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Abstract Limits are placed on the range of orbits and masses of possible moons orbiting

extrasolar planets which orbit single central stars. The Roche limiting radius determines how

close the moon can approach the planet before tidal disruption occurs; while the Hill stability

of the star–planet–moon system determines stable orbits of the moon around the planet. Here

the full three-body Hill stability is derived for a system with the binary composed of the

planet and moon moving on an inclined, elliptical orbit relative the central star. The

approximation derived here in Eq. (17) assumes the binary mass is very small compared with

the mass of the star and has not previously been applied to this problem and gives the criterion

against disruption and component exchange in a closed form. This criterion was applied to

transiting extrasolar planetary systems discovered since the last estimation of the critical

separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a) for a variety of planet/

moon ratios including binary planets, with the moon moving on a circular orbit. The effects

of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed

and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but

with the moon moving with a variety of eccentricities and inclinations. For the non-zero

values of the eccentricity of the moon, the critical separation distance decreased as the

eccentricity increased in value. Similarly the critical separation decreased as the inclination

increased. In both cases the changes though very small were significant.

Keywords Celestial mechanics � Extrasolar planets and satellites � Hill and Roche

stability

1 Introduction

All the giant planets in the Solar System have extensive satellite systems. These systems

fall into two distinctive types. There are the regular satellites which are generally large and
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close to the planet and have planar and near circular orbits; and there are the irregular

satellites which are usually very small and move at large distances from the planet on high

eccentricity, high inclination orbits and are often retrograde in their motion. The regular

satellites are most likely to have formed during the formation of the planet itself out of the

primordial disc material surrounding the central star (Mosqueira and Estrada 2003). The

irregular satellites with their non-planar eccentric orbits are more likely to have been

captured in orbit around the planet at a late stage in the planet’s evolution (Peale 1999).

The importance of moons has also become more evident as it is clear that the axial tilt

(obliquity) of the Earth is stabilized by the presence of the Moon (Laskar et al. 1993). This

is in contrast with the obliquity of Mars, which with only two relatively small moons,

fluctuates chaotically (Laskar and Robutel 1993). The presence of moons is therefore likely

to be crucial for a planet to have a stable obliquity necessary for the existence of a long-

term habitable zone.

It therefore seems very likely that many of the extrasolar planets, of which there are

currently 1,780 observed in 1,103 planetary systems, 460 of which are multiple planetary

systems, will possess satellite systems. A list of these extrasolar planetary systems is

available at the web sites http://exoplanet.org and http://exoplanet.eu/catalog.php. In this

paper we will only discuss the stability of possible moons orbiting a planet in a single star

system (P-type planets). So called S-type planets orbiting around one of the primaries in a

binary star system will not be considered. A number of techniques have been proposed for

observing possible extrasolar moons. The use of planetary transits is currently the most

likely to produce a detection. One method is to look for any detectable dips in the stellar

light curve produced by the planet and the moon or moons during a transit (Sartoretti and

Schneider 1999). The alternative related method is to monitor any variations in the position

and velocity of the planet during transits. The perturbations produced by a satellite makes

two possible detectable changes in the orbit of the planet. The first effect is to alter the

position of the planet so that the transit lightcurve seems to shift about. This is known as the

transit time variation (TTV) and was first predicted by Sartoretti and Schneider (1999). The

other change is in the velocity of the planet which is inversely proportional to the duration of

the transit. So that as the velocity changes due to the dynamical interaction between the

moon and planet, then so also does the transit duration. This transit duration variation

(TDV) was predicted by Kipping (2009). It is the combination of these two changes which

allows both the mass of the moon and its orbital distance to be calculated. It should be noted

that it is not possible to find either of these physical parameters from TTV and TDV alone.

A number of searches for extrasolar moons have so far been made employing the NASA

Kepler mission photometry and using the transit timing techniques outlined by Kipping

(2009). They were applied to the hot Jupiters: Kepler-4b, Kepler-5b, Kepler-6b, Kepler-7b

and Kepler-8b (Kipping and Bakos 2011a), and to TrES-2b (Kipping and Bakos 2011b).

Both investigations produced null results but they did indicate that the observations were

sensitive to the presence of sub-Earth masses. Kipping et al. (2013) analysed Kepler data

for seven viable satellite hosting planetary candidates but have not yet found evidence of

any dynamical variations. More recently Kipping et al. (2014b) have found ‘‘no compelling

evidence’’ for exomoons around eight Kepler planetary candidates associated with

M-dwarfs. It should noted that their project is however sensitive to Earth–Moon mass ratio

moons in approximately 1 in 6 cases and to Pluto–Charon mass ratio exomoons in

approximately 1 in 3 cases (Kipping 2014a). The discovery of a sub-Mercury sized exo-

planet transiting Kepler 37 (Barclay et al. 2013) also suggests the presence of small bodies

in extrasolar planetary systems. So far there have not been any positive detections of

extrasolar moons.
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Regardless of the actual mechanism of formation and evolution of such moons, they still

need to satisfy certain dynamical criteria. In particular, by examining the regions of orbital

stability available generally and to particular systems we can determine the long-term

survival of such moons and also predict where such moons are likely to be observed. In

order to proceed further we will now consider various aspects of the stability of such

possible moons.

2 Stability Limits

An important aspect of these possible moons is their stability. For orbital stability, the

possible satellites are assumed to have orbital radii which lie between the Roche limit as

the inner boundary and the Hill radius as the outer boundary. The smallest tidally stable

orbit of a moon is given by the Roche limit, Rroche; as

Rroche ¼ fRp

qp

qs

� �1
3

¼ f
3MP

4pqs

� �1
3

; where qp [ qs ð1Þ

where Rp is the radius of the planet and qp and qs are the mean densities of the planet and

moon respectively; while MP is the mass of the planet and f is a numerical factor which for

a rigid spherical satellite is f ¼ 2
1
3 ¼ 1:26 (Scharf 2006); while for a fluid-like body it is

given by f = 2.44, (Darwin 1908). A moon moving inside this limit would either collide

with the planet or be torn apart very rapidly by the tidal forces exerted by the planet (see

Donnison and Williams 1975 for an estimate of the likely dispersal timescale).

An important aspect of the evolution of extrasolar moons is the long term tidal stability

of their orbits (Correia 2009; Namouni 2010; Brasser et al. 2013). The tidal stability of the

satellites around close-in Giant planets has been investigated by Barnes and O’Brien

(2002). Since the more massive satellites will be removed more quickly than the less

massive ones, they derive an upper limit in mass for those satellites that might have

survived to the present day. The two major uncertainties are the value of the tidal dissi-

pation factor and, the tidal Love number. Barnes and O’Brien (2002) choose a value which

corresponds to the value of a polytrope of index n = 1 (Hubbard 1984), and assumed a

dissipation factor of 105. The results obtained suggest that only very small close-in moons

could have survived. They also suggest that Earth-mass moons could exist around Jupiters

for billions of years around stars of mass Mstar [ 0:5M�. However this estimation neglects

the effects of satellite tides on planetary rotation and is therefore only applicable to systems

in which the mass of the moon is much less than that of the planet. Sasaki et al. (2012)

found that the inclusion of satellite tides allowed for significantly longer lifetimes for

massive moons. With the uncertainty in the main parameters and the tidal interaction

largely only effective for close-in moons, it is not clear how reliable are any upper limits

proposed. The tidal effects are weak and since we will only be dealing with specific values

of eccentricity and inclination rather than their evolution, we will not impose these possible

limits on the systems discussed later.

Estimating the outer boundary of the orbits is more problematical. In general it is only

possible to follow the long-term orbital evolution of such systems and hence their long-

term stability by direct numerical integration of the orbits of all three masses. Analytical

approaches can however provide limits on the range of orbital elements that a system must

possess if it is to remain stable and avoid disruption, exchange or collision of the
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components. However it is clear from numerical calculations that the straight Hill radius

given by the restricted circular three-body problem as

RH ¼ a2

MP

3M�

� �1
3

; ð2Þ

where MP is the mass of the planet, M� is the mass of the central star and a2 is their orbital

separation distance, is not sufficiently accurate as a measure of the critical planet–satellite

separation distance, a1. Hamilton and Krivov (1997), using the Jacobi constant found

numerically for circular orbits that the critical planet–satellite separation in terms of RH ,

that is a1=RH ; is 0.53 for prograde orbits and 0.69 for retrograde orbits. Using the full

three-body problem configuration with M� � MP þMS; where MS is the mass of the

satellite, and circular orbits Donnison (1988) found the critical Hill stability critical dis-

tance ratio for systems with prograde orbits could be approximated for different masses

ratios by

a2

a1

� �
¼ 0:7420

81M�
MP þMS

� �1
3

: ð3Þ

Taking the Hill radius of the binary as (see Donnison and Williams 1975)

RH ¼ a2

MP þMS

3M�

� �1
3

; ð4Þ

then we find on combining this equation with Eq. (3) that the critical separation in terms of

this radius for prograde circular orbits, a1=RH , is 0.449. Donnison and Mikulskis (1992)

found numerically that for prograde three body systems moving on circular orbits that there

was a good correspondence between the results obtained for the critical orbital or Lagrange

stability and the full three-body Hill stability method employed here (see also Donnison

and Mikulskis 1995 for eccentric orbits). Donnison and Mikulskis (1994) and Eggleton and

Kiseleva (1995) have also shown numerically that retrograde circular orbits tend to be

more stable than their prograde counterparts.

Domingos et al. (2006), using numerical simulations of the orbits using the restricted

elliptic three-body problem, with the moon assumed to be massless examined the boundary

of the stable regions for a fixed planet/star mass ratio of 10�3. They found empirically for

that mass ratio that for a prograde and retrograde moons the critical orbital distance can be

approximated by expressions in terms of the eccentricity of the planet and the eccentricity

of the moon. They found prograde moons on circular orbits a1=RH ¼ 0:4895, which is very

similar to the values obtained previously; while for corresponding retrograde orbits

a1=RH ¼ 0:9309. Here RH is the Hill radius given by the restricted circular three-body

problem as in Eq. (2). This method is in contrast to the exchangeability criteria given by

full three body Hill stability(see later in Sect 4).

Weidner and Horne (2010) applied limits to possible extrasolar moons using the Rôche

limit given by Eq. (1) and the empirical approximations by Domingos et al. (2006) to the

87 then currently known transiting planets. Donnison (2010a) using the full three-body Hill

stability approach (to be discussed in detail later) determined the critical separation values

for all the 334 then known extrasolar planet systems for a variety of possible planet/moon

mass ratios, assuming that the moon moved on a circular orbit. It was found that the critical

moon–planet separation did not change significantly when the planet/moon mass ratio was

altered if the planet orbits its parent star on a circular orbit. However, for systems with
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eccentric orbits it was found that there were large changes in the critical separation as the

mass ratio decreased, with the regions of stability rapidly decreasing. The effect of an

eccentrically orbiting moon was only examined generally for a planet moving on a circular

orbit. It was found that as the eccentricity was increased the regions of Hill stability

decreased. Here we will reinvestigate all these aspects using a more easily applied

approximation, which has not been applied to this problem previously, to actual systems

which have more than tripled in number during the intervening period. In the present

investigation the effects of the binary eccentricity and inclination on the Hill stability will

also be determined for all the currently known transiting extrasolar planet systems where

the mass is known. It should be noted that Weidner and Horne (2010) found that the

majority of Hill radii derived from Domingos et al. (2006) agreed within better than 10 %

with those derived by Donnison (2010a) for the 43 extrasolar planets common to both

samples. To proceed further we now consider Hill stability in some detail.

3 Full Three Body Hill Stability

The concept of zero velocity surfaces as boundaries of possible motion was introduced by

Hill (1878) in the circular restricted three-body problem in which a body of infinitesimal

mass moves under the gravitational influence of two finite masses. The topology of these

surfaces and hence the regions of possible motion are controlled in this case by the Jacobi

constant. For full three-body systems, where all the masses have finite values, the theory of

Hill stability was developed using different approaches by Gobulev (1967, 1968), Marchal

and Saari (1975), Zare (1976, 1977), and Bozis (1976). For this full three-body case the

important parameter is c2E, where E is the energy and c the angular momentum of the

system of three masses. This parameter, which corresponds to the Jacobi constant in the

restricted problem of three bodies, controls the topology of the zero velocity surfaces and

since the bodies may not cross these surfaces determines the regions of possible motion.

The value of c2jEj for the actual system is compared with the critical value derived for the

corresponding three-body Hill surfaces determined by the position of the collinear

Lagrangian points. The system will then be stable against disruption or exchange of

components if its actual value of c2jEj is greater or equal to the critical value. The system is

then considered to be Hill stable. If this condition is not satisfied then exchange of com-

ponents, disruption or collision is possible but not inevitable. The condition for stability is

a sufficient condition but not a necessary one so that exchange might not occur when the

condition is violated but certainly cannot occur if the condition is satisfied.

This theory was originally applied only to coplanar systems where all three bodies

moved on bound orbits (Szebehely and Zare 1977; Walker et al. 1980; Walker and Roy

1981; Marchal and Bozis 1982; Donnison and Williams 1983).The theory was extended to

unbound coplanar orbits by Donnison (1984a, b) and to inclined unbound orbits by

Donnison (2006, 2008) and to bound inclined orbits by Veras and Armitage (2004) and

Donnison (2009). The basic theory was applied to extrasolar planetary systems. Here in

this work, we will consider the situation where the binary is small in mass compared with

the third mass, originally discussed for planar systems by Donnison (1988), and recently

extended by Donnison (2010a, b) to inclined systems and applied to very low mass binary

systems and possible circular orbiting exomoons. In this work we derive and use a more

easily applicable approximation with a closed solution to the problem of binary planets and

moons and investigate and extend the orbital stability discussion to possible eccentric and

inclined moons of extrasolar planets. The work is new but the approach is a development
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of the earlier work of Szebehely and Zare (1977).We now consider the general theory first

and then move on to the appropriate approximation.

4 Binary Systems Moving on Inclined Elliptic Orbits Relative to the Central Body

For this configuration we consider a system of three bodies with masses M1;M2; and M3,

which can take any positive value. The masses M1 and M2 form an inner binary system

with semi-major axis a1 and eccentricity e1; whose barycentre G moves on a elliptical orbit

relative to the third body M3 with an inclination i, measured relative to the orbital axis of

the inner binary with semi-major axis a2 and eccentricity e2. The total energy of the

system, using a two body approximation, (see Szebehely and Zare 1977), is then

E ¼ � GM1M2

2a1

þ GM3l
2a2

� �
; ð5Þ

where G is the gravitational constant and l ¼ M1 þM2 is the mass of the binary. The

corresponding exact angular momentum squared for the system is then

c2¼G
M2

3l
2

M
a2 1�e2

2

� �
þM2

1M2
2

l
a1 1�e2

1

� �
þ2M1M2M3

l
M

a1a2 1�e2
1

� �
1�e2

2

� �� �1
2

cos i

� 	

ð6Þ

where M¼M1þM2þM3 and 0�� i�180�. Here i¼ 0� indicates that M3 and the binary

pair are both moving in the same plane and in the same sense on coplanar prograde orbits,

while i¼ 180� indicates that the motion of the masses is in the opposite sense that is

coplanar retrograde motion. The motion is generally prograde if i\90� and retrograde if

i> 90�.
The parameter controlling the topology of the zero velocity surfaces of the actual

system, c2E; can now using Eqs. (5) and (6) be written as Sac where

Sac ¼
c2jEj
G2

� 	
ac

¼ M1M2M2
3l

2

2M

a2

a1

� �
1� e2

2

� �
þM3

1M3
2

2l
1� e2

1

� �

þM2
1M2

2M3

l 1� e2
1

� �
1� e2

2

� �
M

� �1
2 a2

a1

� �1
2

cos iþM3
3l

3

2M
1� e2

2

� �

þM2
1M2

2M3

2

a1

a2

� �
1� e2

1

� �
þM1M2M2

3

l3 1� e2
1

� �
1� e2

2

� �
M

� �1
2 a1

a2

� �1
2

cos i

: ð7Þ

The corresponding critical value of the c2E parameter for the Hill stability surfaces at the

position of the collinear Lagrange points for a central configuration M1 : M2 : M3, depends

only on the three masses present. If the ratio of the distances jM2M3j : jM1M2j is taken to

be 1 : x, then x, the position of the appropriate collinear equilibrium point, is the real

solution of the usual Lagrange quintic equation given by (see Roy 2005 for derivation)

M2 þM3ð Þx5 þ 3M3 þ 2M2ð Þx4 þ 3M3 þM2ð Þx3 � 3M1 þM2ð Þx2

� 3M1 þ 2M2ð Þx� M1 þM2ð Þ ¼ 0:
ð8Þ

Zare (1977) showed that the critical value of c2jEj here can be conveniently computed in

terms of x in the form
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Scr ¼
c2jEj
G2

� 	
cr

¼ f 2ðxÞgðxÞ
2M

; ð9Þ

where

f ðxÞ ¼ M2M3 þ
M1M3

1þ x
þM1M2

x
;

and

gðxÞ ¼ M2M3 þM1M3ð1þ xÞ2 þM1M2x2: ð10Þ

It should be noted that there was a typographical error in the indices quoted for f ðxÞ in

Donnison (2010a, b). Only in certain special cases is it possible to express x in Eq. (8) and

hence Scr in a closed form. In general it has to be solved numerically. For the system to be

Hill stable it must therefore satisfy the condition Sac � Scr 	 0 in order for the system not to

be disrupted or any exchange of components to occur.

To solve this condition generally for the critical value of ða2=a1Þ in terms of the orbital

elements e1; e2 and i, Donnison (2009) showed that the critical condition can be solved

numerically as a fourth order algebraic equation of the form

ð1þ y2Þðb2y2 þ 2by cos iþ 1Þ � Ay2 ¼ 0; ð11Þ

where

y ¼ a1

a2

M3l
M1M2

� �1
2

; b ¼ M1M2

M3

� �3
2 M

l4

� �1
2 1� e2

1

1� e2
2

� �1
2

ð12Þ

and

A ¼ 2ScrM

M3
3l

3ð1� e2
2Þ
:

It should be noted that in Donnison (2009, 2010a) this equation had a typographical error in

the sign of A, which should be defined as positive. Equations (11) and (12) use the same

basic parameters as Szebehely and Zare (1977) did for a completely bound coplanar three

body system but now with the inclusion of the inclination. The application of this two body

approximation to hierarchical systems has been shown to be very good, with disagreement

between using the exact energy and this approximation being very small (Walker et al.

1980; Kiseleva et al. 1994; Veras et al. 2013). We now consider a particularly important

combination of masses for which there is a closed solution.

5 Approximate Solutions for Systems Where the Third Mass M3

is Large Compared to the Binary Mass

A closed solution is possible in this case when M3 � M1 þM2. A reasonable approxi-

mation to x in the quintic Eq. (8), if we identify M3 ¼ M�; M1 ¼ Mp;M2 ¼ Ms, is then

given by (Walker et al. 1980; Walker 1983) as

x0 ¼
MP þMS

3M�

� �1
3

: ð13Þ
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Since x0 is very small the critical value Scr , which is achieved at the Lagrangian point L2,

can be expanded in terms of increasing powers of x0; with l ¼ 3M�x
3
0; to give

Scr ¼ bfð1þ kÞ3 þ 9kðkþ 1Þx2
0 þ 2kðk� 1Þ � 3ð1þ kÞ3

� �
x3

0

þ kð2þ 5kÞ þ 21k2

1þ kð Þ

� �
x4

0 þ Oðx5
0Þ þ � � �g;

ð14Þ

where

k ¼ MP

MS

	 1; and b ¼ M2
�M

3
S

2
:

It should be noted that there was a typographical error in the fourth order term in Donnison

(2010a, b, 2011). As this term was not used in any of the calculations the results obtained

are unaffected.

Similarly, the actual value Sac can be expanded in terms of x0 to give

Sac ¼ b ð1þ kÞ3ð1� e2
2Þ þ 2

ffiffiffi
3
p

kð1þ kÞ a1

a2

� �1
2

ð1� e2
1Þ

1
2ð1� e2

2Þ
1
2 cos i

 !
x

3
2

0

(

þ 3kð1þ kÞ a2

a1

� �
ð1� e2

2Þ þ
3k2

ð1þ kÞ
a1

a2

� �
ð1� e2

1Þ � 3ð1þ kÞ3 1� e2
2

� �� �
x3

0

þ 6
ffiffiffi
3
p

k2

ð1þ kÞ
a2

a1

� �1
2

1� e2
1

� �1
2 1� e2

2

� �1
2cos i

 !
x4:5

0 � 9 1þ kð Þ 1� e2
2

� � a2

a1

� �
x6

0

þ O x7:5
0

� �
þ � � �

�
:

ð15Þ

For low mass binaries comprising a moon and a planet, it is not necessary to retain all the

terms, but only those up to order x3
0. For a hierarchical triple system, such as we are

considering, the distance separation ratio a2=a1 is large and can be considered to vary as

x�3
0 (Li et al. 2010). We have therefore separated out one of the terms of order x4:5

0 ; as this

term which varies as a2=a1ð Þ
1
2x4:5

0 can be considered as of order x3
0 (see Donnison 2011),

similarly the x6
0 term, omitted by Li et al. (2010), which varies as a2=a1ð Þx6

0 can be

considered of order x3
0 and should also be retained By contrast the term involving a1=a2ð Þx3

0

would be of order x6
0 and all the other x4:5

0 and x6
0 terms in the expansion can be

safely neglected. Therefore retaining only terms of up to order x3
0; the critical condition

Sac � Scr ¼ 0 can now be written in the slightly amended form, with decreasing powers of

a2=a1ð Þ, as

3ð1þ kÞ 1� e2
2

� �
x3

0 k� 3x3
0

� � a2

a1

� �
þ 6

ffiffiffi
3
p

k2 1þ kð Þ�1
1� e2

1

� �1
2 1� e2

2

� �1
2x4:5

0 cos i
� � a2

a1

� �1
2

� 1þ kð Þ3e2
2� 9k kþ 1ð Þx2

0þ 3 1þ kð Þ3e2
2� 2k k� 1ð Þ

� �
x3

0

þ 2
ffiffiffi
3
p

kð1þ kÞ
1
2 1� e2

1

� �1
2 1� e2

2

� �1
2x

3
2

0 cos i
� � a1

a2

� �1
2

¼ 0:

ð16Þ
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Multiplying Eq. (16) through by a2=a1ð Þ
1
2, enables it to be written in the form of a standard

cubic equation in a2=a1ð Þ
1
2; which can be solved using Viete’s variation on Cardano’s

method. This cubic equation, which is slightly different to that considered previously, has a

real critical solution (Li et al. 2010; Liu et al. 2012) which can be expressed in closed form

by

a2

a1

� �
cr

¼
9þ 1þ kð Þ2k�1e2

2 x�2
0 � 3x0

� �
þ 2 k� 1ð Þ 1þ kð Þ�1

x0

9
4

� �
1� e2

2

� �
x0

cos2 1

3
cos�1 3

ffiffiffi
3
p
K 3� 4e2

2

� �
9þ 1þ kð Þ2k�1e2

2 x�2
0 � 3x0

� �
þ 2 k� 1ð Þ 1þ kð Þ�1

x0

� �3
2

2
64

3
75�p

3

8><
>:

9>=
>;;

ð17Þ

where we have set

K ¼ 1� e2
1

� �1
2cos i; ð18Þ

and e2 is the eccentricity of the binary orbit relative to the star, e1 the eccentricity of the

binary, MP the mass of the planet, MS the mass of the moon, M� the mass of the central star

and i the inclination of the binary orbit relative to the star,

and

x0 ¼
MP þMS

3M�

� �1
3

; k ¼ MP

MS

	 1:

It should be noted that this Hill criterion depends only on the eccentricity e1 and the

inclination i through this term K; so that the effects of eccentricity and inclination on the

critical distance a2=a1ð Þcr can be studied together. The critical a2=a1ð Þcr values decrease as

K is raised from �1 to þ1; which means that the Hill stable region expands with increasing

K for given mass ratios (Li et al. 2010).We should note that perturbation theory (Kozai

1962; Lidov 1962) has shown that e1 and i are subject to strong perturbations, particularly

for large values of these parameters. Since the time scale of changes in these elements is

long compared to the observational time scale (Mazeh 2008), it is justifiable to consider the

Hill stability of a system for all given values of these elements.

For circular orbits where e2 ¼ 0; Eq. (17) reduces to the expression

a2

a1

� �
cr

¼ 9þ 2 k� 1ð Þð1þ kÞ�1
x0

9
4

� �
x0

cos2 1

3
cos�1 9

ffiffiffi
3
p
K

9þ 2 k� 1ð Þ 1þ kð Þ�1
x0

� �3
2

2
64

3
75� p

3

8><
>:

9>=
>;:

ð19Þ

In general these equations are given in terms of x0; k; e1; e2 and i which enables them to be

used to derive the critical value of a2=a1 for a system.

For i ¼ 90�; that is the largest inclination for prograde orbits, the expression given by

Eq. (17) simplifies and can be written in terms of the critical pericentric distance q2 ¼
a2ð1� e2Þ as
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q2

a1

� �
cr

¼
1þ kð Þ2e2

2 1� 3x3
0

� �
þ 9kx2

0 þ 2k k� 1ð Þ 1þ kð Þ�1
x3

0

3kð1þ e2Þx3
0

: ð20Þ

Here K ¼ 0, and the criterion is independent of the binary orbit eccentricity e1. If in

addition the orbit is circular around the third massive body, then this reduces further to give

q2

a1

� �
cr

¼ 3

x0

þ 2 k� 1ð Þ
3 1þ kð Þ : ð21Þ

Therefore q2=a1ð Þcr then lies in the range

3

x0

� 2

3
� q2

a1

� �
cr

� 3

x0

þ 2

3
; ð22Þ

the lower limit corresponding to k �! 0 and the upper limit to k �!1, with q2=a1ð Þcr¼
3=x0 ¼ 3a2=RH for the equal mass binary case where k ¼ 1:0. As x0 is small, the term

involving x0 is the dominant term in all these expressions. It should be noted, as mentioned

earlier, that Hill stability refers only to the exchangeability of the component masses and

does not correspond directly to orbital stability. So that satellites with inclinations of about

90� would be highly unstable (Kozai 1962; Lidov 1962). Harrington (1972) suggested from

numerical calculations that there was little variation of stability with inclination, except

close to 90�, where instability was clearly present. These equations obtained can be applied

to a variety of physical systems. Here we will consider extrasolar planetary systems and

their possible moons.

6 Current Data on Extrasolar Planetary Systems

The binary system composed of the planet and moon has a combined mass given by

MP þMS Since in general the system will be inclined to the line of sight of the observer,

then only Mp sin ip, can be measured where ip is the inclination angle of the orbit plane to

the line of sight. Currently there are 361 planets with known inclinations. These lie in the

range 0:962� � i� 172:10�, with a mean of 81:173� and a median of 87:25�: The vast

majority of these systems with known inclinations are obtained from transits and are very

close to 90� as would be expected using this method. We can only apply the theory

outlined if the mass of the central star, is known. Since in the earlier calculations we retain

terms up to order x3
0, where x0 ¼ Mp 1þ k�1

� �
=3M�

� �1
3, the error which is of order of x4

0 is

clearly negligible.

The number of planets discovered so far is 1780. For current data see the web sites

http://exoplanet.org and http://exoplanets.eu/catalog.php. maintained by Schneider. The

actual extrasolar planetary systems can be divided using the methods by which they were

discovered or confirmed. Originally the majority of the systems were discovered by the

detection of the variation in the radial velocity measurements of the stellar component

which are due to the reflex response caused by the motions of its planetary companion.

Currently 419 planetary systems, with 558 planets and 98 multiple planet systems have

been detected in this way. For systems solely discovered by this technique only the

measurement of Mp sin ip is available so that the masses determined can only be considered

as lower limits to the actual masses. Detection of a planet by its transit across the face of its

companion star has led to the discovery of 614 planetary systems, comprising some 1,131
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planets with 350 multiple planet systems. Microlensing techniques have led to the dis-

covery of 26 planetary systems with 28 planets, only two of which are a multiple planet

systems. Direct imaging has led to the detection of 43 planetary systems with 47 planets,

two of which is a multiple system. The remaining 11 planetary systems with 14 planets, 2

of which are multiple systems have been detected by timing methods. Since the mass of an

exoplanet is only completely determined for systems discovered by the transit method

which have subsequently had follow up detections of their radial velocity, it is only those

systems we consider. In addition, it should be noted that the prospects for further planetary

confirmations is bright with the Kepler mission transit observations of unconfirmed

extrasolar planetary candidates reaching 3601 (http://nssdc.gsfc.nasa.gov/planetary/

factsheet/jupiterfact.html).

7 General Results

7.1 Comparison with Previous Results for Circular Orbits

Initially, as a first approximation we will see how the results obtained from our theory,

using Eq. (17), compare with the critical numerical values for a1=RH determined for

prograde three-body systems moving on circular orbits given in the section on stability. For

comparison the critical values of a2=a1 for all the known transiting extrasolar planets were

determined using (17) and hence the critical separation ratio a1=RH for binary mass ratios

k ¼ 1:0; 10; 100; 1;000, on the assumption that the moon moves on a circular orbit, that is

e1 ¼ 0:0. This covers masses for binary planets down to masses of small moons. Figure 1

is a plot of the orbital eccentricity e2 against the critical separation a1 in terms of the

appropriate Hill radius using Eq. (4), that is a1=RH , for all the transiting planets for which

there is full data. The results for k ¼ 1:0 are shown in the figure as black circles, for k ¼ 10

as red squares, for k ¼ 100 as green diamonds and finally for k ¼ 1;000 as blue triangles.

We find that for the four binary mass ratios that all the planets, for which the necessary data

was available, lie in the ranges: 0:001596� a1=RH � 0:4492 for k ¼ 1:0; 0:000356�
a1=RH � 0:4477 for k ¼ 10; 0:000040� a1=RH � 0:4475 for k ¼ 100; 0:00000406� a1=
RH � 0:4473 for k ¼ 1;000:

It is clear from the graph and the above ranges, that all the systems satisfy the condition

a1=RH � 0:4492. All of these systems have a1=RH values which are below the critical

values for prograde systems given by the various criteria obtained for circular orbits in

Sect. 2, but not those for retrograde systems. Therefore, as we can see from the figure,

these moons clearly satisfy the criteria and are stable. A plot of planetary mass against

a1=RH for the same set of planets, not shown, again indicates that all the systems con-

sidered are likely to be stable. Before considering the application of the theory to these

observed systems for eccentric and inclined orbits of the moons, we will consider general

trends in stability for these types of variations for different mass ratios.

7.2 Changes in the Range of Orbital Eccentricity and Inclination

Applying the theory generally to extrasolar planets which have an x0 value of x0 ¼
MP þMSð Þ=3M�ð Þ

1
3¼ 0:1; where this value of x0 is in the range of the expected values of

extrasolar planetary systems where a solar mass star is orbited by a Jupiter mass planet

with an accompanying moon. In order to clarify the regions of stability, the k values have
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been split into a number of ranges. In Fig. 2 there is a plot of the critical q2=a1 values

where q2 ¼ a2ð1� e2Þ is the closest approach of the binary, composed of the planet and

moon, to the central star against e2 for different planet-moon ratios k. Here e2 lies in the

range 0:0� e2� 1:0, while the value of k varies in the range 1:0� k� 10, that is from a

moon comparable to the mass of the planet (a binary planet system) to one with a mass of

1/10 the mass of the planet. These systems are Hill stable against exchange of the com-

ponents if they lie to the right of the appropriate stability curve. To the left of the curves the

Hill surfaces open out and exchange or collision of the component masses of the system is

possible but not inevitable. The critical distance ratios, q2=a1 increase and the

Fig. 1 This shows a plot of planetary eccentricity e2 against the ratio of the critical separation of the moon and
planet, a1, to the Hill radius RH ; a1=RH for the four values of k; for all the currently known transiting extrasolar
planetary systems for which there is full data. The results for k ¼ 1:0 are shown as black circles, for k ¼ 10 as
red squares, for k ¼ 100 as green diamonds and finally for k ¼ 1;000 as blue triangles. (Color figure online)
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q  /a
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x= ((Mp+Ms)/3M ) =0.1
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*
Fig. 2 This figure shows a plot
of the critical q2=a1 values,
where q2 ¼ a2ð1� e2Þ is the
closest approach of the binary,
composed of the planet and
moon, to the central star against
e2 for different planet-
moon ratios k. The masses satisfy
the condition

x0 ¼ M1 þM2ð Þ=3M3ð Þ
1
3¼ 0:1,

which is relevant to a Jupiter
mass planet with an
accompanying moon
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corresponding regions of stability decrease as the value of the orbit eccentricity e2 is

increased. Increasing the value of k also moves the stability curves to the right though the

differences are not pronounced for circular orbits. It was also found that varying the

inclination through the values i ¼ 0�; 30�; 45�; 60�; 75� and 90� did not change the results

for q2=a1 very much compared to the situation where there are changes in e2 and k; as the

different curves all merged into one line for a given value of k indicating that they are of

limited importance for this mass range (value of x0). In Fig. 3 the range of the planet-

moon ratio is increased to cover the smaller moons. The range of k is 10� k� 500, which

extends the mass range down into the Earth and super-Earth mass range. As in the previous

figure, the q2=a1 values increase as the value of e2 is increased and even more rapidly as

the value of k is increased, with regions of stability again lying to the right of any given

curve. As before the effects of inclination are secondary and do not change perceptibly

compared to changes due to variations in eccentricity and hence orbital distance. Although

the changes in inclination and binary eccentricity are secondary features compared the

changes in orbital distance, they are still significant and will be discussed more fully in a

later section.

7.2.1 Application to the Observed Systems

The main emphasis in Donnison (2010a) was on the variations of the distance of the

planet–moon system from the central star critical for stability, particularly with orbital

eccentricity, e2; while the moon was assumed to move on a circular orbit. It was found that

for the sample considered when e2 ¼ 0; there were only small changes in the critical

separation a1 as the planet/satellite mass ratio k increased; while for orbits where e2 6¼ 0

there could be large changes in a1 for the larger eccentricities as k increased. Since this

original analysis the number of extrasolar planets discovered has more than trebled in

number and many of the values of the orbital elements of the previously discovered

systems have been adjusted and refined. A complete listing for all the known extrasolar

planets would take up too much space and would lead to a degree of overlap with the

previous results listed in Donnison (2010a). We will therefore only apply the approxi-

mation derived here to determine stability of only those transiting extrasolar planets with

well determined orbits and masses that have been discovered since 2010. This does not

include the recent Kepler data for which in general the planetary mass is not determined

(http://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html).

Table 1 is a list of systems with data taken from the web sites http://exoplanet.org and

http://exoplanet.eu/catalog.php. The planetary masses satisfy Mp\13 Jupiter masses (MJ),

which is below the critical lithium burning mass (Spiegel et al. 2011), while additional

masses satisfy Mp\20 MJ. To determine the critical distance and hence the critical sepa-

ration distance, Eq. (17) is applied to a system given that Mp; ap; ep and M� are all available.

If the eccentricity of the orbit of the extrasolar planet is not known, then it is assumed to

move on a circular orbit. In columns (1–5) are the observed data for the extrasolar planet,

with the name of the system, the mass of the planet, Mp; in Jupiter masses, the semi-major

axis ap in au, the eccentricity ep of the planet, and the mass of the parent star M� in solar

masses. The order of the listing is based on increasing period of the planet orbit, though an

effort has been made to keep the data for most multiple systems together. In columns (6–8)

are the derived critical distances a1 divided by the appropriate Hill radius a1=RH , shown for

planet mass ratios k ¼ 1:0; 10; 100; 1;000. These mass ratios span the range from a binary

planet down to an Earth mass planet orbiting a Jupiter mass planet.
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Table 1 We show the data for the transiting extrasolar systems where the mass is determined (discovered
since 2010) with the name, Mp, semi-major axis ap, eccentricity ep, and the mass of the parent star M�, in

solar masses listed in columns (1)–(5)

Planet MpðMjÞ apðauÞ ep MstarðM�Þ a1=RH a1=RH a1=RH a1=RH

k ¼ 1:0 k ¼ 10:0 k ¼ 100 k ¼ 1;000

Kepler-70b 0.014 0.006 – 0.496 0.4492 0.4464 0.4459 0.4459

Kepler-70c 0.0021 0.0076 – 0.496 0.4492 0.4477 0.4475 0.4474

Kepler-42b 0.009 0.0116 – 0.13 0.4492 0.4454 0.4448 0.4447

WASP-43b 2.034 0.01526 0.0035 0.717 0.4489 0.4352 0.4246 0.3556

Kepler-10b 0.0143 0.01684 0 0.895 0.4492 0.4469 0.4465 0.4464

Kepler-10c 0.063 0.2407 0 0.895 0.4492 0.4454 0.4448 0.4447

HAT-P-23b 2.09 0.0232 0.106 1.13 0.2635 0.1136 0.0174 0.0018

WASP-33b 4.59 0.02558 0 1.495 0.4492 0.4360 0.4340 0.4337

HAT-P-36b 1.832 0.0238 0.063 1.022 0.3562 0.2121 0.0447 0.0051

Quatar-2b 2.487 0.02149 0 0.74 0.4492 0.4356 0.4335 0.4333

WASP-77b 1.76 0.024 – 1.002 0.4492 0.4382 0.4365 0.4363

Quatar-1b 1.09 0.02343 0 0.93 0.4492 0.4393 0.4377 0.4375

WASP-46b 2.101 0.02448 0 0.956 0.4492 0.4374 0.4355 0.4353

TrES-5 1.778 0.02446 – 0.893 0.4244 0.4378 0.4359 0.4357

Kepler-17b 2.45 0.02591 0.011 1.16 0.4459 0.4242 0.3433 0.1265

CoRot-14b 7.6 0.027 0 1.13 0.4492 0.4323 0.4296 0.4293

WASP-36b 2.279 0.02624 0 1.02 0.4238 0.4373 0.4354 0.4352

Kepler-9d 0.022 0.0273 – 1 0.4492 0.4466 0.4462 0.4461

Kepler-9b 0.252 0.14 – 1 0.4492 0.4434 0.4424 0.4423

Kepler-9c 0.0171 0.225 – 1 0.4492 0.4441 0.4432 0.4432

WASP-52b 0.5 0.0272 – 0.87 0.4492 0.4418 0.4406 0.4404

KOI-196b 0.4900 0.02900 0.00 0.94 0.4492 0.4418 0.4406 0.4405

GJ 3470b 0.0440 0.03557 – 0.539 0.4492 0.4452 0.4445 0.4445

WTS-1b 4.01 0.047 0.1 1.2 0.3133 0.1591 0.0281 0.0031

CoRoT-18b 3.4700 0.02950 0.00 0.95 0.3550 0.2107 0.0445 0.0051

WASP-50b 1.470 0.02945 0.009 0.843 0.4467 0.4279 0.3601 0.1487

WASP-48b 0.98 0.0344 0 1.19 0.4492 0.4406 0.4392 0.4391

HAT-P-32b 0.941 0.0344 0.163 1.176 0.1193 0.0350 0.0043 0.0004

WASP-79b 0.89 0.0362 0 1.56 0.4492 0.4416 0.4404 0.4402

WASP-78b 1.16 0.0415 0 2.02 0.4492 0.4416 0.4403 0.4402

WASP-24b 1.032 0.0359 0 1.129 0.4492 0.4403 0.4389 0.4387

WASP-44b 0.889 0.03473 0 0.951 0.4492 0.4403 0.4388 0.4387

Kepler-45b 0.505 0.027 0.11 0.59 0.4492

HAT-P-41b 0.8120 0.0424 – 1.405 0.4492 0.4416 0.4403 0.4402

KELT-3b 1.418 0.04117 0 1.282 0.4492 0.4397 0.4382 0.4381

WASP-32b 3.6 0.0394 0.018 1.1 0.4427 0.4103 0.2846 0.0755

CoRoT-21b 2.26 0.0417 0 1.29 0.4492 0.4382 0.4365 0.4363
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Table 1 continued

Planet MpðMjÞ apðauÞ ep MstarðM�Þ a1=RH a1=RH a1=RH a1=RH

k ¼ 1:0 k ¼ 10:0 k ¼ 100 k ¼ 1;000

WASP-26b 1.028 0.03985 0 1.12 0.3759 0.4492 0.4403 0.4389

HAT-P-16b 4.193 0.0413 0.036 1.218 0.4250 0.3525 0.1484 0.0230

Kepler-21b 0.033 0.042507 0 1.34 0.4492 0.4465 0.4461 0.4460

HAT-P-37b 1.169 0.0379 0.058 0.929 0.3514 0.2050 0.0420 0.0048

HAT-P-30 0.711 0.0419 0.035 1.18 0.3851 0.2603 0.0658 0.0079

CoRoT-12b 0.917 0.04016 0.07 1.078 0.2965 0.1415 0.0235 0.0025

HAT-P-20b 7.246 0.0361 0.015 0.756 0.4469 0.4214 0.3625 0.1620

WASP-23b 0.884 0.0376 0.062 0.78 0.3355 0.1840 0.0350 0.0039

CoRoT-11b 2.49 0.04351 0 1.27 0.4492 0.4278 0.4360 0.4358

KOI-135b 3.23 0.0449 1.32 0.4343 0.3818 0.1985 0.0364

HAT-P-27 0.66 0.0403 0.945 0.2613 0.1114 0.0169 0.0018

WASP-41b 0.92 0.04 0 0.95 0.4492 0.4401 0.4387 0.4385

HAT-P-8b 1.34 0.0449 0 1.28 0.4492 0.4399 0.4384 0.4383

WASP-10b 3.06 0.0371 0.057 0.71 0.4002 0.2903 0.0860 0.0110

WASP-16b 0.855 0.0421 0 1.022 0.4492 0.4406 0.4392 0.4390

WASP-45b 1.007 0.04054 0 0.909 0.4492 0.4397 0.4382 0.4381

HAT-P-22b 2.147 0.0414 0.016 0.916 0.4428 0.4118 0.2864 0.0763

Kepler-4b 0.0770 0.0456 0 1.223 0.4492 0.4455 0.4449 0.4449

Kepler-6b 0.6690 0.04567 0 1.209 0.4492 0.4417 0.4404 0.4403

KOI-204b 1.02 0.0455 \0.021 1.19 0.4286 0.3654 0.1635 0.0264

HAT-P-28b 0.626 0.0434 0.051 1.025 0.3342 0.1822 0.0344 0.0038

HAT-P-24b 0.685 0.0465 0.067 1.191 0.2796 0.1261 0.0200 0.0021

WASP-31b 0.478 0.04657 0 1.16 0.4492 0.4424 0.4413 0.4411

WASP-28b 0.91 0.0455 0.046 1.08 0.3655 0.2261 0.0500 0.0058

HATS-1b 1.855 0.0444 0.12 0.986 0.2381 0.0952 0.0138 0.0015

HAT-P-33b 0.763 0.0503 0.148 1.403 0.1146 0.0331 0.0041 0.0004

Kepler-18b 0.0217 0.0447 – 0.972 0.4492 0.4466 0.4462 0.4461

Kepler-18c 0.054 0.0752 – 0.972 0.4492 0.4457 0.4451 0.4450

Kepler-18d 0.052 0.1172 – 0.972 0.4492 0.4457 0.4451 0.4451

WASP-22b 0.588 0.04698 0 1.1 0.4492 0.4417 0.4405 0.4404

WASP-37b 1.696 0.04339 0 0.849 0.4492 0.4377 0.4359 0.4357

CoRoT-23b 2.8 0.0477 0.16 1.14 0.1939 0.0689 0.0093 0.0010

HAT-P-35b 1.054 0.0498 0.025 1.236 0.4205 0.3416 0.1305 0.0190

HAT-P-25b 0.567 0.0466 0.032 1.01 0.3920 0.2737 0.0733 0.0090

Kepler-20e 0.0097 0.0507 – 0.912 0.4492 0.4472 0.4468 0.4468

Kepler-20c 0.051 0.093 0.04 0.912 0.0042 0.0009 0.0001 0.00001

Kepler-20f 0.045 0.11 – 0.912 0.4492 0.4458 0.4453 0.4452

Kepler-20d 0.06 0.3453 0.6 0.912 0.0016 0.0004 0.00004 0.000004

WASP-61b 2.06 0.0514 0 1.22 0.4492 0.4384 0.4366 0.4364
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Table 1 continued

Planet MpðMjÞ apðauÞ ep MstarðM�Þ a1=RH a1=RH a1=RH a1=RH

k ¼ 1:0 k ¼ 10:0 k ¼ 100 k ¼ 1;000

CoRoT-19b 1.11 0.0518 0.047 1.21 0.3664 0.2275 0.0506 0.0059

WASP-29b 0.244 0.0457 0.03 0.825 0.3759 0.2435 0.0573 0.0067

WASP-39b 0.28 0.0486 0 0.93 0.4492 0.4430 0.4420 0.4419

WASP-66b 2.32 0.0546 0 1.3 0.4492 0.4382 0.4364 0.4362

KELT-2Ab 1.486 0.05498 0.185 1.31 0.1167 0.0341 0.0042 0.0004

WASP-47b 1.14 0.052 0 1.084 0.4492 0.4399 0.4384 0.4383

WASP-63b 0.38 0.574 0 1.32 0.4492 0.4431 0.4421 0.4420

WASP-62b 0.57 0.0567 0 1.25 0.4492 0.4421 0.4410 0.4409

Kepler-12b 0.431 0.0556 0.01 1.166 0.4408 0.4086 0.2597 0.0601

WASP-55b 0.57 0.0533 0 1.01 0.4492 0.4416 0.4404 0.4403

WASP-67b 0.42 0.0517 0 0.87 0.4492 0.4420 0.4408 0.4407

HAT-P-14b 2.2 0.0594 0.095 1.386 0.2761 0.1236 0.0195 0.0021

HAT-P-38b 0.267 0.0523 0.067 0.886 0.2347 0.0923 0.0132 0.0014

Kepler-15b 0.66 0.05714 – 1.018 0.4459 0.4413 0.4400 0.4398

WASP-58b 0.89 0.0561 – 0.940 0.4492 0.4402 0.4388 0.4386

HAT-P-31b 2.171 0.055 0.245 1.218 0.0940 0.0261 0.0031 0.0003

HAT-P-34b 3.328 0.0677 0.441 1.392 0.0361 0.0088 0.0010 0.0001

HAT-P-18b 0.1970 0.0559 0.084 0.77 0.1750 0.0585 0.0077 0.0008

HAT-P-29b 0.7780 0.0667 0.095 1.207 0.2132 0.0791 0.0109 0.0011

Kepler-36b 0.0140 0.1153 – 1.071 0.4492 0.4470 0.4467 0.4466

Kepler-36c 0.0254 0.1283 – 1.071 0.4492 0.4465 0.4461 0.4461

Kepler-32b 4.1 0.05 – 0.58 0.4492 0.4320 0.4293 0.4290

Kepler-32c 0.5 0.09 – 0.58 0.4492 0.4405 0.4391 0.4389

Kepler-28b 1.51 0.062 – 0.75 0.4492 0.4377 0.4359 0.4357

Kepler-28c 1.36 0.081 – 0.75 0.4492 0.4381 0.4363 0.4361

CoRoT-8b 0.22 0.063 0 0.88 0.4492 0.4434 0.4425 0.4424

Kepler-25b 12.7 0.068 – 1.22 0.4492 0.4297 0.4267 0.4264

Kepler-25c 4.16 0.11 – 1.22 0.4492 0.4356 0.4334 0.4332

WASP-38b 2.712 0.07551 0.0321 1.216 0.4238 0.3496 0.1430 0.0217

KOI-428b 2.2 0.08 0 1.48 0.4492 0.4388 0.4371 0.4370

Kepler-23b 0.8 0.075 – 1.11 0.4492 0.4410 0.4397 0.4395

Kepler-23c 2.7 0.099 – 1.11 0.4492 0.4370 0.4351 0.4348

Kepler-29b 0.4 0.09 – 1 0.4492 0.4424 0.4413 0.4412

Kepler-29c 0.3 0.11 – 1 0.4492 0.4430 0.4420 0.4419

HAT-P-17b 0.534 0.0882 0.346 0.857 0.0272 0.0065 0.0007 0.0001

HAT-P-17c 1.4 2.75 0.1 0.857 0.2673 0.1165 0.0180 0.0019

HAT-P-15b 1.946 0.0964 0.19 1.013 0.1423 0.0443 0.0056 0.0006

Kepler-24b 1.6 0.08 – 1.03 0.4492 0.4386 0.4370 0.4368

Kepler-24c 1.6 0.106 – 1.03 0.4492 0.4386 0.4370 0.4368
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It is clear from the results that as k increases from k ¼ 1:0 to k ¼ 1;000, the critical

separation also decreases so that the systems progressively becomes less stable. When the

planet moves on a circular orbit relative to the central star, the changes in a1 with mass are

relatively small. The effect is more pronounced when the eccentricity of the planet about

the star, ep, is non-zero. With changes by a factor of 10 between k ¼ 1:0 and k ¼ 103 not

uncommon. These results are broadly in line with those of Donnison (2010a). It should be

noted that the number of systems overall for which all the required data is not available is

relatively high, representing some 18 % of the newly discovered planets.

7.3 Changes in the Range of Binary Orbits

We will now apply the approximation obtained earlier generally to a binary composed of a

planet and its companion moon moving on an inclined, eccentric orbit. Equation (17) has

now to be solved to give critical a2=a1ð Þ values for a range of e1 and i values for given

values for x0; k and e2: Figure 4 is a plot of the critical a2=a1ð Þ value against the binary

eccentricity e1 for the inclinations i ¼ 0�; 30�; 45�; 60�; 75� and 90� with e2 ¼ 0:0. As

Table 1 continued

Planet MpðMjÞ apðauÞ ep MstarðM�Þ a1=RH a1=RH a1=RH a1=RH

k ¼ 1:0 k ¼ 10:0 k ¼ 100 k ¼ 1;000

CoRoT-20b 4.24 0.0902 0.562 1.14 0.0259 0.0063 0.0007 0.0001

Kepler-19b 0.064 0.118 – 0.936 0.4492 0.4454 0.4448 0.4447

HD 97658b 0.02 0.0797 0.13 0.85 0.0246 0.0058 0.0007 0.00007

Kepler-11b 0.01353 0.091 0 0.95 0.4492 0.4470 0.4466 0.4465

Kepler-11c 0.0425 0.106 0 0.95 0.4492 0.4459 0.4454 0.4453

Kepler-11d 0.01919 0.159 0 0.95 0.4492 0.4467 0.4463 0.4462

Kepler-11e 0.02643 0.194 0 0.95 0.4492 0.4464 0.4459 0.4459

Kepler-11f 0.007237 0.25 0 0.95 0.4408 0.4474 0.4471 0.4470

Kepler-11g 0.95 0.462 0 0.95 0.4492 0.4401 0.4386 0.4384

Kepler-26b 0.38 0.085 – 0.65 0.4492 0.4415 0.4403 0.4402

Kepler-26c 0.375 0.107 – 0.65 0.4492 0.4416 0.4403 0.4402

CoRoT-10b 2.75 0.1055 0.53 0.89 0.0271 0.0065 0.0007 0.0001

Kepler-31b 6.8 0.16 – 1.21 0.4492 0.4332 0.4307 0.4304

Kepler-31c 4.7 0.26 – 1.21 0.4492 0.4350 0.4328 0.4325

Kepler-39b 18 0.155 0.121 1.1 0.3638 0.255 0.0517 0.0060

Kepler-30b 0.036 0.18 – 0.99 0.4492 0.4461 0.4456 0.4456

Kepler-30c 2.0100 0.3 – 0.99 0.4492 0.4377 0.4359 0.4357

Kepler-30d 0.0730 0.5 – 0.99 0.4492 0.4453 0.4447 0.4446

Kepler-46b 6 0.1967 0.01 0.902 0.4479 0.4272 0.3895 0.2194

Kepler-46c 0.376 0.2799 0.0145 0.902 0.4332 0.3814 0.1901 0.0336

Kepler-35(AB)b 0.127 0.6035 0.042 1.6971 0.2360 0.0930 0.0133 0.0014

Kepler-16(AB)b 0.333 0.7048 0.0069 0.8499 0.4454 0.4264 0.3332 0.1121

Kepler-34(AB)b 0.22 1.0896 0.182 2.0687 0.0329 0.0079 0.0009 0.0001

Kepler-22b 0.11 0.849 – 0.97 0.4492 0.4447 0.4440 0.4439

In columns (6)–(9) the derived ratio of the critical separation distance to the Hill radius a1=RH are shown for
the planet/moon ratios of 1.0, 10, 100 and 1,000 for transiting extrasolar planetary systems
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before, the masses satisfy the condition x0 ¼ MP þMSð Þ=3M�ð Þ
1
3¼ 0:1, which is relevant

to a Jupiter mass planet with an accompanying moon. The solid curves show the situation

of a binary planet, that is the binary mass ratio is k ¼ 1:0: The curves for k ¼ 10 are shown

as dotted curves for the same inclinations. The dashed curves give the regions for k ¼ 100.

The curves for k ¼ 1;000 are not shown as they cannot be clearly separated from those of

k ¼ 100: Any other values of k in the range 1:0� k� 1;000 are not shown to avoid over

complicating the figure. As before, the systems which are Hill stable against exchange lie

to the right of the curves. To the left of the curves, the surfaces open out and exchange or

collision becomes a possibility but it is not an inevitable outcome. It is clear that the critical

distances increase and the regions of stability decrease as the value of k decreases, that is
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1/3Fig. 3 In this figure the range of

the moon–planet ratio is reduced
to cover the smaller moons. The
range of k is 10� k� 200, which
extends the mass range down into
the Earth and super-Earth mass
range

30292827262524232221

1.0

0.5

0.0

a /a

e

2 1

1

Solid curves λ =1
Dotted curves λ =10.0
Dashed curve λ =100.0

Outer dashed curve λ=1000.0

0 30 45 60 75 90

x =((M +M )/3M ) =0.10 p s *
1/3

Fig. 4 This figure is a plot of the critical a2=a1ð Þ value against the binary eccentricity e1 for the inclinations
i ¼ 0�; 30�; 45�; 60�; 75� and 90� with e2 ¼ 0:0. As before, the masses satisfy the condition

x0 ¼ M1 þM2ð Þ=3M3ð Þ
1
3¼ 0:1, which is relevant to a Jupiter mass planet with an accompanying moon.

The solid curves show the situation of a binary planet, that is the binary mass ratio is k ¼ 1:0: The curves for
k ¼ 10 are shown as dotted curves for the same inclinations. The dashed curves give the regions for
k ¼ 100. The curves for k ¼ 1;000 are not shown as they cannot be clearly separated from those of k ¼ 100:
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the larger the mass of the moon relative to the planet the more likely it is for an exchange

of the masses to take place. The critical distance also increases and the stability decreases

as the eccentricity of the binary e1 and the inclination of the orbit i increase in their value

for a particular k. The results are in line with the previous work of Donnison (2009, 2010a)

using the full three-body formulation, and Szenkovits and Makó (2008) using an elliptic

restricted three-body criterion of stability for extrasolar planets in stellar binary systems.

These results clearly give the general trends in stability for systems but we can now apply

the theory more specifically to actual observed transiting extrasolar planetary systems.

7.3.1 Application to Observed Systems

Here we will investigate more fully the variations in the actual planet–moon orbit for the

actual systems when the moon is allowed to have non-zero eccentricity and the planet–

moon orbital plane can be inclined to the central star. As previously the mass ratio, given

by k, is allowed to vary from k ¼ 1:0 to k ¼ 1;000, with k ¼ 1:0 representing the possi-

bility that there is a binary planet system orbiting the central star, while k ¼ 1;000 rep-

resents a small moon. It should be noted that the changes in a1 (and a1=RH) occurring for

changes in e1 and i are much smaller than they are for variations in e2: The theory, in

particular Eq. (17), was applied to the same known transiting extrasolar planetary sys-

tems as previously discussed. The results obtained for k ¼ 1:0 and k ¼ 100 are shown in

Figs. 5 and 6, respectively where the known e2 for a system is plotted against the critical

a1=RH for a range of different e1 values given by 0.0, 0.25, 0.5, 0.75. Here e1 ¼ 0:0
(black solid circles), e1 ¼ 0:25 (red squares), e1 ¼ 0:5 (green diamonds), e1 ¼ 0:75 (blue

upward triangles). It was found that for these actual extrasolar planetary systems that when

k ¼ 1:0; then as the eccentricity of the moon, e1; was increased then the distance ratio

a2=a1ð Þ increased so that the critical separation a1( and a1=RH) only decreased by small

Fig. 5 In this figure e2 is plotted against a1=RH for k ¼ 1:0 with the different e1 values for all the currently
known transiting extrasolar planetary systems. Here e1 ¼ 0:0 black solid circles, e1 ¼ 0:25 red squares,
e1 ¼ 0:5 green diamonds, e1 ¼ 0:75 blue upward triangles. (Color figure online)
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amounts. This is clearly shown in Fig. 5 where the distributions of values of the systems

for the different values of e1 move to the left reducing the critical value of a1=RH .

Similarly for k ¼ 100 in Fig. 6, there was a corresponding decrease in a1 (and a1=RH) as e1

increased. The critical separation also decreased with k. This was further corroborated by

the values for k ¼ 10 and k ¼ 1;000 not shown, so that in general there were small changes

in a1=RH as k increased. The effect of inclination of the planet–moon binary system on the

stability of the binary orbit was also investigated. The critical separations were determined

for actual systems for inclinations i ¼ 0�; 30�; 45�; 60�; 75� and 90�; initially for circular

moon orbits and subsequently for a full range values of e1. The results are shown for

k ¼ 1:0 and k ¼ 100 with circular moon orbits in Figs. 7 and 8, respectively where e2 is

plotted against a1=RH for different inclinations. Here i ¼ 0:0 (black solid circles), i ¼ 30�

(red squares), i ¼ 45� (green diamonds), i ¼ 60� (blue upward triangles), i ¼ 75� (yellow

right side ward triangles), i ¼ 90� (pink left side ward triangles). It was found that for a

given k value, that as i increased the critical separation a1 (and a1=RH) decreased. Though

the changes were very small there was a significant trend. Similarly for the non-zero values

of the eccentricity of the moon, the critical separation distance also decreased further as the

eccentricity increased in value. When the orbital eccentricity of the systems was plotted

against the critical a1=RH value for binary eccentricities of e1 ¼ 0:5 for the same values of

k used previously in Fig. 1 (not shown) it was found the outer boundary for stability has

moved closer to a1=RH ¼ 0:5 for the higher eccentricity case.

8 Rôche Limiting Distances

The Rôche limit of a satellite, as indicated earlier for possible moons, clearly depends on

the internal structure of the satellite as shown by its inverse dependency on the satellite

Fig. 6 In this figure e2 is plotted against a1=RH for k ¼ 100 with the different e1 values for all the currently
known transiting extrasolar planetary systems. The colour code is as in Fig. 5. (Color figure online)

92 J. R. Donnison

123



density. Following Weidner and Horne (2010), we consider typical moons with densities in

the range 1–6 g cm�3; specifically qs ¼ 1, 3 and 6 g cm�3; representing everything from

gaseous to rocky satellites. This represents a decrease respectively to 0.6934 and 0.5503 of

the Rôche limiting distance at 1 g cm�3 as the density increases from 3 to 6 g cm�3.

Fig. 7 In this figure e2 is plotted against a1=RH for k ¼ 1:0 with the different inclinations i ¼
0�; 30�; 45�; 60�; 75� and 90� for all the currently known transiting extrasolar planetary systems. Here i ¼
0:0 black solid circles, i ¼ 30� red squares, i ¼ 45� green diamonds, i ¼ 60� blue upward triangles, i ¼ 75�

yellow right side ward triangles, i ¼ 90� pink left side ward triangles. (Color figure online)

Fig. 8 In this figure e2 is plotted against a1=RH for k ¼ 100 with the different inclinations i ¼
0�; 30�; 45�; 60�; 75� and 90� for all the currently known transiting extrasolar planetary systems. The colour
code is the same as in Fig. 7. (Color figure online)
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Figure 9 shows a plot of the critical Hill separation distances a1; for k ¼ 10 and e1 ¼ 0:0;
measured in Jupiter radii RJ estimated from the observed transiting extrasolar planets

against the limiting Rôche distances in RJ for the three densities. The results for a density

of 1 g cm�3 are shown as solid black circles, 3 g cm�3 as red squares and 6 g cm�3 as

green diamonds. Clearly any moons with Hill separations less than the limiting Rôche

distance are not likely to have formed or have been destroyed. The lower the density the

further out is the critical Rôche distance for a given system so that as far as the range of

structurally stable regions is concerned the denser solid moons are favoured over the

gaseous moons. Further graphs of a1 against the same limiting Rôche distances in RJ for

the same three densities were obtained for the other three values of k already discussed. As

the results are fairly obvious and the graphs fairly similar they have not been included. It is

clear from them and our earlier results that as k decreases the critical a1 values increase, so

that the ratio a1=Rroche increases for all the densities considered. Hence the difference

between the outer Hill stability boundary a1 and the inner Rôche limit bound Rroche

therefore decreases the larger the planet/moon ratio. Similarly the number of systems with

Hill separations less than or close to the limiting Rôche distance is likely to increase as the

planet/moon ratio increases. The number of possible stable systems having a large planet/

moon ratio will therefore be reduced.

9 Conclusions

The stability of the orbits of possible moons orbiting extrasolar planets has been examined.

Limits have been placed on the range of orbits and masses for these moons. The Rôche

limiting radius determines how close the moon can approach its parent planet before it

becomes tidally disrupted. This limit is applied to the currently known transiting extrasolar

planets with well determined orbits and masses. The outer stability of the orbit of the moon

Fig. 9 This shows a plot of the critical Hill separation distances a1, for k ¼ 10 and e1 ¼ 0:0, in Jupiter radii
estimated from the observed transiting extrasolar planets against the limiting Rôche distances in RJ for the

three densities. Results for a density of 1 g cm�3 are shown as solid black circles, 3 g cm�3 as red squares

and 6 g cm�3 as green diamonds. (Color figure online)
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against detachment from the planet by the central star is determined by the Hill stability of

the star–planet–moon system. The Hill stability in this case was derived for a full three-

body system with the binary composed of the planet and moon moving on an inclined,

elliptical orbit relative to the central star, where the binary mass is very small compared to

the mass of the star. The approximation derived here has not previously been applied to

this particular Hill stability problem and gives expressions for the critical distance ratios

a2=a1 and q2=a1 in a closed form. This Hill stability criterion was discussed generally for a

wide range of planet/moon mass ratios k of 1.0, 10, 100 and 1,000, for the full range of

orbital eccentricities e2, assuming the moon moves on a circular orbit. It was also applied

to all transiting extrasolar planetary systems which have follow up the radial velocity

determinations, particularly listing those discovered since the last estimation of critical

separations in 2010. It was evident that in those cases where the planet moves on a circular

orbit about the central star, the critical separation of the moon from the planet does not

change very significantly as the planet-moon mass ratio is increased. For eccentric orbits

relative to the central star there can be large reductions in the critical separation as the mass

ratio increases with the variation depending strongly on the size of the eccentricity of the

planetary orbit.

The effects of eccentricity and inclination on the stability of the orbit of the extrasolar

moon was discussed generally in terms of the Hill stability criterion and applied to a range

of planet/moon mass ratios with k of 1.0, 10, 100 and 1,000. Although this is a secondary

effect compared to the orbital eccentricity around the central star, it is still significant. The

Hill stability criterion was applied to all the transiting extrasolar planets, assuming the

same planet-moon mass ratios but with the moon moving with a variety of eccentricities

and inclinations. For the non-zero values of the eccentricity of the moon, the critical

separation distance decreased further as the eccentricity increased in value. For inclinations

i ¼ 0�; 30�; 45�; 60�; 75� and 90� it was found that for a given k value, that as i increased

the critical separation a1 decreased. Though the changes were very small there was a

significant trend. Combinations of increasing binary eccentricity and inclination clearly

decreased the Hill stability of such systems.

From the work of Kipping (2009) and also more recently (Kipping et al. 2012, 2013), it

is clear that the photometry available on the Kepler mission, which was specifically

designed to detect Earth-sized transiting objects, is capable of detecting large moons

similar to those we have discussed earlier. It is therefore likely that the first detection

establishing the existence of extrasolar moons is not far away.
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