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Abstract In this paper we analytically estimate the magnetic field scale of planets with

physical core conditions similar to that of Earth from a statistical physics point of view. We

evaluate the magnetic field on the basis of the physical parameters of the center of the planet,

such as density, temperature, and core size. We look at the contribution of the Seebeck effect

on the magnetic field, showing that a thermally induced electrical current can exist in a

rotating fluid sphere. We apply our calculations to Earth, where the currents would be driven

by the temperature difference at the outer-inner core boundary, Jupiter and the Jupiter’s

satellite Ganymede. In each case we show that the thermal generation of currents leads to a

magnetic field scale comparable to the observed fields of the considered celestial bodies.

Keywords Planetology of solid surface planets: Magnetic field and magnetism �
Planetology of fluid planets: Magnetic field and magnetism � Earth’s interior structure

and properties

1 Introduction

The origin of the Earth’s magnetic field and more in general of the celestial body’s

magnetic field, is a problem that has been faced by many authors (see Stevenson 1983,

2010 for a review and prospectives about planetary magnetic fields). For many years the

intuitive idea that the magnetic field is generated by heavy fluid in the center of Earth

subjected to the rotational motion of our planet, has been conjectured. Many numerical

works have started to shed light on the possible mechanism of the generation of Earth’s
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magnetic field (Glatzmaier and Roberts 1995; Kuang and Bloxham 1997; Roberts and

Glatzmaier 2000; Busse 2000; Kono and Roberts 2002). The basic model for the gener-

ation of Earth’s magnetic field or of other planets, is based upon the dynamo effect of a

turbulent convection in rotating fluids. This idea has received much attention in the past

few years and many numerical studies based on the dynamo model (see the above refer-

ences) attempted to reproduce some of the main properties of the magnetism of celestial

bodies, among them the phenomenon of magnetic field reversal. Magnetic field reversal,

the phenomenon for which the positions of magnetic north and magnetic south are inter-

changed, is another important feature of the terrestrial magnetic field that has been studied

intensively, and recently a similar phenomenon has been reproduced in the laboratory

(Berhanu et al. 2007).

In a previous work (Bologna and Tellini 2010) the authors showed that a magnetic

field can be generated in the laminar region of a fluid velocity under the condition

q ¼ grl, but such a condition is far from the usual condition of the celestial body and,

more important, its magnitude would be of the order of B�XR
ffiffiffiffiffiffiffiffi

ql0

p
where X is the

rotational velocity, R is the radius of the outer core, and q is the density of the fluid in the

outer core of Earth (Lee 2002). Inserting Earth’s parameters would imply an intensity

field of B� 105 gauss that is very far from Earth’s actual magnetic field value, e.g. 25

gauss in the central region. To authors’ knowledge no magnetic field scale as a function

of the physical system parameters (such as density, temperature, and core size etc.) is

known for Earth. We shall consider planets with a core wherein the electrons can be

considered approximately in a degenerate state (degenerate Fermi’s gas) and where the

currents would be driven by the temperature difference at the outer-inner core boundary.

We shall show that such a characteristic magnetic field exists if we consider the thermal

contribution at the basis of the generation of the magnetic field. The intensity of such a

field is close to the actual value of the Earth’s field and we shall apply the basic idea also

to the Jupiter planet and its satellite, Ganymede.

2 Magnetohydrodynamic Equations

To make the paper as self-contained as possible, we review briefly the set of equations for a

plasma with finite conductivity and constant density (Landau and Lifshitz 1981; Jackson

1998)

q
o

ot
vþ ðv � rÞv

� �

¼ �rPþ r�H½ � � Bþ f þ r ð1Þ

r � v ¼ 0 ð2Þ

oB

ot
¼ r� v� B½ � þ 1

lr
r2B ð3Þ

r � B ¼ 0; ð4Þ

where v is the flow velocity, H is the magnetic field related to the magnetic induction B via

the relation B ¼ lH;P is the pressure of the fluid, and q is the mass density. The gravity

force density, f, takes the form f ¼ qrw where w is the gravitational potential. The vector

r is defined through its components as follows (Landau and Lifshitz 1987)
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ri ¼
or0ik
oxk

; r0ik ¼ g
ovi

oxk

þ ovk

oxi

� �

ð5Þ

where r0ik is the viscous stress tensor, and g is the coefficient of viscosity which is assumed

constant. We also used the convention of dropping the symbol of sum for the repeated

indexes. The current density J is given by the constitutive relation J ¼ rðEþ v� BÞ, i.e.

Ohm’s law, where r is the electrical conductivity of the fluid.

The dynamic system has to be implemented using the equation of heat transfer in

magnetohydrodynamics (Landau and Lifshitz 1981)

qcp

o

ot
T þ v � rT

� �

¼ r0ik
ovi

oxk

þ jr2T þ J2

r
þ Q ð6Þ

where cp is the specific heat at constant pressure, j is the thermal conductivity, T is the

temperature of the fluid, and Q is the quantity of heat generated by external sources of heat

contained in a unit volume of the fluid per unit time.

As many authors have pointed out the analytical solution of this equation is a very hard

task and only a few exact or approximate cases are known (see for example Sutton and

Sherman 2006 for a review). Our main aim is to find an estimation for the scale of the

magnetic field as a function of the physical parameters of the center of Earth (such as

density, temperature, etc.) without necessarily solving the system (1)–(4).

3 Remarks on Field Velocity Components for a Rotating Sphere

In this section we will show that for a rotating sphere, in general the / component of the

velocity is not enough to describe a time dependent motion, with it being understood that

v/ ¼ Xr sin h, where X is the angular velocity, is an exact solution. Note that Kerr (2005)

shown that the inner core of the Earth may spin faster than the rest of the planet so that the

above exact solution does not hold for the fluid motion of the terrestrial core. This con-

clusion implies that the temperature distribution can not be a radial distribution due to the

fact that Eq. (6) is, in general, coupled with the velocity field. To enforce this statement we

shall show that in general a rotating fluid sphere, as previously stated, can not be described

by the / component of velocity. Let us then assume that a sphere starts to rotate with v/ðtÞ
such that v/ð0Þ ¼ 0 and vh ¼ vr ¼ 0. We also assume that for symmetry all physical

variables do not depend on /. Writing only the hydrodynamic part of the set of equations

(1)–(4), i.e. setting B ¼ 0, we obtain

cot h
v2
/

r
¼ 1

qr

oP

oh
ð7Þ

v2
/

r
¼ 1

q
oP

or
ð8Þ

ov/

ot
¼ g

q
r2v/: ð9Þ

Combining Eqs. (7) and (8) we obtain

cot h
o

or
v2
/ ¼

1

r

o

oh
v2
/: ð10Þ
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The above equation is satisfied by a function v/ðr; hÞ of the form v/ðr; hÞ ¼ v/ðr sin hÞ.
Using this result we may rewrite Eq. (9) as

o

ot
v/ðt; xÞ ¼

g
q

o2

ox2
þ 1

x

o

ox
� 1

x2

� �

v/ðt; xÞ; x � r sin h: ð11Þ

The general solution of the above equation, via Laplace transform and with the condition

v/ð0; xÞ ¼ 0, is

v̂/ðs; xÞ ¼ aI1

x
ffiffi

s
p
ffiffiffiffi

D
p

� �

þ bK1 �
x
ffiffi

s
p
ffiffiffiffi

D
p

� �

ð12Þ

where, by definition, v̂/ðs; xÞ ¼
R1

0
exp½�st�v/ðt; xÞdt; D ¼ g=q and I1 zð Þ is the modified

Bessel function of the first kind while K1 zð Þ is the modified Bessel function of the second

kind, divergent at the origin as z�1. Assuming a finite solution for r ! 0 and consequently

x! 0, then b ¼ 0. It is evident by the form of Eq. (12) that the boundary condition for the

velocity, i.e. v̂/ðs;R sin hÞ ¼ aI1 R sin h
ffiffiffiffiffiffiffiffi

s=D
p

� �

where R is the sphere radius, can be

satisfied only by a restricted class of functions. One could consider adding another com-

ponent, for example the radial component vr, to describe matter falling in the center. But

the independency of the dynamic by the angular variable / implies that the h component of

the velocity vh also has to be considered. This fact comes directly from the continuity

equation. Let us assume that there is another non vanishing component of velocity, the

radial component vr . The continuity equation is

1

r2

o

or
ðr2vrÞ ¼ 0: ð13Þ

The solution vr ¼ f ðhÞ=r2 diverges at the origin and can not vanish on the surface of the

sphere r ¼ R. To avoid this inconsistency we are forced to add also the third component vh

to the flow. From this we can infer that from the early stages of Earth’s formation to the

present, the velocity of the fluid could not be described by only one component of the

velocity vector and we conclude that the hydrodynamics of the Earth’s interior is a three-D

problem. This analytical conclusion is in agreement with the numerical works presented in

the references (see for example Glatzmaier and Roberts 1995).

4 Thermal Generation of Magnetic Field

Looking at Eq. (3), we notice that is a diffusive-like equation. For the time evolution of B it

is important to give an estimation of its initial value. If the magnetic field driving equation

was purely diffusive, the field would then exponentially decay with a characteristic time of

the order of DR2l0r� 105 years (Stevenson 2010). As a consequence, the term v� B plays

the role to maintain the field since the field would disappear in few hundreds thousands of

years via the diffusion process, while we know that the Earths magnetic field exists from

billions of years (Tarduno et al. 2010).

As a matter of fact, it is known from the Faraday’s law that a magnetic field can not be

varied through a perfect conductor. Thus, it is not possible to vary the internal field

distribution by external fields under the hypothesis of perfect conductor. If we consider that

at the very beginning the velocity of the fluid is very low, and it is growing due to angular

momentum conservation, we can make the hypothesis that at this stage of planetary
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formation the thermal contribution could play a crucial role while the contribution of v� B
could be negligible. Successively, due to the increasing of the metal core density the

conductivity tend to increase making difficult the insertion of an external magnetic field.

Modelling at a first approximation the planet’s core as a perfect conductor leads us to

search for possible internal source mechanisms at the basis of the magnetic field genera-

tion. What we are going to illustrate in this section is that the magnetic field produced by a

thermally induced electrical current has an intensity of the order of the magnetic field of

the Earth and other celestial bodies. Note that field produced by a thermally induced

electrical current would be produced by internal mechanism instead by an external source

as discussed for example in Stevenson (1983). The non uniform temperature can generate a

contribution to the electrical current that is proportional to the gradient of the temperature,

known as Seebeck effect. The idea of a Seebeck effect powered Earth dynamo has been

considered in the past (see for example Stevenson 1987; Giampieri and Balogh 2002)

where the authors focused their attention to the mantle-core interaction. In this paper we

consider the Seebeck effect in the inner-outer core region. We can write the total current as

(Landau and Lifshitz 1981)

J ¼ r Eþ v� B� aðTÞrT½ �: ð14Þ

If r!1, we can generate the term Eþ v� B trough the thermal contribution �aðTÞrT .

Indeed for r!1 then to have a finite current density it must be that

Eþ v� B� aðTÞrT ! 0, i.e. Eþ v� B � aðTÞrT .

It is accepted that the Earth’s core is made mainly of iron with a solid inner core the size

103 km and a liquid outer core of about 2� 103 km thick (Lee 2002). The temperature

distribution of the core is not uniform and it ranges from approximatively 4.5 9 103–

8 9 103 �K at the very center to 3 9 103–4 9 103 �K at the surface of the outer core.

Note that Eq. (3) does not change if aðTÞrT is written as a gradient of a function. To

evaluate the coefficient a, we have to consider the fact that the density of either the solid

inner core, or the fluid outer core, is such that the electrons can be considered a degenerate

Fermi’s gas. Indeed, according to de Wijs Gilles et al. (1988), the core density is of the

order of 104 Kg m�3. This implies that the Fermi energy of the electrons of the Earth’s

core is

eF ¼
�h2

2m
3p2 N

V

� �2=3

� 2� 10�18 J ð15Þ

corresponding to a Fermi temperature TF & 1.4 9 105 �K. This is at least one order of

magnitude higher than the Earth’s core temperature therefore justifying the degenerate

Fermi’s gas approximation. Quantum calculations show that (Landau and Lifshitz 1981)

j aðTÞ j � kB

kBT

eeF

ð16Þ

where kB is the Boltzmann constant and e is the electron charge. Let us consider a very

simplified model of the early stage’s of Earth’s formation. Models suggest that Earth’s core

was completely molten (Buffett 2003). Since the temperature change of the core has a time

scale on the order of Earth’s age (Jacobs 1953) we infer that whatever is the contribution

from the thermal term in Eq. (14) this contribution still holds today with the same order of

magnitude. A widely accepted estimation of the core temperature is approximatively

8 9 103 �K for the inner core and 4 9 103 �K for the outer core (see for example Poirier
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1991; de Wijs Gilles et al. 1988; Alfè et al. 2002). Let us consider the contribution to the

magnetic field due to thermal term. From Maxwell’s equation we obtain

r� BT ¼ l0rJT ¼ �l0raðTÞrT ð17Þ

where l0 is the vacuum permeability and the subscript T stands for thermal. In general, the

temperature distribution in time and space is coupled with the velocity field, Eq. (6), and as

shown in the previous section, all components of the velocity are present so that the

temperature distribution can not be only radial. Note also that we use l0 as the value of the

magnetic permeability since at such temperature we assume that there is no magnetization.

We can deduce the field scale via the relation

BT

R
� l0raðTÞDT

R
ð18Þ

where DT is the difference in temperature, and R is the length scale of the system. We

obtain the scale strength of the thermal magnetic field

BT ¼ l0r
kBTc

eeF

kBDT : ð19Þ

The range of values of the central temperature is Tc � 4:5� 103�8� 103 	K, while the

range of values of the temperature difference is DT � 5� 102�4� 103 	K. The conduc-

tivity value ranges from a theoretical estimation r � 105 S m�1 (Stacey 1967), to a more

recent computational evaluation r � 1:4� 106 S m�1 (Pozzo et al. 2012). Plugging these

values in Eq. (19), we obtain the numerical range of values for the strength of the core of

Earth’s magnetic field

22.BT . 300 gauss: ð20Þ

The estimated strength of the core of Earth ’s magnetic field is approximatively Best � 25

gauss (Buffett 2010) which is close to the minimum value given by Eq. (19). We note that

selecting different values for the temperature, according to the different models present in

the literature, the value of the field would of course change consequently, but the scale

magnitude remains of the order of tens of gauss. The thermal current gives a strong (if not

total) contribution to the magnetic field. It is worthy to stress that in principle the only

phenomenological parameter, i.e. the conductivity r, could be evaluated using quantum

mechanics (Ashok and Evans 1972) so that we can conclude that the field given by the

expression (19) may be written in terms of fundamental constant and physical parameters

of the system such as density N=V and temperature T . Note that dependence on the radius

R of the fluid region is implicit in the dependence of the temperature on R. This is the main

reason why we kept explicit the temperature difference DT in Eq. (19). We conclude that

Eq. (19) represents the scale of the strength of the magnetic field of celestial bodies with an

Earth-like physical condition for the core, from a statistical point of view.

5 Jupiter and Ganymede’s Magnetic Field Estimation

In principle we can apply the ideas of the previous section to other celestial bodies,

particularly in our solar system. The main difficulty with this is the scarcity of information

about the physical internal condition of other planets. With respect to our solar system we
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can make some general considerations. For example, Mercury and Mars are quite smaller

than Earth. This fact surely contributes to a faster cooling of their interiors so we can

expect that the cores of these planets are no longer in the fluid state (Orgzall and Franck

1988). In fact the two planets have a very weak magnetic field.

Venus does not have an appreciable magnetic field (Ness 1974; Nellis et al. 1999) and

there are several possible explanations for this. Venus is a planet very similar to Earth in

dimension but it does not exhibit volcanic activity. According to the models in Stevenson

(1983) Venus has no inner core. It is widely accepted that the core is a fully liquid core.

Thus the core would become conductive over geological time-scales and in a non-con-

vective core, a magnetic dynamos does rapidly decay. Also it has a very slow rotational

motion compared to Earth, and a rotational motion is considered to play a crucial role for

the terrestrial magnetic field. Finally we should consider the possibility that Venus could be

in a reversal phase.

Jupiter is a good candidate to test our model. Even though little is known about the

planet, its internal structure has been modelled by several authors (see for example

Hubbard 1969; Manghnani and Yagi 1998; Fortney and Nettelmann 2010) and the physical

information is enough to allow a rough estimation of the scale of its magnetic field using

Eq. (19). The estimate electrical conductivity ranges from r � 105 S m�1(Manghnani and

Yagi 1998) up to a more recent (average) value r � 106 S m�1 (French et al. 2012), its

temperature ranges from T � 2� 104 	K for the core boundary to T � 104 	K for the

metallic hydrogen boundary, and the estimated density of the metallic hydrogen is q �
4� 103 Kg m�3 (Hubbard 1969; Fortney and Nettelmann 2010). Consequently the Fer-

mi’s energy takes the value eF � 10�17 Joule corresponding to a Fermi temperature TF �
7� 105 	K so that we can apply the Fermi statistic for the electrons in the metallic region.

Plugging these values into Eq. (19) we obtain for the magnetic field of Jupiter an esti-

mation of its strength in the metallic hydrogen region 30.BJ . 300 gauss. Taking into

account that this region extends for a fraction, ranging from 0:7 to 0:9 times the Jupiter

radius and that the surface field, BJS, is related to the core field via the relation

BJS�BJðRC=RSÞ3, we obtain for the surface value of the magnetic field a range of

10.BJS. 220 gauss: ð21Þ

While the upper limit is a couple of order of magnitude larger than the actual strength field,

the lower value is near to the observed values (Smith et al. 1975). As for the Earth, the

values of the parameters are affected by a certain degree of error but the strength of the

proposed field scale still is not very far from the order of the observed field. Finally we

applied our analysis to Ganymede, satellite of Jupiter. The Galileo spacecraft measured at

the surface of the satellite a magnetic field BGS ¼ 7:5� 10�3 Gauss. The available data are

affected by a certain degree of uncertainty and some values of the relevant parameters are

extrapolated by the mathematical models. Nevertheless we can apply Eq. (19) to this case

and the result is in good agreement with the observation. Using Showman and Malhotra

(1999), Bland et al. (2008) as source of data and estimation of the parameters we have that

the central density is the iron density, qG� 7� 103 Kg m�3, the central temperature is

1,500–1,700 �K with DT � 200 	K (Bland et al. 2008). Using as value of the core’s con-

ductivity the conductivity of Earth’s core, r � 105 � 1:4� 106 S m�1 (Stacey 1967; Po-

zzo et al. 2012), we obtain for the central strength of the field in the central region the value

BG � 3:6� 10�1 � 5:1 gauss corresponding to the surface value of the magnetic field
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2:6� 10�3
.BGS. 3:6� 10�2 gauss: ð22Þ

The range of values is of the order of the observed field.

6 Conclusions

We provided an analytical estimation of the magnetic field scale of planets with physical

core conditions similar to that of Earth from a statistical point of view. The magnetic field

strength was evaluated directly from the physical parameters of the center of the planet,

considering density, temperature and core’s size. We showed that an electrical current

generated by a thermal gradient, i.e. the Seebeck effect, can exist in a rotating fluid sphere

and can give an important contribution to the magnetic field. Our conjecture was supported

by estimating the magnetic field strengths of Earth, Jupiter and Ganymede. The range of

values of the estimated field is in agreement with the observed magnetic field intensity of

the celestial bodies.
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