electric field, and magnetic field. The dust

grains are supposed to have electrical charge Q. From Eq. (11), one can see that the

characteristic polynomial of an arbitrary orbit relative to the fixed frame of the nucleus is

P kð Þ ¼ kE �Mj j ¼ k6 þ k1k
5 þ k2k

4 þ k3k
3 þ k2k

2 þ k1kþ 1: ð12Þ

P kð Þ satisfies P k�1
� �

¼ k�6P kð Þ because M is a symplectic matrix. A tangent bifurcation

occurs when P 1ð Þ ¼ 0, while a period-doubling bifurcation occurs when P �1ð Þ ¼ 0. Thus,

the condition for the tangent bifurcation is 2k1 þ 2k2 þ k3 þ 2 ¼ 0 while for the period-

doubling bifurcation it reads �2k1 þ 2k2 � k3 þ 2 ¼ 0. P kð Þ has multiple roots when a

Neimark–Sacker bifurcation or real saddle bifurcation occurs. We denote q ¼ kþ 1
k. Then

Eq. (12) becomes

q3 þ k1q
2 þ k2 � 3ð Þqþ k3 � 2k1 ¼ 0: ð13Þ

Denoting ~q ¼ q� k1
3
, we find that Eq. (13) reduces to

~q3 þ 3p~qþ 2q ¼ 0; ð14Þ

where 3p ¼ � k2
1

3
þ k2 � 3 and 2q ¼ 2 k1

3

� �3� k1 k2�3ð Þ
3

þ k3 � 2k1. The discriminant of

Eq. (14) is

D ¼ q2 þ p3 ¼ k1

3

� �3

� k1 k2 � 3ð Þ
6

þ k3 � 2k1

2

" #2
þ k2 � 3

3
� k21

9

� �3
¼ 0: ð15Þ

Next we consider the bifurcations of periodic orbit families for uncharged dust grains. The

characteristic polynomial of the periodic orbit is

Q kð Þ ¼ kE �Mj j ¼ k� 1ð Þ2 k4 þ l1k
3 þ l2k

2 þ l1kþ 1
� �

: ð16Þ

The condition for the tangent bifurcation is 2l1 þ l2 þ 2 ¼ 0 while for the period-doubling

bifurcation it reads 2l1 � l2 � 2 ¼ 0. Q kð Þ has multiple roots when the Neimark–Sacker

bifurcation or the real saddle bifurcation occurs, which satisfies l21 � 4l2 þ 8 ¼ 0.

22 2 2

Fig. 5 Appearance of the period-doubling bifurcation, distributions of 6 characteristic multipliers on the
complex plane are shown, the radius of the circle is 1
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3.3 Resonant Orbit Families for Dust Grains

Resonant periodic orbits arise if the orbital period for the dust grain and the rotation period

for the cometary nucleus are in an integer ratio. Let Tn be the rotation period of the nucleus,

To be the orbital period of the dust grain. If
To
Tn
¼ mo

mn
, then mo : mn is the resonant ratio. In the

vicinity of a cometary nucleus, there exist not only unstable resonant periodic orbits, but

also stable resonant periodic orbits.

The dust aggregates can be ejected from the surface of the cometary nucleus by elec-

trostatic and rotational ejection (Oberc 1997; Crifo et al. 2005); the action of non-gravi-

tational forces makes the ejection velocity size-dependent (Oberc 1997; Molina et al.

2008). Banaszkiewicz et al. (1990) modeled the gravitational potential by a triaxial

ellipsoid and calculated the orbits of dust around cometary nuclei. Oberc (1997) considered

both, electrostatic and rotational ejection and analysed the relationship between the ejec-

tion velocity and the aggregatse size. Molina et al. (2008) modeled the gravitational

potential of comet 46P/Wirtanen by a sphere and considered the effect of gas drag. They

computed the orbits of the largest grain ejected from the surface of the nucleus with a size

of 5 cm. Comet 1P/Halley has both electric field and magnetic field (Horanyi and Mendis

1986; Delva et al. 2014).

The gravitational model we use here is more complex than models used in previous

studies. To this end, we calculate the irregular gravitational field of 1P/Halley is by the

polyhedral method (Werner 1994; Werner and Scheeres 1997), using data from radar

observations (Neese et al. 2004). The electrical field is approximated as the one generated

by a point charge (Hartzell 2013). For this configuration the periodic orbits are calculated

for 1P/Halley. Lacking knowledge of the precise value for the charge of 1P/Halley (Ho-

ranyi and Mendis 1986; Delva et al. 2014), we assume for the comet and the dust grain

charges of 1:0� 10�2C and 2:8� 10�13C, respectively. The magnetic field is neglected

here. Figure 6 shows 5 periodic orbits for dust grains found around the nucleus of 1P/

Halley.

Figure 6a shows a periodic orbit around the nucleus of 1P/Halley with period 9.51893 h

as well as the corresponding distribution of characteristic multipliers in the complex plane.

The ratio of the orbital period for the dust grain and the rotation period for the cometary

nucleus equals 0.1803. This periodic orbit is stable and non-resonant, which is one of the

cases shown in Fig. 3. All the characteristic multipliers are on the unit circle. Figure 6b

shows another stable, non-resonant periodic orbit with period 58.8557 h, the ratio of period

is in this case 1.115. The configuration of characteristic multipliers in the complex plane

shows that this is one of the cases shows in Fig. 3.

Resonant periodic orbits in the gravitational field of a cometary nucleus can also be

stable. Figure 6c shows such a stable 1:1 resonant periodic orbit around 1P/Halley with

period 53.4299 h. The topological classification for this orbit is one of the cases shown in

Fig. 3. The 1:1 resonant periodic orbit presented here is different from the periodic orbit

near an equilibrium point; because there are three families of periodic orbits near the

equilibrium point E2; the first family of periodic orbits near the equilibrium point E2 have

period about 52.7 h, corresponding to the eigenvalue 0:331i� 10�4; the second one near

the equilibrium point E2 have period about 57.0 h, corresponding to the eigenvalue

0:306i� 10�4; the third one have period about 140.8 h corresponding to the eigenvalue

0:124i� 10�4.
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Fig. 6 a A stable, non-resonant periodic orbit around the nucleus of 1P/Halley with period 9.51893 h.
Right panel: The distribution of characteristic multipliers in the complex plane for this periodic orbit. b A
stable, non-resonant periodic orbit around the nucleus of 1P/Halley with period 58.8557 h. Right panel: The
distribution of characteristic multipliers in the complex plane for the periodic orbit. c A stable 1:1 resonant
periodic orbit around the nucleus of 1P/Halley with period 53.4299 h and distribution of characteristic
multipliers in the complex plane for the periodic orbit. d An unstable resonant periodic orbit around the
nucleus of 1P/Halley with period 105.7575 h and distribution of characteristic multipliers in the complex
plane for the periodic orbit. e An unstable resonant periodic orbit around the nucleus of 1P/Halley with
period 423.022 h, and distribution of characteristic multipliers in the complex plane for the periodic orbit
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Figure 6d shows an unstable 1:2 resonant periodic orbit around 1P/Halley with period

105.7575 h. The distribution of characteristic multipliers for this periodic orbit shows that

this corresponds to one of the cases shown in Fig. 4.

Figure 6e shows an unstable 1:8 resonant periodic orbit around 1P/Halley with period

423.022 h. The distribution of characteristic multipliers for this periodic orbit shows that

the topological classification for this unstable resonant periodic orbit corresponds to one of

the cases shown in Fig. 4.

The application to comet 1P/Halley implies that stable and non-resonant periodic orbits,

stable 1:1 resonant periodic orbits, as well as unstable resonant periodic orbits can all

simultaneously exist around the same cometary nucleus.

4 Solar Gravity Force and Solar Radiation Pressure

For a dust grain, there exist several kinds of forces on it, including the gravity force caused

by the irregularly shaped cometary nucleus, the electric and magnetic force, the solar

gravity force and the solar radiation pressure. The Finson-Probstein model only has two

forces, the solar gravity force and the solar radiation pressure (Finson and Probstein 1968;

Kramer et al. 2014). Kramer et al. (2014) modelled the motion of the dust grain with

considering two different cases. The first case, they use the Finson-Probstein model and

Fig. 6 continued
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neglect the comet gravity and the Lorentz force. The result shows that this model does not

fit the observation data well (Kramer et al. 2014). The second case, they use the Lorentz

force model with assuming the cometary nucleus as a sphere and considering the solar

magnetic force and the solar gravity, the electric force, the solar radiation pressure, and the

comet gravity are neglected, they found that this model is better for a dust grain with the

size of 0:48� 5:76lm which is far away from the comet (Kramer et al. 2014). We now

compare these different forces. The solar gravity force is calculated by

fSg ¼
GMSm

R2

R

R
; ð17Þ

where MS represent the mass of the Solar, m represent the mass of the dust grain, R
represent the position of the dust grain relative to the Solar, R is the size of R. The solar

radiation pressure is calculated by

fSr ¼
KrPrAr

m

R

R
; ð18Þ

where Kr is the absorption coefficient, Pr is the intensity of the solar radiation pressure, Ar

is the sectional area of the dust grain. Denote the area-mass ratio am ¼ Ar

m
.

The gas drag force is calculated by

fgd ¼
1

2
CdqgdArv

2
gd; ð19Þ

where Cd¼1:0 is the gas drag coefficient, qgd is density of the gas drag, vgd is the relative

velocity between the dust grain and the gas frag. Other force models are presented in the

previous sections, including the gravity force caused by the irregularly shaped cometary

nucleus as well as the electric and magnetic force.

At first, we fix the mass, charge, and sectional area of the dust grain, let the distance of

the dust grain relative to the mass centre of the cometary nucleus change. The initial values

are Q ¼ 1:0� 10�16C, Kr ¼ 0:8, Pr ¼ 4:65� 10�9 N m�2, qgd ¼ 5:7� 10�5 kg m�3, and

am ¼ 2:0� 10�7 m2 kg�1. The charge of the comet is set to be 0.01C. In this situation, we

calculate the strength of different forces and show the result in Fig. 7a. One can see that if

the mass, charge, and sectional area are fixed, the solar gravity and solar radiation pressure

acted on the dust grain are constants. When the dust grain is near the cometary nucleus, the

comet gravity is the biggest one, and the gas drag force is the smallest one; however, the

comet gravity and the electric and magnetic forces decrease rapidly while the distance is

increasing.

Figure 7b shows the results of the strength of different forces when the charge is

changing, and the mass, sectional area, as well as the position are fixed. The initial values

are r ¼ 8:0 km, Kr ¼ 0:6, Pr ¼ 4:65� 10�9 N m�2, qgd ¼ 5:7� 10�5 kg m�3, and

am ¼ 2:0� 10�6 m2 kg�1, where r is the distance from the dust grain to the mass center of

the cometary nucleus. In this situation, the electric and magnetic forces are changing. The

comet gravity, the solar gravity, the solar radiation pressure, and the gas drag force are

constants. When the value of the charge is small, the comet gravity is the biggest one; the

solar gravity and the solar radiation pressure are both bigger than the Lorentz force, i.e. the

electric and magnetic forces. When the value of the charge is big, the Lorentz force is the

biggest one, and the solar gravity is the smallest one.

Figure 7c shows the results of the strength of different forces when the mass is

changing, and the charge, sectional area, as well as the position are fixed. The initial values
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Fig. 7 a Comparison of
different forces on the dust grain:
The mass (1.0 9 10-10 kg),
charge (1.0 9 10-16 C), and
sectional area (2.0 9 10-14 m2)
are fixed, the distance of the dust
grain relative to the mass centre
of the cometary nucleus is
changing. b Comparison of
different forces on the dust grain:
The mass (1.0 9 10-10 kg),
sectional area (2.0 9 10-14 m2),
and position (relative to the mass
center of the comet: 21 km) are
fixed, the charge is changing.
c Comparison of different forces
on the dust grain: The charge
(1.0 9 10-16 C), sectional
area(2.0 9 10-14 m2), and
position are (relative to the mass
center of the comet: 21 km)
fixed, the mass is changing
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are Q ¼ 1:0� 10�12 C, r ¼ 8:0 km, Kr ¼ 0:8, Pr ¼ 4:65� 10�9 N m�2,

qgd ¼ 5:7� 10�5 kg m�3, and am ¼ 2:0� 10�6 m2 kg�1. In this situation, the solar radi-

ation pressure and the Lorentz force are constants. The comet gravity and the solar gravity

magnify while the mass magnify. When the value of the mass is small, the magnetic force

and the solar radiation pressure are big, and the comet gravity and the solar gravity can be

neglected. When the value of the mass is big, the comet gravity is the biggest one; other

forces can be neglected in the sketchy calculation.

In Fig. 7a–c, the nucleus mass and the heliocentric distance have been used for all

relevant parameters. The nucleus mass m = 2.4131 9 1014 is calculated by the polyhedron

method. From the above calculation, one can conclude that the motion of a dust grain

depends on the area-mass ratio, the charge, and the distances of the dust grain to the mass

center of the cometary nucleus and the Solar. The quantitative estimates of perturbing

effects in this section show that the contents in Sects. 2 and 3 are suitable for large dust

grains which are near the cometary nucleus and have small value of area-mass ratio. For a

large dust grain ([ 1 mm, more detailed can be seen in Ishiguro 2008) near the cometary

nucleus with small value of area-mass ratio, the comet gravity is the major force acting on

the dust grain. For a large dust grain far from the cometary nucleus with small value of

area-mass ratio, the solar gravity and the solar radiation pressure are both major forces. For

a small dust grain (\ 1 mm, more detailed can be seen in Ishiguro 2008) near the cometary

nucleus with large value of area-mass ratio, the solar radiation pressure and the comet

gravity are two major forces. For a small dust grain near the cometary nucleus with large

value of charge, the magnetic force, the solar radiation pressure, and the electric force are

major forces. For a small dust grain far from the cometary nucleus, the solar gravity and

solar radiation pressure are both major forces, and the comet gravity and comet Lorentz

force can be neglected. The conclusions in Sects. 2 and 3 are suitable for a large dust grain

near the cometary nucleus with small value of area-mass ratio and charge.

We now consider a dust grain which has a large area-mass ratio, consider the comet

gravity force, Lorentz force, and the solar gravity as well as the solar radiation pressure. To

compare the orbit with the orbit in the previous sections, we use the same orbital initial

values in Fig. 6a. The orbital initial values is r ¼ 953:6653½ � 8897:344820:0065�m,

v ¼ �0:0653020 � 0:00467089� 0:01473039½ �m s�1. The orbit is presented in Fig. 8.

The orbit showed in Fig. 6a is a stable periodic orbit, however, from Fig. 8, one can see

that if the dust grain has a large area-mass ratio, the dust grain will leave the comet and the

Fig. 8 The orbit of a dust grain
which has a large area-mass ratio
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orbit is no longer a periodic orbit. The orbit shape is helical while the dust grain leaves the

comet, which coincides with the results in Kramer et al. (2014).

5 Conclusions

Considering the gravitational field of an irregularly shaped body, as well as its electric and

magnetic fields, the dynamical behavior of dust grains in the vicinity of a cometary nucleus

is studied, including the local motion near equilibrium points, stable global motion,

unstable global motion as well as resonant motion. We proved an identical equation for the

number of non-degenerate equilibria of a dust grain in the combined gravitational and

electromagnetic fields of a cometary nucleus. We found that the number of non-degenerate

equilibria for the dust grain only varies in pairs, and the number of non-degenerate

equilibrium points is an odd number. Besides, the degenerate equilibrium points of a dust

grain may disappear, or may change to an arbitrary number (including zero) of degenerate

equilibrium points and an even number (including zero) of non-degenerate equilibrium

points; it is impossible that a degenerate equilibrium point changes to an odd number of

non-degenerate equilibrium points.

The stability, bifurcations and resonances of periodic orbits for the dust grains in the

irregular gravitational field, electric field, and magnetic field of a cometary nucleus are also

discussed. The topological classification for stable periodic orbits and unstable periodic

orbits is presented; conditions for bifurcations are also discussed; besides, resonant motion

is also analyzed.

For the comet 1P/Halley’s nucleus, there exist four equilibrium points outside the body,

positions and eigenvalues of these equilibrium points can be computed. It is found that

there are five topological classes of stable periodic orbits and six topological classes of

unstable periodic orbits. There exist stable non-resonant periodic orbits, stable resonant

periodic orbits and unstable resonant periodic orbits in the potential field of cometary

nuclei.

The dust grain’s motion depends on the area-mass ratio, the charge, and the distances of

the dust grain to the mass center of the cometary nucleus and the Solar. The comet gravity

is the major force acting on the dust grain if the dust grain is large and has small value of

area-mass ratio. The solar gravity and the solar radiation pressure are the major forces if

the dust grain is far away from the cometary nucleus. The comet gravity and the comet

Lorentz force decrease rapidly while the distance from the dust grain to the mass center of

the cometary nucleus is increasing.
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Appendix A: Effective Potential and Equilibrium Points

Defining the effective potential as

V qð Þ ¼ � 1

2
x� qð Þ � x� qð Þ þ U qð Þ þ Q/ qð Þ ðA1Þ

and substituting into Eq. (6) yields
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€rþ 2x� _rþ oV

or
¼ Q _r� B: ðA2Þ

The integral of the relative energy is in the form of

H ¼ 1

2
_q � _qþ V qð Þ: ðA3Þ

Zero-velocity surfaces are given by the condition

V ¼ H; ðA4Þ

so that the inequality V qð Þ[H defines forbidden regions for the motion of the dust grain,

while V qð Þ\H defines allowed regions. Besides, the equality V qð Þ ¼ H implies that the

dust particle is static relative to the cometary nucleus.

The dynamical equations of the dust grain in the potential field of the nucleus can be

expressed in Hamilton form as

_p ¼� oH

oq

_q ¼ oH

op

8
>><

>>:
: ðA5Þ

The cometary nucleus rotates uniformly. We define the unit vector ez by x ¼ xez and

denote vI ¼ _rþ x� r, which is the velocity relative to the inertial frame. Then the

mechanical energy of the dust grain E ¼ 1
2
vI � vI þ U rð Þ is not conserved, while the

integral of the relative energy is conserved. The dynamical equations for the particle read

in the body-fixed frame

€x� 2x _yþ oV

ox
þ Q _zBy � _yBz

� �
¼ 0

€yþ 2x _xþ oV

oy
þ Q _xBz � _zBxð Þ ¼ 0

€zþ oV

oz
þ Q _yBx � _xBy

� �
¼ 0

8
>>>>>><

>>>>>>:

; ðA6Þ

where the effective potential is V ¼ U � x2

2
x2 þ y2ð Þ þ Q/. The integral of the relative

energy is then expressed as

H ¼ U þ 1

2
_x2 þ _y2 þ _z2
� �

� x2

2
x2 þ y2
� �

þ Q/ ¼ V þ 1

2
_x2 þ _y2 þ _z2
� �

: ðA7Þ

The equilibrium points xL; yL; zLð ÞT satisfy

oV

ox
¼ oV

oy
¼ oV

oz
¼ 0: ðA8Þ

Then the linearised equations of motion relative to the equilibrium points can be expressed

as
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€n� 2xþ QBzð Þ _gþ QBy
_fþ Vxxnþ Vxygþ Vxzf ¼ 0

€gþ 2xþ QBzð Þ _n� QBx
_fþ Vxynþ Vyygþ Vyzf ¼ 0

€f� QBy
_nþ QBx _gþ Vxznþ Vyzgþ Vzzf ¼ 0

; ðA9Þ

where n ¼ x� xL; g ¼ y� yL; f ¼ z� zL, and Vuv ¼ o2V
ouov

� 	

L
u; v ¼ x; y; zð Þ.The charac-

teristic equation of the equilibrium points is

k2 þ Vxx � 2xþ QBzð Þkþ Vxy QBykþ Vxz

2xþ QBzð Þkþ Vxy k2 þ Vyy �QBxkþ Vyz

�QBykþ Vxz QBxkþ Vyz k2 þ Vzz
















¼ 0: ðA10Þ

Defining

r2V ¼
Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

0
@

1
A ¼

Uxx � x2 þ Q/xx Uxy þ Q/xy Uxz þ Q/xz

Uxy þ Q/xy Uyy � x2 þ Q/yy Uyz þ Q/yz

Uxz þ Q/xz Uyz þ Q/xy Uzz þ Q/zz

0
@

1
A

ðA11Þ

the following corollary gives a sufficient condition for the linear stability of the equilibrium

points.

Corollary 1 If the matrix r2V is positive definite, the equilibrium point is linearly stable.

Proof Eq. (A9) can be rewritten as

M€qþ Gþ B
_

� 	
_qþ r2V
� �

q ¼ 0; ðA12Þ

where q ¼ n g f½ �T, M ¼
1 0 0

0 1 0

0 0 1

0
@

1
A, G ¼

0 �2x 0

2x 0 0

0 0 0

0
@

1
A,

r2V ¼
Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

0
@

1
A, and B

_

¼ Q

0 �Bz By

Bz 0 �Bx

�By Bx 0

0
@

1
A.

The matrices M, G, KV, and B
_

satisfy MT ¼ M, r2Vð ÞT¼ r2V , GT ¼ �G, and

B
_T

¼ �B
_

, respectively. Defining the Lyapunov function as

VLyap ¼
1

2
_qTM _qþ qT r2V

� �
q

� �

Then

_VLyap ¼ _qT M€qþ r2V
� �

q
� �

¼ � _qTG _q� _qTB
_

_q ¼ 0

Because the matrices M and r2V are positive definite, we have

VLyap ¼ 1
2

_qTM _qþ qT r2Vð Þq
� �

[ 0, and therefore the equilibrium point is linearly

stable. h

From the proof, it follows that if a dust grain’s equilibrium point is linearly stable in the

cometary nucleus’ gravitational and electric fields, the existence and magnitude of the

magnetic field has no effect to the stability of the equilibrium point.
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Appendix B: Proof of Theorem 1

Proof Let _q ¼ v, substituting it into Eq. (A12) yields the following equation

I3�3 _q

M _v

" #
¼

03�3 I3�3

r2V � Gþ B
_

� 	
 !

q

v

" #
: ðB1Þ

Defining K ¼
q

v

" #
Eq. (B1) is reduced to

_K ¼ g Kð Þ ¼ PK; ðB2Þ

where g Kð Þ is a function of K, and

P ¼
03�3 I3�3

�M�1 r2Vð Þ �M�1 Gþ B
_

� 	
 !

: ðB3Þ

From this expression we see that detP ¼ det r2Vð Þ.
If we define the function

f rð Þ ¼

oV

ox
oV

oy

oV

oz

0
BBBBBB@

1
CCCCCCA

þ Q

yBz � zBy

zBx � xBz

xBy � yBx

0
B@

1
CA ¼ rV þ Qr� B; ðB4Þ

we have df
dr ¼ r2V . Let N be the open set, use the topological degree theory (Mawhin et al.

1989, pp. 116–119), then

XN

k¼1

sgn
Y6

j¼1

rj Ekð Þ
" #

¼ deg f ; N; 0; 0; 0ð Þð Þ ¼ const: ðB5Þ

So

XN

k¼1

sgn
Y6

j¼1

rj Ekð Þ
" #

¼
XN

j¼1

sgn detPð Þ½ � ¼
XN

j¼1

sgn det r2V
� �� �� �

¼ const: ðB6Þ

h
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