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Abstract In this study, equilibrium points and periodic orbits in the potential field of

asteroids are investigated. We present the linearized equations of motion relative to the

equilibrium points and characteristic equations. We find that the distribution of charac-

teristic multipliers of periodic orbits around the equilibrium point and the distribution of

eigenvalues of the equilibrium point correspond to each other. The distribution of eigen-

values of the equilibrium point confirms the topology and the stability of periodic orbits

around the equilibrium point.

Keywords Asteroids � Periodic orbits � Equilibrium point � Stability �
Characteristic multipliers � Eigenvalues

1 Introduction

The interest for studying orbits around asteroids has received great attention. The study of

orbits around asteroids is useful for two very important and current topics: navigation and

orbital design of spacecraft near asteroids in sample-return missions (Bradley and Ocampo

2013) and the existence and exploration of small natural satellites or moonlets of irregular

asteroids (Descamps 2010). Missions to asteroids may include the observation of shape and

physical characteristics of asteroids, the soft-landing to asteroids, surface motion and

sample-return, etc. The existence, dynamics and exploration of small natural satellites or

moonlets of irregular asteroids have grown considerably recently. There are several binary

asteroids and triple asteroids discovered in the solar system, such as the binary asteroid 243

Ida (Petit et al. 1997), the triple asteroid (47171) 1999 TC36 (Benecchi et al. 2010), etc.
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Besides, the study of orbits around asteroids is also useful for studying the ejection of dust

particles from small celestial bodies (Oberc 1997) as well as the continuation of periodic

orbits in the vicinity of asteroids (Scheeres et al. 1996; Yu and Baoyin 2012a, b).

Orbits around rotating highly irregular-shaped celestial bodies include equilibria, pe-

riodic orbits, quasi-periodic orbits, and chaotic motions (Scheeres 2012a; Jiang et al.

2014). Simple-shaped bodies or special potential fields are usually considered when

studying dynamical behaviors, including equilibrium points, stability, and periodic orbits.

These simple-shaped bodies include a logarithmic gravity field (Elipe and Riaguas 2003), a

straight segment (Riaguas et al. 1999, 2001; Arribas and Elipe 2001; Elipe and Lara 2003;

Romero et al. 2004; Linder et al. 2010; Najid et al. 2011), a triangular plate and a square

plate (Blesa 2006), a circular ring (Lass and Blitzer 1983; Broucke and Elipe 2005; Najid

et al. 2012), an annulus disk (Eckhardt and Pestaña 2002; Alberti and Vidal 2007;

Fukushima 2010) as well as a cube (Chappell et al. 2012; Liu et al. 2011).

These explorations of dynamical behaviors around simple-shaped bodies can help us

understand the dynamical behaviors around irregular-shaped celestial bodies. Riaguas et al.

(1999) pointed out that there exist bifurcations of periodic orbits in the gravity field of a

massive straight segment with changing parameters. There are 4 equilibrium points in the

gravity field of a logarithmic and a massive finite segment (Elipe and Riaguas 2003). Liu

et al. (2011) found 8 equilibrium points in the gravity field of a cube, with 4 of them

linearly stable, and the other 4 unstable.

Some highly irregular-shaped celestial bodies were analyzed to find periodic orbits

around them, e.g., asteroids 216 Kleopatra (Yu and Baoyin 2012a, b; Jiang et al. 2014), 433

Eros (Scheeres et al. 2000), 4179 Toutatis (Scheeres et al. 1998; Scheeres 2012a), 4769

Castalia (Scheeres et al. 1996; Takahashi et al. 2013), as well as comet 67/P CG (Scheeres

2012a, b).

Here we will focus on the equilibrium points and periodic orbits in the potential

field of asteroids. The linearized equations of motion relative to the equilibrium points

and characteristic equations are discussed in Sect. 2. In Sect. 3 periodic orbits around

equilibrium points are considered. We find that the distribution of characteristic mul-

tipliers of periodic orbits around the equilibrium point and the distribution of eigen-

values of equilibrium point correspond to each other; the distribution of eigenvalues of

the equilibrium point confirms the topology and stability of periodic orbits around the

equilibrium point.

2 Motion Equations and Equilibrium Points

Consider the motion of a massless test particle around a highly irregular-shaped celestial

body. The Lagrangian of motion is

L ¼ 1

2
_r þ x� rð Þ2�U rð Þ ð1Þ

where r is the body-fixed vector from the celestial body’s center of mass to the

particle, x is the rotation angular velocity vector of the body relative to the inertial

space, and U(r) is the gravitational potential of the body. The Jacobian integral H and

the effective potential V can be defined as (Scheeres et al. 1996; Yu and Baoyin

2012a, b).
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H ¼ 1

2
_r � _r � 1

2
x� rð Þ x� rð Þ þ U rð Þ

V rð Þ ¼ � 1

2
x� rð Þ x� rð Þ þ U rð Þ

8
><

>:
ð2Þ

For a zero-velocity manifold for the particle V (r) = H; for the forbidden region V (r)[H,

while for the allowable region V (r) B H. Thus the equation of motion relative to the

uniformly rotating body can be written as (Scheeres et al. 1996; Yu and Baoyin 2012a, b)

€r þ 2x� _r þ oV rð Þ
or

¼ 0 ð3Þ

The linearized equations of motion relative to the equilibrium point can be expressed as

€nþ 2xy
_f� 2xz _gþ Vxxnþ Vxygþ Vxzf ¼ 0

€gþ 2xz
_n� 2xx

_fþ Vxynþ Vyygþ Vyzf ¼ 0

€fþ 2xx _g� 2xy
_nþ Vxznþ Vyzgþ Vzzf ¼ 0

ð4Þ

where n; g; f are positions relative to the equilibrium point;Vrr,

Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

0

@

1

A

L

is

the Hessian matrix of V (r). Denote k as the set of eigenvalues of the equilibrium points.

Then the characteristic equation for the eigenvalues can be expressed as

k6 þ Vxx þ Vyy þ Vzz þ 4x2
x þ 4x2

y þ 4x2
z

� �

k4 þ VxxVyy þ VyyVzz þ VzzVxx � V2
xy � V2

yz � V2
xz

�

þ 8xxxzVzx þ 8xyxzVyz þ 8xxxyVxy þ 4x2
xVxx þ 4x2

yVyy þ 4x2
zVzz

�

k2 þ VxxVyyVzz þ 2VxyVyzVxz � VxxV
2
yz � VyyV

2
xz � VzzV

2
xy

� �
¼ 0

ð5Þ

If there is no eigenvalue that equals zero, the equilibrium point is non-degenerate (Jiang

et al. 2014).

Denote x as the modulus of the vector x; then the unit vector ez can be expressed by

x = xez Define the body-fixed frame through a set of orthonormal right-hand unit vectors e

e �
ex

ey

ez

8
><

>:

9
>=

>;
: ð6Þ

Then the characteristic equation [Eq. (5)] can be simplified to (Jiang et al. 2014)

k6 þ Vxx þ Vyy þ Vzz þ 4x2
� �

k4 þ VxxVyy þ VyyVzz þ VzzVxx � V2
xy � V2

yz � V2
xz þ 4x2Vzz

� �

k2;þ VxxVyyVzz þ 2VxyVyzVxz � VxxV
2
yz � VyyV

2
xz � VzzV

2
xy

� �
¼ 0:

ð7Þ

The asteroid 216 Kleopatra has a peculiar shape that looks like a dog bone; the overall

dimensions are 217 9 94 9 81 km (Ostro et al. 2000), and the estimated bulk density is
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3.6 g cm-3, the rotational period is 5.385 h (Descamps et al. 2011). There are two

moonlets near 216 Kleopatra, Alexhelios [S/2008 (216) 1] and Cleoselene [S/2008 (216) 2]

(Descamps et al. 2011). These two moonlets are about 5 and 3 km in diameter, respec-

tively. In addition, there are 9 such triple asteroid systems discovered: 45 Eugenia (Merline

et al. 1999; Marchis et al. 2010), 87 Sylvia (Marchis et al. 2005), 93 Minerva (Marchis

et al. 2011), 216 Kleopatra, 3749 Balam (Vokrouhlický 2009), 47171 1999TC36 (Stans-

berry et al. 2006; Benecchi et al. 2010), 136108 Haumea (Pinilla-Alonso et al. 2009),

136617 1994CC (Brozović et al. 2010, 2011), and 153591 2001SN263 (Fang et al. 2011;

Araujo et al. 2012). Seven of them are large size triple asteroids: 45 Eugenia, 87 Sylvia, 93

Minerva, 216 Kleopatra, 136108 Haumea, 136617 1994CC, and 153591 2001SN263.

Among these large size triple asteroids, only 216 Kleopatra has a radar shape model (Neese

2004). So we choose 216 Kleopatra for our study of the dynamics around an asteroid. The

asteroid 216 Kleopatra has a rotating principal axis (Ostro et al. 2000), and the z-axis of the

body-fixed frame is taken as the principal axis. There are four equilibrium points outside

the body of 216 Kleopatra (Yu and Baoyin 2012a, b; Jiang et al. 2014). Figure 1 shows

these four equilibrium points in the vicinity of 216 Kleopatra. The equilibrium points are

denoted as E1, E2, E3, and E4. Positions of these equilibrium points are given in Table 1.

E1 and E2 belong to Case 2 (see Sect. 3.1 for a definition of Cases 1 through 5) while E3

and E4 belong to Case 5 (Jiang et al. 2014). The physical model of 216 Kleopatra that we

use here was calculated from radar observations (Neese 2004). This polyhedral model has

2048 vertices and 4096 faces (Werner 1994; Werner and Scheeres 1997).

3 Periodic Orbits Around Equilibrium Points

If the equilibrium point in the vicinity of an asteroid is linearly stable, there are three

families of periodic orbits around the equilibrium point; if the equilibrium point is un-

stable, the number of periodic orbit families around the equilibrium point is less than three

(Jiang et al. 2014).

Fig. 1 Equilibrium points in the vicinity of asteroid 216 Kleopatra
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3.1 Classification of Equilibrium Points

For the non-degenerate and non-resonant equilibrium points around an asteroid, the

topological manifold classification (Jiang et al. 2014) of equilibrium points is presented in

Fig. 2. There are five cases for the non-degenerate and non-resonant equilibrium points in

the potential field of a rotating asteroid where any two eigenvalues are unequal.

Case 1

In Case 1, the equilibrium point has three pairs of imaginary eigenvalues, and the

equilibrium point is linearly stable. The linear motion around the equilibrium point is a

quasi-periodic orbit, which is expressed as

n

g

f

2

6
4

3

7
5 ¼ C3�6 cos b1t sin b1t cos b2t sinb2t cosb3t sinb3t½ �T; ð8Þ

where C3 9 6 is a 3 9 6 real matrix.

Table 1 Positions of the equi-
librium points around asteroid
216 Kleopatra (Jiang et al. 2014)

Equilibrium points X (km) Y (km) z (km)

E1 142.852 2.45436 1.18008

E2 -144.684 5.18855 -0.282998

E3 2.21701 -102.102 0.279703

E4 -1.16396 100.738 -0.541516

Fig. 2 Classification of non-degenerate and non-resonant equilibrium points
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Case 2

In Case 2, the equilibrium point has two pairs of imaginary eigenvalues and one pair of

real eigenvalues, and the equilibrium point is unstable. The linear motion around the

equilibrium point is composed of a quasi-periodic component, an asymptotically stable

component and an unstable component, which are expressed as

n

g

f

2

6
4

3

7
5 ¼ C3�6 ea1t e�a1t cosb1t sinb1t cosb2t sinb2t½ �T: ð9Þ

The asymptotically stable component e�a1t is an exponential sink while the unstable

component ea1t is an exponential source, from which it follows that the projection of the

equilibrium point in the asymptotically stable manifold is an exponential sink while in the

unstable manifold the projection is an exponential source.

Case 3

In Case 3, the equilibrium point has one pair of imaginary eigenvalues and two pairs of

real eigenvalues, and the equilibrium point is unstable. The linear motion around the

equilibrium point is composed of a periodic component, two asymptotically stable com-

ponents and two unstable components, which are expressed as

n

g

f

2

6
4

3

7
5 ¼ C3�6 ea1t e�a1t ea2t e�a2t cos b1t sin b1t½ �T: ð10Þ

The asymptotically stable components e�a1t and e�a2t are exponential sinks while the

unstable components ea1t and ea2t are exponential sources, similar to Case 2. The projection

of the equilibrium point in the asymptotically stable manifold is an exponential sink while

for the unstable manifold it is an exponential source.

Case 4a

In Case 4a, the equilibrium point has one pair of complex eigenvalues and one pair of

real eigenvalues; the complex eigenvalues take the form �r� is r; s 2 R;r; s[ 0ð Þ.
Hence the equilibrium point is unstable. The linear motion around the equilibrium point is

composed of three asymptotically stable components and three unstable components,

which are expressed as

n

g

f

2

6
4

3

7
5 ¼ C3�6 ea1t e�a1t ert cos st ert sin st e�rt cos st e�rt sin st½ �T: ð11Þ

The asymptotically stable component e�a1t is an exponential sink while the asymp-

totically stable components e�rt cos st and e�rt sin st are spiral sinks, meanwhile, the un-

stable component ea1t is an exponential source while the unstable components ert cos st and
ert sin st are spiral sources.

Case 4b

In Case 4b, the equilibrium point has three pairs of real eigenvalues and the equilibrium

point is unstable. The linear motion around the equilibrium point is composed of three

asymptotically stable components and three unstable components, which are expressed as
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n

g

f

2

6
4

3

7
5 ¼ C3�6 ea1t e�a1t ea2t e�a2t ea3t e�a3t½ �T: ð12Þ

The asymptotically stable component e�aj t j ¼ 1; 2; 3ð Þ is an exponential sink while the

unstable component eaj t j ¼ 1; 2; 3ð Þ is an exponential source.

Case 5

In Case 5, the equilibrium point has one pair of imaginary eigenvalues and one pair of

complex eigenvalues, and the equilibrium point is unstable. The linear motion around the

equilibrium point is composed of a periodic component, two asymptotically stable com-

ponents and two unstable components, which are expressed as

n

g

f

2

6
4

3

7
5 ¼ C3�6 cosb1t sin b1t ert cos st ert sin st e�rt cos st e�rt sin st½ �T: ð13Þ

The asymptotically stable components e�rt cos st and e�rt sin st are spiral sinks, while

the unstable components ert cos st and ert sin st are spiral sources.

3.2 Characteristic Multipliers of Orbits

By solving Eq. (3) we can express the orbit z as z tð Þ ¼ f t; z0ð Þ where f 0; z0ð Þ ¼ z0: Let
Sp(T) be the set of periodic orbits with period T. Choose one periodic orbit from this set

p 2 Sp(T), and consider the matrix of this periodic orbit rf :¼ of zð Þ
oz : It is a 6 9 6 matrix.

Therefore the state transition matrix is given by

Fig. 3 The distribution of characteristic multipliers for orbits corresponding to the classification in Fig. 2
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U tð Þ ¼
Z t

0

of

oz
p sð Þð Þds: ð14Þ

Let t = T, then U (t = T) is the monodromy matrix for this periodic orbit. Denote the

matrix as M = U (T). The eigenvalues of the monodromy matrix are the characteristic

multipliers of the orbit (Marsden and Ratiu 1999). The state transition matrix U (t) is

symplectic. If k is an eigenvalue of the matrix U (t), then �k�1; �k; and �k�1 are also

eigenvalues of U(t).

3.3 Correspondence of the Topological Classification of Equilibrium Points
and Topological Classification of Orbits

Suppose that eigenvalues of the equilibrium point take the form

�ib b 2 Rþð Þ; k3; k4; k5; k6f g; then characteristic multipliers of periodic orbits around the

equilibrium point take the form 1; 1, exp
2pkj
b

� �
j ¼ 3; 4; 5; 6ð Þ

n o
(Marsden and Ratiu

1999). The equilibrium point is resonant when at least two purely imaginary eigenvalues

coincide. According to Jiang et al. (2014), the non-degenerate and non-resonant equilib-

rium points in the potential of an irregular celestial body can be classified into five different

cases; this classification is shown in Fig. 2. Figure 3 shows the distribution of character-

istic multipliers of orbits corresponding to the classification given by Fig. 2. The non-

degenerate and non-resonant equilibrium point which has periodic orbits around it matches

four of those five cases, which are Cases 1, 2, 3, and 5 in Fig. 2; periodic orbits around the

equilibrium point also correspond to four cases: Cases 1, 2, 3, 5 in Fig. 3. So the distri-

bution of characteristic multipliers of periodic orbits around the equilibrium point and the

distribution of eigenvalues of the equilibrium point correspond to each other, and the

Table 2 The correspondence of eigenvalues of the equilibrium point and characteristic multipliers of
periodic orbits around the equilibrium point

Cases Eigenvalues of the equilibrium point Characteristic multipliers of periodic orbits
around the equilibrium point

Case 1 �ibj
bj 2 R;bj [ 0; j ¼ 1; 2; 3
8j k 6¼ j; k ¼ 1; 2; 3; s:t:bk 6¼ bj

� �
~cj ~cj ¼ 1 j ¼ 1; 2
� �

e�i ~bj ~bj 2 0; pð Þ; j ¼ 1; 2 ~b1 6¼ ~b2
�
�

� �

(

Case 2 �ibj bj 2 R; bj [ 0; j ¼ 1; 2 b1 6¼ b2j
� �

�aj aj 2 R; aj [ 0; j ¼ 1
� �

	
~cj ~cj ¼ 1; j ¼ 1; 2
� �

e�i ~bj ~bj 2 0;pð Þ; j ¼ 1
� �

sgn ~aj
� �

e�~aj ~aj 2 R; ~aj
�
�
�
� 2 0; 1ð Þ; j ¼ 1

� �

8
><

>:

Case 3 �ibj bj 2 R; bj [ 0; j ¼ 1
� �

�aj aj 2 R; aj [ 0; j ¼ 1; 2 a1 6¼ a2j
� �

	
~cj ~cj ¼ 1; j ¼ 1; 2
� �

sgn ~aj
� �

e�~aj
~aj 2 R; ~aj

�
�
�
� 2 0; 1ð Þ;

j ¼ 1; 2 ~a1 6¼ ~a2j

 !

8
><

>:

Case 4a �r� is r; s 2 R; r; s[ 0ð Þ
�aj aj 2 R; aj [ 0; j ¼ 1
� �

	
e� ~r�i~s ~r; ~s 2 R; ~r[ 0; ~s 2 0;pð Þð Þ
sgn ~aj
� �

e�~aj ~aj 2 R; ~aj
�
�
�
� 2 0; 1ð Þ; j ¼ 1

� �

	

Case 4b �aj aj 2 R; aj [ 0; j ¼ 1; 2; 3
� �

sgn ~aj
� �

e�~aj ~aj 2 R; ~aj
�
�
�
� 2 0; 1ð Þ; j ¼ 1; 2; 3

� �

Case 5 �ibj bj 2 R; bj [ 0; j ¼ 1
� �

�r� is r; s 2 R; r; s[ 0ð Þ

	
~cj ~cj ¼ 1; j ¼ 1; 2
� �

e� ~r�i~s ~r; ~s 2 R; ~r[ 0; ~s 2 0;pð Þð Þ
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distribution of eigenvalues of the equilibrium point confirms the various cases and stability

of periodic orbits around the equilibrium point.

If the distribution of eigenvalues of the equilibrium point belongs to Case 1 in Fig. 2,

then the distribution of characteristic multipliers of periodic orbits around the equilibrium

point belongs to Case 1 in Fig. 3; i.e. if all the eigenvalues of the equilibrium point fall on

the imaginary axis, the characteristic multipliers of periodic orbits around the equilibrium

point are within the unit circle, and at least two of the characteristic multipliers are equal to

1. Table 2 shows the algebraic forms for the correspondence of eigenvalues of the equi-

librium point and characteristic multipliers of periodic orbits around the equilibrium point.

According to Jiang et al. (2014), the equilibrium point E1 around 216 Kleopatra belongs

to Case 2. Table 3 shows eigenvalues of the equilibrium points around 216 Kleopatra from

Jiang et al. (2014). There exist two families of periodic orbits around E1. Figure 4 presents

the first family of periodic orbits corresponding to eigenvalues ±0.413 9 10-3 i of E1,

while Fig. 5 presents the second family of periodic orbits corresponding to eigenvalues

±0.425 9 10-3 i of E1. Table 4 lists the periods of various periodic orbits in the first

Table 3 Eigenvalues of the equilibrium points around asteroid 216 Kleopatra (Jiang et al. 2014)

910-3 s-1 k1 k2 k3 k4 k5 k6

E1 0.376 -0.376 0.413i -0.413i 0.425i -0.425i

E2 0.422 -0.422 0.414i -0.414i 0.466i -0.466i

E3 0.327i -0.327i 0.202?
0.304i

0.202-
0.304i

-0.202?
0.304i

-0.202-
0.304i

E4 0.323i -0.323i 0.202?
0.306i

0.202-
0.306i

-0.202?
0.306i

-0.202-
0.306i

Fig. 4 The first family of periodic orbits around the equilibrium point E1 in the vicinity of asteroid 216
Kleopatra
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family around the equilibrium point E1 with the characteristic period 4.10569 h, and

Table 5 lists the periods of various periodic orbits in the second family around the equi-

librium point E1 with the characteristic period 4.10569 h. In Tables 4 and 5, the orbits with

smaller index numbers correspond to the smaller orbits in Figs. 4 and 5, respectively. From

Fig. 5 The second family of periodic orbits around the equilibrium point E1 in the vicinity of asteroid 216
Kleopatra

Table 4 Period of different or-
bits in the first family around the
equilibrium point E1 in the vici-
nity of asteroid 216 Kleopatra
(characteristic period is
4.10569 h)

Orbits T (h)

1 4.18927

2 4.18145

3 4.18535

4 4.20040

5 4.22822

6 4.27043

7 4.32870

8 4.40425

Table 5 Period of different or-
bits in the second family around
the equilibrium point E1 in the
vicinity of asteroid 216 Kleopatra
(characteristic period is
4.10569 h)

Orbits T (h)

1 4.10581

2 4.10309

3 4.09945

4 4.08941

5 4.07552

6 4.05795

7 4.03754

8 3.98919
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Tables 4 and 5 we see that the period of periodic orbits around the equilibrium point and

the characteristic period of the equilibrium point are nearly the same.

The equilibrium points E1 and E3 belong to Case 2, while the equilibrium points E2 and

E4 belong to Case 5. Thus there are a total of six families of periodic orbits in the vicinity

of these four equilibrium points. We choose one periodic orbit from each family of pe-

riodic orbits and plot it in Fig. 6. Characteristic multipliers of these six periodic orbits are

presented in Table 6. Orbits 1 and 2 belong to E1, and have the same distribution of

characteristic multipliers. From Tables 3 and 6, it can be seen that the distribution of

characteristic multipliers of orbits 1 and 2 corresponds to the distribution of eigenvalues of

equilibrium point E1. Other orbits and equilibrium points show similar results. Therefore,

Fig. 6 Six periodic orbits around equilibrium points in the vicinity of asteroid 216 Kleopatra

Table 6 Characteristic multipliers of periodic orbits around equilibrium points in the vicinity of asteroid
216 Kleopatra

~k1 ~k2 ~k3 ~k4 ~k5 ~k6

Orbit 1 (E1) 253.479 0.003945 0.98537?
0.17041i

0.98537-
0.17041i

1 1

Orbit 2 (E1) 224.867 0.004447 0.96700?
0.25478i

0.96700-
0.25478i

1 1

Orbit 3 (E2) 257.858 0.003878 0.76679?
0.64189i

0.76679-
0.64189i

1 1

Orbit 4 (E2) 362.411 0.002759 0.76763?
0.64090i

0.76763-
0.64090i

1 1

Orbit 5 (E3) 31.662?
11.980i

31.662-
11.980i

0.02763?
0.01045i

0.02763-
0.01045i

1 1

Orbit 6 (E4) 35.122?
8.3453i

35.122-
8.3453i

0.02695?
0.00640i

0.02695-
0.00640i

1 1
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we have shown that the distribution of characteristic multipliers of periodic orbits around

the equilibrium point and the distribution of eigenvalues of equilibrium point correspond to

each other.

4 Conclusions

We have studied the equilibrium points and periodic orbits in the potential of asteroids.

The linearized equations and characteristic equations of motion relative to the equilibrium

points are presented. The non-degenerate and non-resonant equilibrium point which has

periodic orbits around it corresponds to four topological cases. We find that the distribution

of characteristic multipliers of periodic orbits around the equilibrium point and the dis-

tribution of eigenvalues of equilibrium point correspond to each other. The distribution of

eigenvalues of the equilibrium point confirms the topology and stability of periodic orbits

around the equilibrium point. If all the eigenvalues of the equilibrium point are in the

imaginary axis, the characteristic multipliers of periodic orbits around the equilibrium

point are within the unit circle, and at least two of the characteristic multipliers are equal to

1.
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