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Abstract Web-based citizen science often involves the classification of image features by

large numbers of minimally trained volunteers, such as the identification of lunar impact

craters under the Moon Zoo project. Whilst such approaches facilitate the analysis of large

image data sets, the inexperience of users and ambiguity in image content can lead to

contamination from false positive identifications. We give an approach, using Linear

Poisson Models and image template matching, that can quantify levels of false positive

contamination in citizen science Moon Zoo crater annotations. Linear Poisson Models are a

form of machine learning which supports predictive error modelling and goodness-of-fits,

unlike most alternative machine learning methods. The proposed supervised learning

system can reduce the variability in crater counts whilst providing predictive error

assessments of estimated quantities of remaining true verses false annotations. In an area of

research influenced by human subjectivity, the proposed method provides a level of

objectivity through the utilisation of image evidence, guided by candidate crater

identifications.
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1 Introduction

Moon Zoo (Joy et al. 2011) was a citizen science project aiming to catalog small lunar

craters by allowing volunteers to annotate candidates using a web-based interface between

2010 and 2015. The Moon Zoo custom Graphical User Interface (GUI) was an Adobe

Flash application based on the ActionScript programming language. The software

Application Programming Interface and database layer were developed by the Zooniverse

team at Oxford University, building on their experience with storing and analysing large

amounts of citizen science data (Lintott et al. 2008). Moon Zoo was similar in design and

aim to alternative projects including MoonMappers (Robbins et al. 2014). One major goal

of the Moon Zoo project was to gather crater statistics for the plotting of crater Size

Frequency Distributions (SFDs). However, the raw annotations contain significant con-

tamination from misidentified craters which must be corrected for if crater counts are not to

be biased.

SFDs are commonly used for investigating the evolution of planetary surfaces. A

conventional SFD plots the cumulative frequencies of craters falling into geometrically

increasing size-bands, normalised to a unit of surface area, thereby describing geological

units in terms of crater diameters and densities (Neukum et al. 1975). On a single body,

differences among SFDs allow a relative sequence of events to be established. This

requires an appropriate treatment of uncertainty to answer questions such as whether two

features are consistent with a single formation event or multiple events. SFDs estimated

from lunar regions for which radiometrically-dated samples are available can be used to

calibrate Chronology Functions which might be applicable for dating other regions or even

other planetary surfaces (Neukum et al. 2001).

The quantitative use of crater statistics to establish ages must incorporate a good

understanding of the uncertainties in estimated crater counts. Conventional crater counting

assumes Poisson errors (i.e.
ffiffiffiffi

N
p

) on crater counts (Arvidson et al. 1979). These errors are

propagated to give errors on surface age estimates. The underlying Poisson assumption has

become part of standard SFD analysis software (Michael and Neukum 2010). However,

repeatability studies of experts and community crater counters (Robbins et al. 2014) reveal

uncertainties in counts far larger than those arising from Poisson perturbations alone.

Earlier work has also shown subjective sources of uncertainty in both crater counts (Greely

and Gault 1970; Kirchoff et al. 2011) and size estimates (Gault 1970). Empirical error rates

used to assess automated crater detectors also reveal systematic effects which violate the

simple Poisson assumption, i.e. false positive and negative detection, for examples see

Kamarudin et al. (2012), Kim et al. (2005) and Bandeira et al. (2007).

The Moon Zoo crater data Bugiolacchi et al. (2016) is known to contain numerous false

positives, where ambiguous features (shadows, topographic highs etc.) have been erro-

neously annotated. Many craters have also been annotated using a default size setting

inappropriate for many sized craters. In addition to false positives which artificially boost

crater counts, false negatives also occur where real craters are not annotated. This present

work focuses on addressing false positive contamination, i.e. features which have been

annotated, but are not genuine craters. A simple approach to identifying false positives is to

apply a threshold on the number of users who have annotated a particular crater. This

assumes that multiple people are less likely to make the same misidentification (Robbins

et al. 2014). However, this approach requires a greater number of annotations to catch all

craters, risking discarding real craters which have only been marked a small number of

times. Alternatively, even in places with few annotations, a pattern recognition system
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could be trained to probabilistically weight annotations using image evidence and training

data (Fig. 1). This work shows how Linear Poisson Models (LPM), a supervised learning

system based upon Likelihood regression (Tar and Thacker 2014; Tar et al. 2015), can be

applied to crater annotations to reduce uncertainty in contaminated counts. Unlike alter-

native machine learning methods such as Support Vector Machines (Steinwart and

Christmann 2008) and Random Forests (Ho 1995), LPMs incorporate an error theory for

predicting the stability of estimated quantities of identified true and false features.

This work does not intend to present any lunar science results or generate conventional

SFDs. Rather, it is intended to show how one particular problem, that of false positives, can

be reduced in raw crater annotations. The method is demonstrated using Moon Zoo data

with bootstrap resampling in order to show that:

• Linear Poisson Model regression can estimate false positive contamination levels in

Moon Zoo data;

• the estimation error on the corrected counts can be predicted using the LPM’s error

theory, and the observed error in practice matches the predictions;

• that self-consistent results can be achieved over a range of different crater quantities

and using different image evidence.

A more comprehensive correction, also taking into consideration missing craters from

false negatives, would be required to fully correct counts suitable for SFDs. This additional

correction step is outside the scope of the current work.

2 Methodology

Given a database of crater annotations known to contain contamination, the problem we

address is that of assigning probabilities to each annotation, permitting correctly weighted

total counts to be achieved. A solution must also provide an honest indication of the

uncertainty remaining in the corrected counts, i.e. error bars, which should have predictive

value.

The false positive correction process begins with a set of candidate crater annotations

and a high resolution lunar image. The annotations used in this work were taken from a

subset of Apollo 17 craters (NAC M104311715LE and M104311715RE) pre-processed

using the clustering described in Bugiolacchi et al. (2016). 20,000? annotations were used,

each consisting of x and y centre coordinate parameters, a diameter and a parameter for the

number of individuals who highlighted that particular candidate crater. No user annotation

threshold was used to pre-filter the annotations, therefore all candidates within the subset

were used, including those annotated by only single users. Figure 2 provides examples of

the terrain found within the images, as well as a sample of Moon Zoo annotations. Briefly,

the process is applied and tested using the following steps:

• A subset of ground truth must be agreed upon containing examples of ‘‘true’’ and

‘‘false’’ craters to be used as training and testing data. For testing purposes here, the

20,000? crater annotations were visually inspected by the first author, 25% of which

were deemed false positive (Sect. 2.1);

• A template image of a crater is created using the average computed appearance from a

set of ‘‘true’’ craters. Two template types are tested, one making use of pixel intensity

and another using horizontal and vertical pixel derivatives (Sect. 2.2);
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• A similarity measure is constructed for comparing crater templates to individual

annotations giving a match score to measure the strength of image evidence supporting

there being a real crater at each candidate location (Sect. 2.2.1);

• The distribution of template match scores across image regions is sampled for ‘‘true’’

and ‘‘false’’ craters, resulting in histograms of template responses to different classes of

annotation (Sect. 2.2.2);

• The histograms of template responses are used to train a Linear Poisson Model (LPM),

which results in a set of Probability Mass Functions (PMFs) which can be combined

linearly to describe the distribution of matches in future data (Sect. 2.2.3);

• The LPM is fitted using an Expectation Maximisation algorithm to candidate crater

match scores that require correction. This results in estimated quantities of ‘‘true’’ and

‘‘false’’ classes of annotations (Sect. 2.2.3);

• The LPM’s error theory is applied to predict the error bars on the estimated ‘‘true’’ and

‘‘false’’ crater quantities (Sect. 2.2.4). These predictions are then tested by repeatedly

resampling and analysing annotations to compare predicted distributions to actual

spreads of counts.

These steps are describe in detail below before testing using bootstrap resampling from

Moon Zoo crater annotations.

2.1 Ground Truth

The method presented here can be thought of as objectively fitting a subjective definition of

craters’ appearances. For the method to operate a ground truth training data set is required

which can be defined by an expert or via consensus. As the method is designed to be

objective in its application, the minimum requirement is that the training and testing sets

make use of the same definition of true and false craters. To ensure this condition, the

ground truth defined in this work was used to both train and test, with independent subsets

being generated using bootstrap re-sampling. Given the lack of any absolute and objective

ground truth, we argue that this level of consistency is the best that can reasonably be

achieved.

Approximately 20,000 candidate craters from Moon Zoo with diameters of 20 pixels or

greater were individually assessed and categorised into ‘‘true’’ and ‘‘false’’ examples by the

first author. Greater than 99% of these were small independent craters, i.e. non-inter-

secting. Approximately 1
4
of the craters were deemed to be ‘‘false’’. These were gathered

from the following NAC images: M104311715LE and M104311715RE, which are

approximately 5,000 by 50,000 pixels in size.

It might be argued that training and testing would be better performed within different

size-bands of craters to cater for morphological differences at different scales. However, as

a proof-of-concept and to maintain a large number of test subjects, all sized craters within

the Moon Zoo database were used jointly. The largest craters, of which there are very few,

are in the region of 100 pixels in diameter (approx. 200 m). Much larger craters with

distinctive morphologies (e.g. central rings and significant impacts within impacts) were

never part of the database.

2.2 Crater Template Construction

LPMs model data densities as linear combinations of histograms, with parameters esti-

mated via Likelihood. They assume data can be described as an additive mix of
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independent Poisson variables. As LPMs work with histogram data, the image evidence

around candidate craters must be encoded somehow into appropriately binned frequencies.

Image locations containing candidate craters can be compared to template crater images to

give a measure of how crater-like the candidates actually are. Histograms of the level of

template match can be populated for anaysis.

Two different forms of template are investigated: an average crater appearance which

has had the local mean pixel grey level subtracted; and a derivative template modelling

changes in illumination both horizontally and vertically across an average crater. Examples

of these templates can be seen in Fig. 1. Both types of template begin with multiple crater

image examples scaled to a common size. For each example, the mean grey level over the

area of the image is subtracted from each pixel. This helps to normalise the images to take

into account local reflectance artifacts. The average template is given by the mean per-

pixel values computed across all examples. Two derivative subtemplates are constructed,

one from the mean pixel differences between adjacent pixels to the left and right, and one

from the mean differences above and below; the horizontal and vertical subtemplates are

then concatenated next to one another. The derivative template further reduces the effects

of mean local grey levels and albedo variations by focusing on differences rather than

absolute values (Fig. 1, right).

The grey level templates used in the experiments were 60 by 60 pixels in size, whereas

the composite derivative templates were 120 by 60. The craters were scaled to fit within the

templates with a 40 pixel diameter and 10 pixel border. All craters during testing show

similar illumination direction and inclination. Whilst a more elaborate template con-

struction method may improve generalisation to other illumination conditions (such as

appearance modelling or shape from shading), the relatively simple templates adopted here

maintain easy to understand noise characteristics making a similarity measure easier to

construct.

2.2.1 Similarity Measures

LPMs are designed to be quantitatively self-consistent so that conclusions drawn from an

analysis should be invariant to how measurements are taken. This is in-line with standard

scientific requirements that choices in setup should not lead to different interpretations.

However, different measurement choices can lead to higher or lower accuracy, i.e. larger or

smaller error bars on final summaries. To illustrate this, two different forms of similarity

measure are investigated: the mean of squared residuals between image and template pixels

Fig. 1 Left mean grey level crater template derived from Moon Zoo data. Right Combined horizontal and
vertical gradient (x, y derivative) template
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(i.e. mean squared error, SMSE); and a normalised dot-product which treats image and

template pixels as vectors (SDP). Both of these measures are motivated by a Likelihood

interpretation of template matching which assumes independent Gaussian noise on image

pixels:

Lmatch ¼
Y

n

i

e�ðai�biÞ2 ð1Þ

where a is the template; b is the image patch being matched; i is an index over each pixel;

and n is the number of pixels in the template. Note that as this function (or rather those

related to it below) is searched for maxima, the absolute normalisation is unimportant. It

can be seen that maximising this Likelihood is equivalent to minimising SMSE:

Fig. 2 Examples of terrain found within NAC images M104311715LE/RE. The Moon Zoo dataset contains
uniform homogeneous regions, as well as dark areas with significant boulders. The central panel shows
examples of Moon Zoo candidate crater annotations
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SMSE ¼ 1

n

X

n

i

ðai � biÞ2 ð2Þ

lnLmatch ¼�
X

n

i

ðai � biÞ2 ð3Þ

where the peak in the log Likelihood coincides with the peak in the Likelihood and

SMSE / � lnLmatch. It can also be seen that maximising SDP is approximately equivalent to

minimising SMSE by inspecting:

SDP ¼ 1

nkak
X

n

i

aibi ð4Þ

SMSE ¼ 1

n

X

n

i

a2i þ
X

n

i

b2i � 2
X

n

i

aibi

 !

ð5Þ

where
Pn

i a
2
i and kak (length of the vector defined by the pixel values of the template) are

constant if a single fixed size template is used; and
Pn

i b
2
i is dominated by the mean grey

level of the image patch being matched, which is approximately constant within a local

image region. Dividing by The SDP similarity measure therefore focuses on matching the

high spatial frequency components of the crater templates which provides further invari-

ance to local illumination and albedo effects.

2.2.2 Applying the Templates

The construction of templates and selection of similarity measures presented above assume

the only sources of variability are local illumination conditions and pixel-level noise.

However, the degradation state of craters also significantly affects appearance. To

approximately accommodate the effects of degradation, images being matched are first

smoothed using Gaussian blurring, as the blurring of a crater image visually mimics the

effects of erosion, allowing for improved matches. This modelling need not be perfect (the

simulated degradation may be very approximate), as the subsequent supervised learning

stage using LPMs will model response variations including small changes in morphology

and degradation. The match score assigned to a given candidate crater is computed as

follows:

1. smooth the crater image by a small amount;

2. subtract the mean local grey level;

3. compute horizontal and vertical derivatives if the derivative template is to be used;

4. compare the template to the crater using one of the similarity measures;

5. repeat the process for different smoothing levels until the best match score is achieved;

To achieve best template matches, 16 logarithmic levels of image smoothing were

employed, which are listed in Table 1.

As noted earlier, a LPM analysis should provide consistent conclusions irrespective of

the exact measurements used as input. Alternative inputs to the LPM analysis were in the

form of one and two dimensional match score histograms. In the one dimensional cases, all

the four possible combinations of templates and similarity measures used are listed in

Table 2.
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Additionally, pairs of match scores were combined into joint histogram distributions

with 2 dimensions giving the 6 combinations in the table below. These allowed information

from the different templates and match scores to be analysed jointly with the aim of

improving accuracy and checking consistency. These are listed in Table 3.

These different histograms each contain subtly different information regarding the

image evidence used to differentiate between true and false craters. By applying LPMs to

each of these possible combinations we aim to: (a) demonstrate the consistency of the

method by showing that equivalent results can be achieved for the different evidence used;

(b) select the most efficient combination to achieve best absolute levels of counting

repeatability.

2.2.3 Training and Fitting LPM

A LPM (Tar and Thacker 2014; Tar et al. 2015) can describe the shape and variability of

distributions found within histograms using a linear combination of simpler fixed com-

ponents1. In the case of crater match score histograms, one set of components describes

‘‘true craters’’ and one set describes ‘‘false craters’’. To the extent that the histograms are

different we can distinguish true craters from false craters using LPMs:

1 This is a relatively new approach with few current examples. A method summary document, which has
not been peer reviewed, is available as supplementary material for those wishing to implement this new
LPM approach: http://www.tina-vision.net/docs/memos/2015-008.pdf.

Table 1 Table of Gaussian smoothing filter widths in pixels

1 2 3 4 5 6 7 8

0.10 0.12 0.14 0.17 0.21 0.25 0.30 0.36

0.43 0.52 0.62 0.74 0.89 1.07 1.28 1.54

Table 2 Table of the four pos-
sible combinations of templates
and similarity measures

Avg. appearance (grey level) Avg. derivative (gradient)

SMSE Grey MSE Grad MSE

SDP Grey DP Grad DP

Table 3 Table of the four pos-
sible combinations of templates
and similarity measures

Dimension 1 Dimension 2

Grad MSE Grad DP

Grad MSE Grey DP

Grey DP Grad DP

Grey MSE Grad DP

Grey MSE Grad MSE

Grey MSE Grey DP
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H � M ¼ PQ ð6Þ

where H is a histogram of match scores under analysis, with bins HX (X being an interval

defining a range of match scores); M is the model; P is an m by n matrix describing the

Probability Mass Functions (PMFs) of n components with elements Pij ¼ PðX ¼ ijk ¼ jÞ,
i.e. the probability of an entry in bin X (i.e. a match score range) given component k (which

belongs to either a ‘‘true’’ or ‘‘false’’ crater class); and Q is a column vector of n quantities

corresponding to the amount of each component present within the histogram.

During training, a LPM must determine the necessary PMFs required to describe the

distribution of ‘‘true’’ and ‘‘false’’ crater match scores. Once these have been established

they can be fitted to new histograms containing unknown quantities of contamination, thus

estimating how much of each category exists within the data. Both training and fitting are

achieved using Expectation Maximisation (Dempster et al. 1977) to optimise the following

Extended Maximum Likelihood (Barlow 1989):

lnL ¼
X

X

ln
X

k

PðXjkÞQk

" #

HX �
X

k

Qk ð7Þ

During training, this function is jointly optimised for a set of example histograms giving

a set of P(X|k) components. This is performed separately for the ‘‘true’’ and ‘‘false’’ classes,

resulting in a set of PMFs associated with each class. The number of components required

to describe each class is determined by adding additional components until the v2 per

degree of freedom between LPM and example histograms approaches unity. During

contamination estimation in new data, this function is optimised to fit true/false classes of

component by adjusting weighting quantities only,Qk, which are then summed within their

respective classes to give total quantities of ‘‘true’’ craters and ‘‘false’’ contamination.

The adequacy of the LPM to describe the match score histograms is quantitatively

testable, unlike many alternative machine learning methods. The v2 per degree of freedom
function for assessing the quality of a fitted histogram distribution is defined as:

v2ðm�nÞ ¼
1

m� n

X

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

k PðXjkÞQk

p

�
ffiffiffiffi

H
p

X

1
4

ð8Þ

where m is the number of histogram bins and n is the number of components estimated.

The square roots stabilise the Poisson bin frequencies (Anscombe 1948), giving them a

constant variance of 1
4
.

2.2.4 Quantity Error Estimation

Sampling errors in training histograms and incoming data combine to give a level of

uncertainty on the estimated quantities. In order to factor these uncertainties into final

crater counts they must be propagated through the EM algorithm using error propagation

(Barlow 1989):

CQ ¼ Cdata þ Cmodel ð9Þ

CijðdataÞ ¼
X

X

oQi

oHX

� �

oQj

oHX

� �

r2HX

� �

ð10Þ
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CijðmodelÞ ¼
X

X

X

k

oQi

oHXjk

� �

oQj

oHXjk

� �

r2HXjk

" #

ð11Þ

where CQ is the error covariance matrix for the estimated quantities; Cdata is the statistical

contribution of the error from the incoming histogram data; and Cmodel is the systematic

contribution from the training exemplar histograms used to construct the LPM. The relative

contribution from both sources of error change as a function of the ratio of training to

testing data. These covariance estimates form the basis of SFD error bars.

2.2.5 Interpreting Quantities

For a given input cohort of candidate craters, two key numbers emerge from the LPM

analysis: an estimate of the number of false positive craters in the cohort and an estimate of

the number of true craters. It should be noted that the Likelihood regression technique does

not at any point make decisive labelling decisions regarding individual candidate craters,

i.e. a list of specifically identified false craters and their locations are not an output. Instead,

the output quantities are computed by integrating over probabilities. For instance, if there

are 100 craters, all deemed to have a 90% probability of being ‘true’, each candidate

contributes 0.9 to the count of true positives, yielding a total of 90 craters. This total

acknowledges that there are likely to be 10 false positives in the set, but cannot say exactly

which ones are false. What we consider important for science is that for a given cohort (e.g.

a particular geological unit) the number of craters estimated does not deviate by more than

the error predicted by LPMs. This criteria motivates a testing strategy involving large

numbers of repeated counts, compared against defined ground truth to check error distri-

butions, not just spot values.

Regarding the objectivity of results, any output quantities can only be as good as the

training data provided. If a training set contained a biased distribution of craters then

output quantities would also be biased. The output quantities report number of craters

consistent with the provided training data only. This condition is also reflected within the

testing strategy, which repeatedly draws cohorts of craters from a common pool of pre-

defined candidates. In this way, errors show deviation from definitions, which should be no

larger than predicted by the LPM error theory.

3 Experiments

For the method to be deemed successful, the primary criterion is that the statistical dis-

tribution of estimated corrected quantities is predicted by their theoretical error distribu-

tions, i.e. the quantities, Qk, are distributed around the true values with covariances given

by CQ. Put more simply, over repeated trials the difference between corrected crater counts

and defined ground truth should be no more (or indeed no less) than the spread of values

predicted using the LPM error theory. This criterion provides a test of the LPM theory, the

appropriateness of its application, and also the implementation of software.

In order to assess this, it is necessary to make repeated measurements which can be

compared to predefined ground truth values. To facilitate this, LPMs (Sect. 2.2.3) were

repeatedly constructed and applied to estimate the quantity of ‘‘true’’ and ‘‘false’’ craters in

randomised samples, with 1000 repeated measurements made in order to produce predicted

and empirical error distributions on the estimated quantities. During each trial craters were
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selected from random rectangular regions of the NAC images, sampled with replacement.

Regions rather than individual craters were selected to preserve any local spatial corre-

lations. Sampling with replacement (Barlow 1989), where selected regions could overlap

or be used multiple times, was used to achieve the required quantity of data for thorough

testing. To ensure that each drawn cohort was statistically unique and as independent as

possible, a small quantity of image noise was artificially added to each region, and regions

were permitted to be combined to help randomise the cohort. Whilst this bootstrap

resampling method applies several techniques to randomise each test cohort, it is

acknowledged that the underlying data source is a fixed finite pool and therefore a possible

source of correlation. However, we believe that any systematic correlations caused by the

common data pool should become a systematic part of the linear model PMFs, which are

already subject to systematic biases due to choice of training data.

The different contributions to the error, Cdata and Cmodel, are a function of the training to

testing ratio. A range of relative data quantities were tested, using 0.01, 0.10, 1.00, 10.00

and 100.00 times as much testing data as training data. The quantity of contamination

within each trial matched that found within the raw MoonZoo data, which was approxi-

mately one quarter, as determined by the manual inspection which defined the reference

ground truth.

After each trial the difference between known ground-truth values and estimated values

were divided by the predicted error and recorded. If successful, this should give a distri-

bution of recorded values with a mean of zero and standard deviation of unity. The

predicted accuracies were also recorded as percentage errors on measured quantities to

assess absolute levels of accuracy attainable.

In summary, for each choice of template and match score combination the testing

followed the steps below:

• For each relative quantity of training and testing data, repeat the following steps

• Gather a known quantity of ‘‘true’’ and ‘‘false’’ craters from the defined ground truth, fit

templates and record histograms of match scores (example histograms can be seen in

Figs. 3 and 4.

• Train a LPM to recognise the classes of crater (true and false)

• Gather an independent known quantity of ‘‘true’’ and ‘‘false’’ craters from the available

data by sampling with replacement and adding a small quantity of noise to the crater

images, again to increase statistical independence of the samples

• Record histograms of match scores again

• Regress LPM to new histograms and estimate quantities of ‘‘true’’ and ‘‘false’’ craters

Fig. 3 Left mean squared error match score distribution computed using grey level image template. Right
MSE match score distribution computed using gradient image template
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• Compare quantities to known ground truth, dividing the difference by the error

predicted by the LPM. The result, which should be unity if estimates are within errors

can be seen in Figs. 5 and 7.

• Repeat 1000 times per quantity and template/match score combination.

4 Discussion

The method assumes that there are significant differences between the distribution of

match scores for ‘‘true’’ and ‘‘false’ craters, which provides information allowing features

to be distinguished. The distribution of match scores for the four combinations of template

and similarity measure can be seen in Figs. 3 and 4. The differently shaded regions cor-

respond to match score values for false positives and ‘‘true’’ craters. In the case of the SMSE

match score distributions (Fig. 3), the true and false positive distributions are subtly dif-

ferent on visual inspection, with the true craters having longer tails and larger modes. In

contrast, the SDP distributions are clearly different between the true and false craters,

suggesting that this match score should be better at differentiating between the two cases.

Evidence of successfully estimated quantities of ‘‘true’’ craters verses contamination

can be seen in Figs. 5 and 7, for individual (SMSE and SDP separately) and joint (SMSE and

Fig. 4 Left dot product match score distribution computed using grey level image template. Right DP match
score distribution computed using gradient image template

Fig. 5 Corroboration that predicted measurement errors are seen in practice when linear models are
constructed and fitted using 1D match score histograms. The x-axis indicates the relative quantities of
training and testing data. The y-axis shows observed errors over 1000 trials per point divided by the
predicted errors
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SDP combined in 2 dimensions) match score distributions respectively. These show that

estimated quantities match ground truth quantities, within predicted errors, i.e. that the

predicted accuracies match observed accuracies over repeated trials. The x-axis shows the

ratio of training to testing data, and y-axis shows the average ratio of observed to predicted

errors, as predicted from Eq. 9 and empirically measured over 1000 trials. The general

trend shows a ratio of unity across the majority of the plots, showing that both the sta-

tistical and systematic contributions to the errors (which are a function of training and

testing quantities) are correctly estimated using Eqs. 10 and 11. The instabilities seen in

the joint plots, where there is deviation away from a flat line at unity, can be explained by

underpopulated histogram bins on the left (small data quantities) and growing model

discrepancies on the right (large data quantities). However, in all cases the errors were

predicted within a half of the actual errors. This can remove much of the danger of over-

interpretation possible if conventional Poisson errors alone were assumed on counted

craters. The actual accuracies attained, as percentages of estimated quantities, can be seen

in Figs. 6 and 8, showing that accuracies improve as the quantity of data analysed

increases. The best overall performance is achieved when the SDP similarity measure is

used, which as noted above has the most distinctive distributions of ‘‘true’’ and ‘‘false’’

craters.

The use of LPMs has been shown to be statistically self-consistent, as quantities were

successfully estimated to within predicted levels of accuracy under all tested conditions.

Corrected counts were achieved for different types of template, similarity measures and

quantities of data. The only significant differences between scenarios is seen in the size of

counting errors, with SMSE scores at low quantities of data performing the worst and SDP
scores at high quantities performing the best. This can be accounted for through two

mechanisms: firstly, the normalised dot product provides greater separability of ‘‘true’’ and

‘‘false’’ craters, as their distributions overlap less than in the SMSE alternative (Figs. 3, 4);

secondly, as the quantity of data increases, the errors improve through the availability of

larger samples.

The selection of templates and match scores used are not the only ones available, and no

claim is being made that the most successful combination tested is the absolute best

possible. However, the best total errors achieved are close to Poisson, as seen in Fig. 9. In

counts that do not suffer from missing data, then the use of expertly trained LPMs could

Fig. 6 Measurement errors as percentage of measured quantities when using 1D match score histograms.
The x-axis indicates the relative quantities of training and testing data. The y-axis shows one standard
deviation of predicted accuracies as a percentage of the measurement
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provide a mechanism for producing highly repeatable crater statistics, so long as a single

‘‘expert’’ definition could be agreed upon and adopted as a standard.

4.1 Limitations

The simple crater templates used were only designed for small diameters and do not

address problems associated with overlapping or nested craters. As such, the method would

required better crater models if it were to be used in more complex and densely cratered

terrains, such as the Lunar highlands. A range of different templates may also be required if

the method is to be extended to a large range of crater sizes to account for changes in

morphology associated with, for instance, the simple to complex transition.

The use of templates also limits the use of trained LPMs to images with the same solar

illumination orientation, as changing shadows change the appearance of templates. It may

be time consuming to train alternative LPMs for all required conditions. This should be

Fig. 8 Measurement errors as percentage of measured quantities when using 2D match score histograms.
The x-axis indicates the relative quantities of training and testing data. The y-axis shows one standard
deviation of predicted accuracies as a percentage of the measurement

Fig. 7 Corroboration that predicted measurement errors are seen in practice when linear models are
constructed and fitted using 2D match score histograms. The x-axis indicates the relative quantities of
training and testing data. The y-axis shows observed errors over 1000 trials per point divided by the
predicted errors
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seen as a semi-automated method, as each new dataset will likely require specific training

where a subset of craters are re-examined by an expert in order to provide a representative

training subset.

A further limitation caused by the method’s supervised learning nature is that of training

data selection. Whilst the definition of an impact crater might be clear, i.e. ‘a morphologic

feature produced as a result of a hypervelocity impact’, how this definition translates to

judgments of a crater’s appearance is a source of subjectivity. As a semi-supervised system

for individual use, the technique can be of value. However, for wide adoption, a large set of

standards would be required for different terrains, morphologies and whole worlds. Given

that fully automated crater counting systems are being researched by others, which also

require training, there is a growing need to address the issue of reliable crater identification.

This must include agreement between experts, whose variability in crater identification can

itself be a significant source of uncertainty. This is a challenge for the wider crater counting

community if appropriate tools are made available to them.

Finally, other problems associated with citizen science datasets have not been addres-

sed, making this work a partial solution to correcting crater counts. In particular, missing

data will result in negatively biased counts unless additional steps are taken.

5 Conclusions

It is known that large variations exist between different experts and citizen scientists when

counting craters. One option is to simply accept the levels of variability and plot larger

error bars on crater counts. Another option is to try to build a consensus by taking mean

counts, or accepting craters only if a sufficient number of individuals have identified them

jointly. Alternatively, as shown in this work, corrections can be attempted which make

objective use of image evidence, albeit using a subjective (but agreed upon) definition of

craters. The Linear Poisson Model technique demonstrated has the advantage of providing

theoretically predictive errors on corrected counts. In contrast, the other options (taking

means or thresholding) still requires an empirical leap in order to understand the final count

stabilities.

Fig. 9 Poisson errors compared to predicted errors on false positive corrected crater counts from LPM
covariances. The squares indicate 1 standard deviation percentage errors assuming conventional Poisson

(
ffiffiffiffi

N
p

) uncertainties. The diamonds indicate errors computed using the method in Sect. 2.2.4. On average, for
these 8 counts the error on corrected counts is 1.3 times the Poisson error
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The key conclusions of this work are as follows:

1. Under our ground truth definition, MoonZoo crater counts contain approximately 25%

contamination from false positives.

2. The effects of false positive contamination can be successfully quantified and

corrected for using Linear Poisson Models, utilising objective differences in template

crater match scores, so long as an appropriate standard template and ground truth can

be established.

3. Statistically consistent results can be achieved for different types of templates and

match scores.

4. The proposed methods are currently limited to small craters in sparsely cratered

regions, but work could be undertaken to widen applicability.

5. The method is best suited to large datasets which are well populated (i.e. low false

negatives) but suffer from contamination.

Acknowledgements We thank Sean Corrigan, Alex Griffiths, Tim Gregory, Hazel Blake, Dayl Martin,
Maggie Sliz, Joe Scaife and Pavel Kamenov for their assistance in providing ground-truth crater counts and
thousands of volunteers for their contribution to Moon Zoo datasets. We’d also like to thank the Leverhulme
Trust (RPG-2014-019 and RPG-116), STFC (ST/M001253/1), K. Joy, I. Crawford, and finally R. Bugio-
lacchi (currently Macau Science and Technology Development Fund 039/2013/A2, formerly RPG-116) for
funding and additional support.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

F. Anscombe, The transformation of poisson, binomial and negative-binomial data. Biometrika 35(3–4),
246–254 (1948)

R. Arvidson, J. Boyce, C. Chapman, M. Cintala, M. Fulchignoni, H. Moore, G. Neukum, P. Schultz, R.
Strom, A. Woronow, R. Young, Standard techniques for presentation and analysis of crater size-
frequency data. Icarus 37, 467–474 (1979)

L. Bandeira, J. Saraiva, P. Pina, Development of a methodology for automated crater detection on planetary
images. Pattern Recognit. Image Anal. Lect. Notes Comput. Sci. 4477, 193–200 (2007)

R. Barlow, Statistics: a guide to the use of statistical methods in the physical sciences (Wiley, New York,
1989)

R. Bugiolacchi, S. Bamford, P. Tar, N. Thacker, I. Crawford, K. Joy, P. Grindrod, C. Lintott, The moon zoo
citizen science project: preliminary results for the apollo 17 landing site. Icarus 271, 30–48 (2016)

A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete data via the em algorithm. JRSSB
39, 1–38 (1977)

D. Gault, Saturation and equilibrium conditions for impact cratering on the lunar surface: Criteria and
implications. Radio Sci. 5, 273–291 (1970)

R. Greely, D. Gault, Precision size-frequency distributions of craters for 12 selected areas of the lunar
surface. Moon 2, 10–77 (1970)

T. Ho, Random decision forest, in 3rd International Conference on Document Analysis and Recognition,
pp. 278–282 (1995)

K. Joy, I. Crawford, P. Grindrod, C. Lintott, S. Bamford, A. Cook, Moon zoo: citizen science in lunar
exploration. Astron. Geophys. 52(2), 2.10–2.12 (2011)

N. Kamarudin, A. Kamaruddin, M. Mustapha, A. Ismail, D N.G, An overview of crater analyses, tests and
various methods of crater detection algorithm. Front. Environ. Eng. 1(1), 1–7 (2012)

J. Kim, P. Muller, S. Gasselt, J. Morley, G. Neukum, Automated crater detection, a new tool for mars
cartography and chronology. Photogramm. Eng. Remote Sens. 71(10), 1205–1217 (2005)

62 P. D. Tar et al.

123

http://creativecommons.org/licenses/by/4.0/


M. Kirchoff, K. Sherman, C. Chapman, Examining lunar impactor population and evolution: additional
results from crater distributions on diverse terrains, in DPS (2011)

C. Lintott, K. Schawinski, A. Slosar, K. Land, S. Bamford, D. Thomas, M. Raddick, R. Nichol, A. Szalay, D.
Andreescu, P. Murray, J. Vandenberg, Galaxy zoo: morphologies derived from visual inspection of
galaxies from the sloan digital sky survey. MNRAS 389(3), 1179–1189 (2008)

G. Michael, G. Neukum, Planetary surface dating from crater size–frequency distribution measurements:
partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 294(3–4), 223–229
(2010)

G. Neukum, B. Ivanov, W. Hartmann, Cratering records in the inner solar system, in Chronology and
Evolution of Mars, pp. 55–86 (2001)

G. Neukum, B. Konig, J. Arkani-Hamed, A study of lunar impact crater size-distributions. Moon 12,
201–229 (1975)

S. Robbins, I. Antonenko, M. Kirchoff, C. Chapman, C. Fassett, R. Herrick, K. Singer, M. Zanetti, C. Lehan,
D. Huang, P. Gay, The variability of crater identification among expert and community crater analysts.
Icarus 234, 109–131 (2014)

I. Steinwart, A. Christmann, Support Vector Machines (Springer, New York, 2008). ISBN 978-0-387-
77241-7

P.D. Tar, N.A. Thacker, Linear poisson models: a pattern recognition solution to the histogram composition
problem. Ann. BMVA 2014(1), 1–22 (2014)

P.D. Tar, N.A. Thacker, J. Gilmour, M. Jones, Automated quantitative measurements and associated error
covariances for planetary image analysis. Adv. Space Res. 56(1), 92–105 (2015)

Estimating False Positive Contamination in Crater Annotations... 63

123


	Estimating False Positive Contamination in Crater Annotations from Citizen Science Data
	Abstract
	Introduction
	Methodology
	Ground Truth
	Crater Template Construction
	Similarity Measures
	Applying the Templates
	Training and Fitting LPM
	Quantity Error Estimation
	Interpreting Quantities


	Experiments
	Discussion
	Limitations

	Conclusions
	Acknowledgements
	References




