
Prometheus Induced Vorticity in Saturn’s F Ring

Phil J. Sutton1
• Feo V. Kusmartsev1

Received: 22 March 2016 / Accepted: 3 September 2016 / Published online: 8 September 2016
� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Saturn’s rings are known to show remarkable real time variability in their

structure. Many of which can be associated to interactions with nearby moons and

moonlets. Possibly the most interesting and dynamic place in the rings, probably in the

whole Solar System, is the F ring. A highly disrupted ring with large asymmetries both

radially and azimuthally. Numerically non-zero components to the curl of the velocity

vector field (vorticity) in the perturbed area of the F ring post encounter are witnessed,

significantly above the background vorticity. Within the perturbed area rich distributions of

local rotations is seen located in and around the channel edges. The gravitational scattering

of ring particles during the encounter causes a significant elevated curl of the vector field

above the background F ring vorticity for the first 1–3 orbital periods post encounter. After

3 orbital periods vorticity reverts quite quickly to near background levels. This new found

dynamical vortex life of the ring will be of great interest to planet and planetesimals in

proto-planetary disks where vortices and turbulence are suspected of having a significant

role in their formation and migrations. Additionally, it is found that the immediate channel

edges created by the close passage of Prometheus actually show high radial dispersions in

the order *20–50 cm/s, up to a maximum of 1 m/s. This is much greater than the value

required by Toomre for a disk to be unstable to the growth of axisymmetric oscillations.

However, an area a few hundred km away from the edge shows a more promising location

for the growth of coherent objects.
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1 Introduction

Saturn’s F ring comprises of many components from a dense central core that radially lies

at a very narrow paradoxically stable region (Cuzzi et al. 2014). Here, the central core is

found to be most stable very close to where traditional Lindblad resonances (spiral density

waves) are generally destabilising. Straddling the central core reside less dense spiral

strands formed through direct collisions with core crossing moonlets (Murray et al. 2008;

Charnoz et al. 2005). The central core is known to house significant populations of small

moonlets, many of which were discovered from stellar occultation’s (Meinke et al. 2012;

Meinke 2011; Hedman et al. 2011), the occurrence of mini jets (Attree et al. 2012, 2014)

and fan structures originating out from the core (Beurle et al. 2010). The connection

between Prometheus and the F ring is generally well understood with many of the

immediate structures and the large population of transient moonlets directly attributed to

Prometheus (Murray et al. 2005, 2008; Sutton and Kusmartsev 2013, 2014; Beurle et al.

2010; Chavez 2009). An important question still without an answer was raised by recent

work into the locations of these small moonlets responsible for creating mini jets in the

central core. There does not appear at least first order, to be a connection with the locations

of mini jets (central core moonlets) and the encounters of Prometheus on the F ring (Attree

et al. 2014). These moonlets are typically smaller with eccentricities that are more closely

matched to the central core than the moonlets known to create spiral strands (Murray et al.

2008; Charnoz 2009). Is there additional dynamics at play in the F ring—Prometheus

system that might help explain a seemingly chaotic distribution of central core moonlets?

2 Method

The numerical method used was the same as employed in our previous work of the F ring

(Sutton and Kusmartsev 2013, 2014). Thus, the initial conditions and integration methods

of numerical models can be found within. We used the code GADGET-2 (Springel 2005)

to model the F ring with a central core, inner and outer strands. A total of 6.5 9 105

particles were used for the simulation. GADGET-2 assumes collisionless dynamics and

does this by reducing gravitational forces within a set smoothing length. For particles with

mass the smoothing length was set to values just above their physical size when assuming

an internal density of ice 0.934 g/cm3. The smoothing length was also well within the Hill

radii of particles which is given by,

RHill � a3

ffiffiffiffiffiffiffi

m

3M

r

ð1Þ

For ring particles with mass m around Saturn (M) with semi-major axis a. Although the

GADGET-2 code has the ability to model gas particles we only use gravitationally interacting

particles with no additional hydrodynamical forces applied during their evolution. This keeps

in line with the non-gaseous planetary ring known to exist around Saturn.

To better probe the dynamical F ring system and study the idea that turbulence might

play a role the evolutionary dynamics of F ring particles post Prometheus encounter we

created a method to find the curl of the velocity vector field, or vorticity in the F ring.

Vorticity is the tendency of a fluid to rotate where non-zero components are present and

can be a sign of turbulence in a fluid. Two dimensionally we can therefore show that the

curl of the velocity vector field for F ring particles is:
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r� V ¼ oVy

ox
� oVx

oy
: ð2Þ

where oVy=ox; oVx=oy are partial derivatives of the velocity field and x; y positions of the

same particle in different snapshots. The curl is well defined for each particle and changes

with time. It is defined as r� V ¼ dVy

dx � dVx

dy , where dVy; dVx are the velocity change of the

single particle and dx; dy are the positions change of the same particle in different con-

sequent snapshots. Taking regular time snapshots we track such changes and the local

vorticity associated with each particle.

However, to drastically decrease the overall computational cost we opted to only cal-

culate vorticity for a localised area around the Prometheus encounter and previously

created streamer-channels as the system evolves. Where the number of calculations done is

/ N2 a significant improvement in the vorticity calculations was achieved. Programs

written in IDL were used to find the curl of particles velocity vectors time dependently.

Due to the orbital motion of ring particles around Saturn there will always be an inherent

non-zero curl present. For the F ring this is of the order 10-4 rad/s. Our analysis looked for

changes away from this background vorticity during and after the close passage of Pro-

metheus at minimum separation. A value of *1.23 9 10-4 rad/s is the background vor-

ticity associated with the centre of the F ring.

To spatially investigate some dynamical changes in particles trajectories during and

after the close encounter we created surface rendered maps depicting radial velocity dis-

persion. Here, we used radial velocities of particles that deviated away from the Root Mean

Squared (RMS) of the F ring radial velocity. This allows an important spatial investigation

of how radial dispersions change during the encounter and how they relate to other

quantities like density and vorticity. All visualisation of the GADGET-2 data is done with

SPLASH (Price 2007).

3 Vorticity of the Particles Motion

When calculating the curl of the velocity vector field we do not place the F ring in any kind

of reference frame, instead looking at the unaltered positions and velocities of particles. As

we are only considering a two-dimensional flow the resultant curl of the velocity vectors is

parallel to the z axis and of a scalar quantity. Firstly, we should address the need to probe

the F ring’s vorticity. Vorticity in larger protoplanetary disks has numerically been shown

to (1) solve the short fall in timescales required to form 1 km planetesimals from the

standard accretion theory, (2) vastly increase migration rates for planets forming in the

disk.

What we find in the F ring is that most of the particle’s vorticity that deviates away from

the normal background vorticity (1.23 9 10-4 rad/s) shows local rotations in the flow that

would represent *10–100 times per orbital period at their maximum. Effectively this is

then 10–100 times greater than the background value. We find that with the calculation for

the curl of the vector field most of the non-zero (in this case deviations away from the

background vorticity of the F ring), occurs in and around the gravitationally disrupted area.

All particles with elevated vorticities are seen downstream of the Prometheus encounters in

the F ring.

When channels are at their most open (typically when Prometheus is at apoapsis) radial

velocity dispersions have been found to be at their lowest (Beurle et al. 2010). The radial
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dispersions are then also seen to increase as the channel fills back up. If the vorticity we are

measuring is a result or artefact of these known phenomena then we would also expect

some similar variation in vorticity throughout the orbital period of Prometheus. Along with

a minimum vorticity when channels are at their most open. However, when the channels

are at their most open we find an elevated non-zero component to the curl of the velocity

vector field. Typically this occurs on the channel edges, with the highest non-zero values

being located on the edge facing away from Prometheus. This can be seen in Fig. 1 below.

The vorticity does not appear to show any signs of being intrinsically linked to the radial

dispersion of particles during the orbital period of Prometheus.

As the streamers are formed and then evolve on their channel formation phase we see

two distinct areas of clustering in the vorticity. This can be seen in Fig. 2c, d where the two

detached ends of the inner strand will become opposing sides of the channel 0.5 orbital

phase later. Again it is this area of strong turbulence that also shows the locations of the

highest densities. After the most open phase of the channel particles move back into the

void created by the channel. The clustering of vorticity around the channels and edges is

still clear to be seen, Fig. 3. These intense particles rotations described by their velocity

vector field could have an effect on any already embedded moonlets or loosely bound

clumps at these locations preventing their growth or vice versa creating more clumps.

Fig. 1 A rendered vorticity map taken at a time T = 1.5 Prometheus orbital periods. This corresponds to
the first instance that the channel formation is at its most open. Both the y and x axes scales are 105 km.
Prometheus is marked as the circle with cross through it where it is visible in the plots. A true 1:1 aspect
ratio of the F ring is not used instead it is stretched in the radial direction to make the structures easier to
visualise. The elevated vorticity can be seen to predominately occur downstream from the encounter, mostly
above the channel edge facing away from Prometheus. Also note that the background Keplerian vorticity of
the F ring particles is not visible in the limits we have used for our rendered plot as it is many magnitudes
smaller than the maximum/minimum vorticity witnessed for those particles involved into the Prometheus
encounter
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4 Radial Velocity Dispersions

Another important factor to consider when looking at disk stability and the growth of

clumps or coherent objects through self-gravity is radial velocity dispersions. Here we

make comparisons to the way we performed our changes in velocity (Sutton and Kus-

martsev 2013). The deviations away from the expected Keplerian velocity magnitudes of

ring particles provide us with immense data about microscopic dynamics of Saturn’s ring,

having a large variety of different regimes. Therefore, in addition we created a new

analysis tool to spatially probe radial velocity dispersion as is generally assumed for ring/

disk dynamics. Here, we first convert our Cartesian velocity vectors of individual particles

into their Polar coordinates where position vectors change to ui and ri and their velocity

vectors in tangential and radial directions to the flow, that is, VðuÞ and V(r), respectively.

For each particle we now take the Root Mean Squared (RMS) of their F ring radial velocity

component. The set of all deviations (or variations) from this RMS value calculated for

each individual particle comprise the radial velocity dispersion. This is then spatially

rendered to create a map in the same manner as our velocity magnitude deviation maps,

Fig. 2 A rendered vorticity map taken at a time T = 3 Prometheus orbital periods. Both the y and x axes
scales are 105 km. Prometheus is marked as the circle with cross through it where it is visible in the plots. A
true 1:1 aspect ratio of the F ring is not used instead it is stretched in the radial direction to make the
structures easier to visualise. At this time three streamers are seen at their most radially inward positions. A
clustering of vorticity occurs around the inner strand and central core, with two distinct areas visible in the
zoomed frames (c ? d). These two areas of clustering are the location that will, in 0.5 orbital phase later,
form the edges of the channels. Also note that the background vorticity of the F ring is not visible on the
scale we have used for our rendered plot as it is many magnitudes smaller than the maximum/minimum
vorticity observed and the Prometheus encounters
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which are also shown in Fig. 4b as a comparison. Our results are then presented in Figs. 4

and 5, which are compared with existing literature. The spatial analysis of radial velocity

dispersion shows two distinct elements worth noting. First of all we note that the highest

radial dispersion is seen in the channel itself and is separated into two main groups. One

group, which is situated at a smaller radial position (see, the left hand side of the channel in

Fig. 4c), maybe identified to the previously reported island of particles formed inside the

channel (Chavez 2009). This happens when the alignment of Prometheus’ elliptical orbit

and that of the eccentric F ring are at anti-alignment and thus Prometheus makes its closest

approach to the F ring. At this ring-Prometheus configuration an island of particles has

been created inside the channel. Note that at this moment the channels are at their most

open phase. Our radial velocity dispersions show that particles in this island are collec-

tively moving radially very fast out of the channel (speeds of[8 m/s). This is also true for

a similar group of particles arising at the opposite end of the channel (at larger radial

locations around the inner strand). The variation in radial velocity dispersion arising here

can be explained by a difference in orbital stage or phase of the perturbed F ring particles.

In simplest terms ring particles at the channel edges are at a different phase of their orbits

than those inside the channels. These two distinct areas can be identified in Fig. 4c.

Secondly, the maximal amplitudes of the radial dispersion at the channel edges are

Fig. 3 A rendered vorticity map taken at a time T = 5.6 Prometheus orbital periods. Both the y and x axes
scales are 105 km. A true 1:1 aspect ratio of the F ring is not used instead it is stretched in the radial direction
to make the structures easier to visualise. At this time the channels are just starting to fill back up by
perturbed particles after their most open phase. The channels that are 4 and 5 orbital periods old are centred
in the frame with the zoomed frames (c, d) concentrating on the furthest out regions of these channels. A
clustering of vorticity occurs around the inner strand and central core channel edges. The peaks of vorticity
in these clusters arise exactly in the areas around the channel edges
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considerably higher than previously reported (Fig. 5) and radial dispersion speeds of

?50 cm/s are wide spread across the channel edges.

Previously reported by Beurle et al. (2010) radial dispersion showed their lowest

amplitude and minimum values when channels were at their most open phase. This con-

cedes with the enhanced density on the channel edges and also with the locations of

embedded moonlets (Beurle et al. 2010). Radial dispersions were found to be \2 cm/s,

which satisfied the Toomre parameter for the F ring. Thus, it was deemed suitable for

clumps at these locations to be able to grow through self-gravity.

On the other hand our models indicate that particles localised along the channel edges

also show that the immediate edge is populated by particles with radial velocity dispersions

of over 50 cm/s. Both the channel edges show radial dispersions up to a maximum of

1 m/s. Taken at the first fully open channel since the encounter, Fig. 5, we see that the

edges show significant dispersions compared with ring particles located immediately above

and below the channel. In fact the area with the lowest radial dispersions can be seen just

below the lower channel edge (centred in Fig. 5d). Here, radial dispersions are small, less

than\0.02 m/s. This value is below the critical one required by the Toomre parameter for

self-gravity instabilities to occur.

Fig. 4 Taken at a time when the first channel is at its most open phase T = 1.5 Prometheus orbital periods
(also coincides with the closet approach of Prometheus) we compare the rendered maps of our original
velocity deviations (b) with the more commonly used radial velocity dispersion (c). Both the X and Y axis
are scaled to 105 km. Prometheus is marked as the circle with cross through it where it is visible in the plots.
A true 1:1 aspect ratio of the F ring is not used instead it is stretched in the radial direction to make the
structures easier to visualise. The red line is given as a guide for the eyes for identification of the same
position on the ring presented in different plots
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According to Toomre (1964) a differentially rotating self-gravitating disk can be locally

unstable to axisymmetric disruptions when radial velocity dispersions r fall below a

critical value Ccr . For the Keplerian case this is shown as

Ccr ¼
3:36Gr

X
ð3Þ

For the F ring with a very generous 200 g/cm2 surface density this would equate to

critical radial velocity dispersions of Ccr = 0.38 cm/s. This considers an F ring that isn’t

disrupted by any external moons. However, the close passage of Prometheus alone can

create radial velocities many magnitudes of order greater than this critical value. Thus,

even at the channel edges where radial velocity dispersions are at their lowest we witness

that their values take an order of magnitude greater than the critical one. Although, for

wake structures to form the times scales needed are much greater than density enhance-

ments made the perturbations created by Prometheus.

When minimum dispersions are discussed by Beurle et al. (2010) in line with density

enhancements it should be noted that approximate normalised resolution

(120 km 9 0.5 km) might have allowed for particles with the highest number densities to

not have the lowest associated dispersions. i.e. with lower resolution of spatial features it’s

possible that the minimum radial velocity dispersions are not directly on the channel edges

as reported but further into the ring away from the channel edges. This would then fit with

Fig. 5 The first channel created after the initial encounter at 1.5 Prometheus orbital periods, zoomed in
further from Fig. 4. Both the y and x axes scales are 105 km. A true 1:1 aspect ratio of the F ring is not used
instead it is stretched in the radial direction to make the structures easier to visualise. Radial velocity
dispersions of particles is rendered in b and d, with the scale adjusted to show more clearly the radial
dispersions at the channel edges
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what we have found in our simulations. In Fig. 5d we can see an area of the ring that has

the lowest radial dispersions, comparable to Beurle et al. (2010) in magnitude. One key

element is that instead of the lowest radial dispersions being located on the channel edges

as previously reported we find that it is an area below the bottom channel edge in Fig. 5d.

This is away from the particles with the highest density enhancements. It should also be

noted that this same feature (a pocket of particles with very low radial dispersions) is not

mirrored on the other channel edge (upper channel edge Fig. 5d).

Figure 6 shows the radial dispersions of all ring particles in and round the first channel

seen in Fig. 5. The largest dispersions are associated with the island inside the channel and

the back of the channel previously mentioned. However, we can see that there are still

significant dispersions away from these areas. It should be noted that not all particles with

elevated radial dispersions are associated with the immediate channel edges.

Now it should be noted that Fig. 6 was taken at the first fully open channel. Density

enhancements at the channel edges were seen to increase with each subsequent channel

opening. Therefore we consider in Fig. 7 the radial velocity dispersions at later times to see

how it changes. We concentrate on the section of channel that is located from the inner to

the central core. Due to Keplerian shear the particles with high radial dispersions become

more spread out. However, both channel edges still show significant radial dispersions that

are many magnitudes greater than the critical value. We see dispersive effects on the tail

ends of two younger channels in the rendered frame, Fig. 7b, to the right of the fully open

channel. The ends of these channels are not open instead showing a large population of

particles but with high radial dispersions associated with them. This is due to the larger

radial locations of these sections of the channels and gravitational effect of Prometheus’

close encounter. However, this is not where the highest density enhancements are seen

either. Again, the same area below the channel edge facing Prometheus shows the lowest

radial dispersions. At this orbital phase and time, equal to T = 5.5 orbital periods or 4

Prometheus intrusions after the initial encounter this area of low dispersions spreads

around *1000 km from the channel edge.

Furthermore we also did some supplementary investigations of dispersions perpendic-

ular to radial dispersions (azimuthal). We used the same technique as when calculating the

radial dispersion of particles when channels were fully open. The only difference is that

this time we only consider the longitudinal component of each particles velocity. In Fig. 8

we have plotted a slightly smaller area than was used for the radial velocity dispersions.

This is due to the fact the dispersions in this direction are not as significant as their radial

Fig. 6 a Taken at the same time
as Figs. 4 and 5 where the y-axis
represents the longitudinal
position in degrees across the first
fully open channel and the x-axis
is the unaltered radial dispersion
of each ring particle. T = 1.5
Prometheus orbital periods.
b Shows the area of the channel
that is plotted in a with the y and
x axes representing longitudinal
position and radial position
respectively
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counterparts and we centre on only the channel edges. It should be noted that due to the

shearing flow in the F ring there is azimuthal dispersion of the order of meters with respect

to radial positioning. However, there is one feature that is in common with dispersions in

the radial direction. This is identified with the red circle in Fig. 8 as being at the channel

edge with a group of particles exhibiting azimuthal dispersions *?0.5 m/s more than the

surrounding ring (ring particles with a comparable longitudinal positon). While signifi-

cantly less than the radial dispersion observed at the same channel edge (Fig. 5b, d) which

was ?1 m/s the azimuthal dispersion plays an important role in clump formation in such a

Fig. 7 Zoomed in look at the
channel created 5 orbital periods
after the initial encounter. Both
the y and x axes scales are
105 km. A true 1:1 aspect ratio of
the F ring is not used instead it is
stretched in the radial direction to
make the structures easier to
visualise. Radial velocity
dispersions of particles is
rendered in b, with the scale
adjusted to show more clearly the
radial dispersions at the channel
edges. All of the particles within
the channels exhibit radial
dispersions of[1 m/s. The oldest
channel is shown to the left of the
frame (5 orbital periods).
Visually there is evidence of only
two channels. However, a third is
seen in the radial dispersions to
the upper right. This corresponds
to the less gravitationally
interrupted part of the encounter.
Although not creating a visual
disruption in the ring the change
in ring dynamics is still witnessed

Fig. 8 a Taken at the same time
as Figs. 4, 5 and 6 where the
y-axis represents the longitudinal
position in degrees across the first
fully open channel and the x-axis
is the unaltered azimuthal
dispersion of each ring particle.
Taken at T = 1.5 Prometheus
orbital periods b shows the area
of the channel that is plotted in
a with the y and x axes
representing longitudinal position
and radial position respectively
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strong tidal environment (Hyodo and Ohtsuki 2014). Here it is likely that *0.5 m/s

azimuthal dispersions observed would be very destructive towards already formed clumps

that were subject to a passing of Prometheus. It was found that collisions in strong tidal

environments between particles were more dependent on collision angle with respect to

orbital motion. Radial collisions were found to be the least destructive while longitudinal

collisions the most destructive. Thus, further investigations into azimuthal dispersion

would be more relevant to Saturn’s F ring than within a circumstellar disk which can be

considered more like free space.

5 Discussion

We have found that in a nearby and fast evolving system, such as Saturn’s rings, there

arises elevated vorticity which is induced due to a perturbing moon. This is beyond any

vorticity that might be associated with the ring particles orbits around Saturn, which would

be of the order 10-4 rad/s. This may appear as an obvious outcome to the moon-ring

interaction but the details provided by our model does give us a detailed glimpse of this

real nearby system. The key importance of the developed models is that it well describes

dynamical vortices and associated rotational flows of the ring particles with an intriguing

indication towards the existence of turbulence. The physical picture which we developed

originally for the dynamics of the Saturn ring is very general and can be applied to other

systems such as protoplanetary disk. Dynamical vortices and turbulence we found can

significantly affect how planets and planetesimals form and migrate, e.g. within a larger

protoplanetary disk (Raettig et al. 2013; Lin and Papaloizou 2010; Heng and Kenyon 2010;

Lyra et al. 2008, 2009a, b; Pepliński et al. 2008a, b; Petersen et al. 2007; Chavanis 2000;

Barranco and Marcus 2000; Barge and Sommeria 1995). Type III migration of a planet in a

disk can be much faster than other types of migration and mostly relates due to the planets

interaction with large scale vortices within the disk. The trapping of planetesimals within

cores of vortices can also aid in their growth and overcome the short fall in time scales

required for planet formation within the standard core accretion model. As the dust par-

ticles get larger in a gaseous circumstellar disk a gas drag causes a loss of angular

momentum. This in turn means that, in the absence of other physical processes, the disk is

cleared of larger dust particles as they then fall inwards to the central star (Weidenschilling

and Cuzzi 1993). This is a significant problem with the standard core accretion theories as

it doesn’t explain the rapid formation of 1 km sized planetesimals we need to account for

what we see. Therefore, it could be that an analogy of the F ring system is more suited to

that of a debris disk where the dust–gas ratio is geared more predominately towards larger

dust particles than gas (although of a different tidal environment). With many of the larger

circumstellar disks the reduced tides from the host star in comparison to Saturn would

mean it is of a different tidal environment. However, the reduced tides but might play a

more important role in these systems being less destructive.

The removal of dust from the disk due to the gas drag therefore severely hinders the

formation of the essential building blocks of planetesimals and ultimately planets. A

process that seeks to compensate for this effect has been to found to theoretically exist in

hydro-dynamically turbulent protoplanetary disks. Here, vortices can act as nurseries for

centimetre–kilometre sized planetesimals (Heng and Kenyon 2010). In their numerical

models it was found that vortices possessed the ability to segregate mm to cm sized

particles from the gaseous protoplanetary disk, coalescing particles towards their centres
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where gravitational collapse helped in the rapid growth of particles to km size. The vortex

capture of particles was also seen to transpire at locations appropriate to planet formation,

again suggesting it to be a relevant process (Chavanis 2000). Clump formation from

particles being drawn towards the centre of vortices was seen to happen on very short time

periods, on the order 101–102 orbital periods. The smallest particles were seen to settle

towards the centre (the most stable points in the vortex) while the larger particles relax into

orbits about the vortex edge. The stopping times of smaller particles are naturally shorter

than that of larger particles due to the additional inertia they carry. The smallest particles

ended up following the gas flow within the vortex. Thus, if a perturbing planet created a

similar curl in the velocity vector field of a gaseous circumstellar disk, acceleration in the

growth of clumps could be witnessed and directly attributed to the larger planet.

Within our own models we generally see non-zero vorticities clustered around the

centre of large scale disturbances previously identified (Sutton and Kusmartsev

2013, 2014), with quite an active non-zero vorticity along channel edges. Further inves-

tigations of the vorticity calculation shows that most of the non-zero vorticity occurs

during the first 1–3 orbital periods after the initial encounter. Vorticity then quickly reverts

close to background levels by around 10 orbital periods. This could suggest the curl of the

velocity field quite quickly reduces back to pre-encounter levels. If the vorticity we cal-

culate was associated with particles moving on out of phase elliptical orbits we would

expect to still see an appropriate vorticity. The fact that we still see significant radial

dispersions and velocity deviations at 10 orbital periods suggest that this isn’t an artefact

creating the vorticity values. Although care should be taken as the F ring isn’t a true fluid.

Something else of interest to note that may be applicable to the F ring but is not tested in

our models is particle spin. If rotations in the flow of particles are seen (vorticity) then

particles with a physical size would likely receive a rotation themselves during the passage

and subsequent gravitational scattering event of Prometheus. This additional spin of par-

ticles might have some additional important influence on the collisions of particles and the

ability for some of the larger particles to withstand the already destructive tidal forces

present. Experimentally the spin state of ring particles can be found by investigating the

thermal emission of the rings (Morishima et al. 2011; Ohtsuki 2005). A similar investi-

gation of the F ring with the Infrared Spectrometer (IRS) on board Cassini might prove

useful for future understanding of the F ring. The thermal inertia of particles can help us

probe the populations of the fast and slow rotators which coupled with already know

particle sizes derived through stellar occultation data (Bosh et al. 2002) would help

experimentally probe the curling of the velocity vector field in the F ring by Prometheus.

Ultimately we find that areas of elevated velocity vector curl and some of the changes in

local dynamics (velocity and accelerations) occur where embedded moonlets are found

(Beurle et al. 2010) and density enhancements witnessed (channel edges). Their location

on channel edges being random and coupled with the elongation of the channel formations

due to Keplerian shear this could result in coherent objects being chaotically positioned

within the central core. These then points towards the known randomly distributed

moonlets found in the central core by Cassini (Attree et al. 2012, 2014) and could offer

some explanation as their origin.

Investigation of radial velocity dispersions at the channel edges reveals that they

themselves aren’t the ideal locations for the rapid growth of clumps or moonlets. Here,

dispersions (both radial and azimuthal) are high enough to hinder the natural self-gravi-

tational collapse. Along with many of the previously discussed dynamics at the channel

edges (Sutton and Kusmartsev 2013, 2014; Beurle et al. 2010) there is also evidence that

points to a difference between the two edges with regards to the radial velocity dispersions.
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The area just away from the edge facing Prometheus shows the lowest dispersions and is

approximately 1000 km away from the edge (this can be seen on the channel structure

presented in Fig. 5. The low dispersion area is just under the bottom channel edge).

This is indeed the edge that embedded moonlets have been observed creating fan structures

within the central core. The edge areas also corresponds to radial velocity dispersions of

�2 cm/s. These numbers are close to the critical values stated by Toomre for a disc to be

unstable to gravitational collapse. This result is in some disagreement with the proposal

(Beurle et al. 2010) that suggested the minimum radial dispersions occurred at the channel

edges. While it is true minimum dispersions occur in the same boxes as their highest

densities (also the channel edges) this could be dependent on the size boxes employed.

There are areas a few hundred km away from the immediate edges (the direct edge of the

channel) that could be responsible for the minimum dispersions, different than what was

reported in Beurle et al. (2010). The velocity magnitudes at the edges themselves are

greater than the critical value and do not show a uniform dispersion, instead they range

randomly from 5 to 100 cm/s. Therefore, in our models when considering the spatial

distribution of the velocity radial dispersions, it appears that the growth of coherent objects

might be better suited further away from the immediate channel edges (further into the F

ring away from the channel edges).

The increased number densities of particles and high radial velocity dispersions at

channel edges would lead to an increase in collision rates between particles. Although the

collision rates have not been estimated within our models but seems a likely outcome and it

is reasonable to suggest that it would be counterproductive in the growth of clumps. It has

been noted that density enhancements at the channel edges show considerable fluctuations

between subsequent orbital periods (Sutton and Kusmartsev 2014; Beurle et al. 2010). The

enhanced densities and high radial dispersions at these locations thus make a very chal-

lenging environment for clumps to grow in. The formation of areas with highest radial

velocity dispersions in islands at the back of the channel (at larger radial locations) when

the channels were at their most open phase were previously reported (Charnoz 2009). The

particles inside these islands display high radial dispersions in the order of m/s higher than

in other areas. They are predominantly moving in a radial direction away from the Kep-

lerian flow. If considered individual particles post encounter it could be that the particles at

those locations are in a different phase of their new more eccentric orbits compared with

the rest of the particles in the channel formations.

Obviously there are issues surrounding the very different tidal environments of the

planetary rings (Saturn’s F ring being discussed here) and various circumstellar disks.

Some additional work ideally should be done to investigate how the local velocity vector

field is distorted due to a close passage of a planet or planetesimal in a circumstellar disk.

The weaker tidal environment in these systems is likely to yield different results but it

might be of great interest to investigate the plausibility of young planetesimals in disks to

initiate vorticities (beyond the background value of the disk). As these vorticities and

associated dynamics are proposed as a potential mechanism for the rapid growth of objects

within circumstellar disks it is especially of interest.

One of the main arguments for the analogy of the F ring to circumstellar disks comes

from the very initial collective rotation of the particles during the close passage of a

shepherding moon. The different tidal environments of, for example, planetary rings and

circumstellar disks are going to have an effect on long term vorticity that would reside in

the disk post encounter. However, what we report can still be useful for looking at

immediate local rotations caused by a passage of nearby moon or planet to a disk. When
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considering Hill Radii’s ð� a3
ffiffiffiffiffiffiffiffiffiffiffiffiffi

m=3M
p

Þ in the planetary ring the area affected by the

passage is smaller than that of even a small planet embedded in a circumstellar disk. The

likely immediate differences between such systems would be the scale of vorticity spatial

distribution induced and along with complicated 3-D disk disruptions that would not be as

important in a flat planetary disk. The different tidal environment could also be more

favourable to creating a turbulent perturbation in a planetary disk than in a weaker tidal

environment like in the planet forming region of a circumstellar disk. In the circumstellar

disk the weaker tidal forces from the central star might mean that any vorticity induced by

a planet would not be significant enough to have any impact on the acceleration in the

accretion of clumps. Direct comparisons could be done by keeping the particles and central

mass the same as we have investigated but instead changing the tidal environment. So,

effectively move the F ring further out radially to a location that is comparable to that of a

larger circumstellar disk where a planet might reside. Here, the same tidal environment can

be investigated without changing any other parameters. Thus, a direct investigation of tidal

environment can be done.

Additionally, considering the fairly high radial and azimuthal dispersions we have found

in our work during the close passage of Prometheus would also like to note that the

inclusion of collisions between particles could have an impact on the dynamics of vortices.

We expect to address this issue in our next publication.
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