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Abstract Using the standard reductive perturbation technique, nonlinear cylindrical and

spherical Kadomtsev-Petviashvili (KP) equations are derived for the propagation of ion

acoustic solitary waves in an unmagnetized collisionless plasma with nonthermal electrons

and warm ions. The influence of nonthermally distributed electrons and the effects caused

by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are

investigated. It is observed that the presence of nonthermally distributed electrons has a

significant role in the nature of ion acoustic waves. In particular, when the nonthermal

distribution parameter b takes certain values the usual cylindrical KP equation (CKPE) and

spherical KP equation (SKPE) become invalid. One then has to have recourse to the

modified CKPE or SKPE. Analytical solutions of both CKPE and SKPE and their modified

versions are discussed in the present paper. The present investigation may have relevance

in the study of propagation of IAWs in space and laboratory plasmas.
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1 Introduction

Nowadays nonlinear waves have received considerable interest in plasma physics because

of their importance in the environment of space and in laboratory. Among the nonlinear

wave structures, solitons are of particular interest for researchers as the solitons offer a rich

physical insight underlying the nonlinear phenomena. During the last several decades, the

propagation of ion acoustic solitary waves in plasma with unbounded planar geometry has

been extensively studied theoretically and also in laboratory (Ikeji et al. 1970; Cairns et al.

1996; Yoshimura and Watanabe 1991; Konotop 1996; Hashimoto and Ono 1972; Duan
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et al. 1997; Mahmood and Saleem 2002). Solitary wave propagation in unmagnetized

plasmas without the dissipation can be described by the Korteweg-de Vries (KdV) equation

or Kadomtsev-Petviashvili (KP) equation. Ghosh and Bharuthram (2008) investigated the

propagation of small but finite amplitude ion acoustic solitons and double layers in elec-

tronpositronion plasmas in presence of highly negatively charged impurities or dust.

However, most of the studies done so far on ion acoustic waves were confined to the

unbounded planer geometry, though recently some works have been published in which

cylindrical and spherical ion acoustic and dust-ion acoustic waves have been discussed

(Mamun and Shukla 2001, 2002; Xue 2003a, b; Sahu and Roychoudhury 2003). Eslami

et al. (2011) studied the propagation of cylindrical and spherical electron-acoustic solitary

waves in unmagnetized dusty plasma with superthermal ions and electrons. Misra et al.

(2007) investigated the nonlinear propagation of electron acoustic solitary waves in an

electron-ion quantum plasma in nonplanar geometry. Shah et al. (2010) studied nonplanar

converging and diverging shock waves in the presence of thermal ions in electron-positron

plasma. Tian and Gao (2005) have derived a spherical KP equation with symbolic com-

putation for the dust ion acoustic waves with zenith-angle perturbation. They discussed the

spherical strustures of the expanding dark and nebulon, shrinking dark and nebulon. Xue

(2005) has investigated the dust-ion acoustic or dust acoustic waves with the combined

effects of bounded cylindrical/spherical geometry and the transverse perturbation deriving

the cylindrical/spherical KP equation (CKPE/SKPE). Recently, Wang and Zhang (2008)

have investigated the dust acoustic waves in a three component ultra-cold Fermi dusty

plasma by considering the two dimensional quantum hydrodynamic model in nonplanar

geometry. However, in these studies electrons were assumed to be isothermal. But in a

number of heliospheric environments the plasma contains the nonthermally distributed ions

or electrons (Verheest 2000; Shukla and Mamun 2002; Verheest and Pillay 2008; Verheest

2009; Mamun et al. 1996; Mendoza-Briceno et al. 2000; Maharaj et al. 2004, 2006).

Nonthermal ions have been observed in and around the Earth’s bowshock and foreshock

(Asbridge et al. 1968; Feldman et al. 1983). Therefore nonthermality plays an important

role in determining the nature of nonlinear waves. Following Cairns et al. (1995), we take

the electrons to be nonthermally distributed. The motivation for this came from the

observations of solitary structures with density depletions made by the Freja and Viking

satellites (Boström 1992; Dovner et al. 1994). It was noticed by Cairns et al. (1995) that if

the solitary electrostatic structures, observed by the Freja Satellite, are interpreted as ion

sound solitons the difficulty arises that the standard Korteweg-de Vries (KdV) description

predicts structures with enhanced rather than depleted density of the solitons. However, the

presence of non-thermal electrons may allow existence of structures similar to those

observed. Mamun (1997) and later Tang and Xue (2004), Pakzad (2009), Das et al. (2009)

also considered the nonthermal electrons to study ion acoustic waves. Das and Chatterjee

(2009) investigated large amplitude double layers in dusty plasma with non-thermal

electrons and two temperature isothermal ions. Saha and Chatterjee (2009) studied obli-

quely propagating ion acoustic solitary waves in magnetized dusty plasma in the presence

of nonthermal electrons. Alinejad (2010) studied dust ion-acoustic solitary and shock

waves in a dusty plasma with non-thermal electrons. In the present paper, we studied the

propagation of IAWs in an unmagnetized plasma with nonthermally distributed electrons

in bounded nonplanar geometry. In fact it has been shown here that for certain values of b,

the non isothermal parameter, cylindrical and spherical KP equations are not valid and one

has to consider modified KP equation. For the special case, when the coefficient of non-

linearity vanishes, modified cylindrical and spherical KP equations are derived. The

organization of the paper is as follows. In Sect. 2 the basic set of equations are given and
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cylindrical and spherical KP equations are derived. In Sect. 3 solitonic solutions of

cylindrical and spherical KP equations and modified CKPE/SKPE are given. The

numerical results are discussed in Sect. 4, while Sect. 5 is kept for conclusion.

2 Basic Equations and Derivation of the Nonplanar KP Equations

We consider a homogeneous, collisionless, unmagnetized plasma consisting of warm ions,

and electrons obeying nonthermal velocity distribution. The basic system of normalized

equations in cylindrical and spherical geometry in such a plasma model is governed by

Tian and Gao (2005) Xue (2004, 2005), Wang and Zhang (2008) the following equations.
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where m = 0, for one dimensional geometry and m = 1, 2 for cylindrical and spherical

geometry respectively. In the above equations, the subscripts i and e refer to ion and

electron respectively. r, h are the radial and angle coordinates and ui, vi are the ion fluid

speed in r and h directions respectively. ni is the ion number density normalized to its

unperturbed equilibrium plasma density ni0, (ui, vi) are the ion fluid speeds normalized to

the ion acoustic velocity vs ¼ ðkBTe=miÞ
1
2; pi and / are normalized to ni0Ti and kBTe/

e respectively. The time and space variables are in units of the ion plasma period xPi
�1 ¼

ðmi=4pni0e2Þ
1
2 and the Debye radius kDm ¼ ðkBTe=4pni0e2Þ

1
2, respectively. r = Ti/Te is the

ion to electron temperature ratio.

The electrons are assumed to be nonthermally distributed and their distribution function

is taken as (Cairns et al. 1995)

f ðEÞ ¼ ni0ð1þ aE2Þ expð�EÞ=ð1þ 3aÞ ð6Þ

where E is the nonthermalized electron energy. Consequently the electron number density

is given by Cairns et al. (1995)

ne ¼ ð1� b/þ b/2Þ expð/Þ ð7Þ

where

b ¼ 4a
1þ 3a

ð8Þ
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Here b denotes the ratio of the high energy electrons to the Boltzmann distributed

electrons. It is clear that Eq. (7) expresses the isothermally distributed electrons when

b = 0 (i.e. a = 0). The parameter a represents the nonthermality of electrons distribution,

i.e. determining the fast particles presented in our plasma model. Also it is assumed that

vthi \ \ vs \ \ vthe, so that Landau damping can be neglected, where vthi is the ion

thermal velocity and vthe is the electron thermal velocity.

To derive the cylindrical and spherical KP equations we use the stretched coordinates

(Johnson 1980; Huang et al. 1998)

n ¼ �1=2ðr � v0tÞ; g ¼ ��1=2h and s ¼ �3=2t ð9Þ

Furthermore, the plasma parameters W � ½ni; ui; pi;/� are expanded as power series in �
about their equilibrium values as
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To next higher order in �, we obtain the following set of equations,
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Combining Eqs. (14–17), we get a modified cylindrical or spherical KP-equation
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Thus the CKPE (m = 1) and the SKPE (m = 2) of the ion acoustic solitary waves

(IASWs) are obtained as, respectively
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It is seen that for r ¼ 1�3ð1�bÞ2

12ð1�bÞ3 ;A ¼ 0, whence the coefficient of nonlinearity vanishes.

Then one has to consider the modified KP (MKP) equation. For example if r = 1/6 and

b = 1/2(a = 1/5), then A = 0.

When A = 0, we introduce the following stretched coordinates, n ¼ �ðr � v0tÞ; g ¼
��1h; s ¼ �3t and expand ni, ui, pi and / in a power series of � as given by (10–12) and

develop equations in various powers of �.
To lowest order in �, Eqs. (1–5) give
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If v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
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q
and r ¼ 1�3ð1�bÞ2

12ð1�bÞ3 , then Eq. (22) becomes an identity. But we have

already found that v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and r ¼ 1�3ð1�bÞ2

12ð1�bÞ3 , when A = 0. So Eq. (22) does not

give us any new information.

To next higher order in �, we obtain the following set of equations
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Combining Eqs. (23–26), a modified KP equation is obtained
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3 Solitonic Solutions of the CKPE and SKPE

It is possible to find a special solitary wave solution for the Eq. (18) by using a suitable

transformation (Johnson 1980; Huang et al. 1998). Equation (18) can be reduced to the

standard KdV equation using the following coordinate transformations

f ¼ n� v0

2
g2s; e/ð1Þðf; sÞ ¼ /ð1Þðn; g; sÞ; s0 ¼ s ð29Þ

Using this transformations, Eq. (18) reduces to the following standard KdV equation,
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In deriving Eq. (30) we have used the boundary conditions e/ð1Þ ! 0; d2e/ð1Þ=dn2 ! 0

as n!1. Using Eqs. (29) and (30), we find that Eq. (18) has the travelling wave solution

of the form,
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where U is the soliton velocity. The amplitude and width of the solitary waves are 3U
A andffiffiffiffi

4B
U

q
, respectively. For the existence of soliton, U

B must be positive, otherwise soliton

solution (31) would be destroyed. Equation (31) is a special solution which is independent

of m. However, one can not get back the planar geometry solution because there does not

exist any value of m which will simultaneously remove the terms associated with 1/s and

1/g in Eq. (18).

Using the same set of transformations, given in Eqs. (29, 27) reduces to the modified

KdV equation,

oe/ð1Þ
os
þ A1ðe/ð1ÞÞ2 oe/ð1Þ

of
þ B1

o3e/ð1Þ
of3

¼ 0: ð32Þ

Using Eqs. (29) and (32) it is found that Eq. (27) has the following stationary solution,
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Conditions for existence of solitonic solution (31) is U/B [ 0. For Eq. (33) to be valid

we must have U/B1 [ 0 and U/A1 [ 0. It may be mentioned that A1 does not vanish for any

real positive values of b if r \ 0.49. This has been checked numerically. Analytically one

can see that when r = 0, A1 = 0 only for imaginary values of b. However, as mentioned

earlier, there is a critical value of b, say bc (which will depend on the temperature ratio

parameter r) for which A = 0, and beyond which A will change sign. Thus for b[bc,

Eq. (31) will represent a dip soliton instead of a hump soliton (assuming U [ 0). This is the

reason for considering nonthermal electrons to explain the Freja satellite data.

Again there are many methods to solve Eq. (18), such as the F-expansion method (Wang

et al. 2005), the extended Jacobian elliptic function expansion method (Yan 2002), the

generalized projected Ricatti equation expansion method (Dai et al. 2006) and so on. Of

the three methods, discussed in references Wang et al. (2005), Yan (2002), and Dai et al.

(2006), respectively we found that the generalized projected Ricatti equation expansion

method used in reference Dai et al. (2006) is the most suitable one for our purpose. Using

this method the solutions for CKPE and SKPE of IASWs are respectively given by Misra

et al. (2007), Tian and Gao (2005),
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where C and R are positive arbitrary constant and a1(s), a2(s) are arbitrary function of s. It

can be seen that Eq. (31) is a special case of the solution given in (34) if one takes

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
U=4B

p
; a1ðsÞ ¼ 0; a2ðsÞ ¼ �CUs;R ¼ 1. Again solution (35) reduces to the solu-

tion (31), if one takes C ¼
ffiffiffiffiffiffiffiffiffiffi
U=B

p
; a1ðsÞ ¼ �CUs. Here it should be noted that solutions

(34) and (35) can be converted to nebulonic solutions as given in Eq. (25) by Tian and Gao

(2005) (replacing C by b1 and a = 0). However, in our solution the effect of nonthermal

parameter lies in the expression of A and B.
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Fig. 1 a Plot of /(1) against n for different values of a = 0.01 (solid line), a = 0.05 (dotted line), a = 0.1
(dashed line), for the solution (31), where r = 0.1, s = 2, g = 0.1, U = 0.03. b Plot of /(1) against n for
different values of a = 0.2 (solid line), a = 0.22 (dotted line), a = 0.25 (dashed line), for the solution (31),
where r = 0.1, s = 2, g = 0.1, U = 0.03
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Fig. 5 (color online) Plot of the solitary wave solution of cylindrical KP equation (Eq. 34) a for g = 0.02
and b for g = 2, where the other parameters are C ¼ 4;R ¼ 0:03; a ¼ 0:01;r ¼ 0:5; a1ðsÞ ¼ sinð3sÞ;
a2ðsÞ ¼ cosð3sÞ
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Fig. 6 (color online) Plot of the solitary wave solution of cylindrical KP equation (Eq. 34) against n and a,
where C = 0.7, R = 1.5, r = 0.2, g = 0.1 and s = 4
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Fig. 7 Plot of the solitary wave
solution of cylindrical and
spherical KP equation (Eqs. 34,
35) against n for several values of
a = 0.01 (solid line), a = 0.03
(dotted line), a = 0.05 (dashed
line), where g = 0.1,
C = 1, R = 0.03, r = 0.01
and s = 2
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4 Results and discussion

In this section we numerically investigate the parametric dependence of IASWs, given by

(31), (33), (34) and (35). In Figs. 1a, b and 2 we plot the special solution (31) for different

values of a and r respectively. It is important to note that compressive and rarefactive

solitons can exist in our present plasma model. We can see that the electrostatic potential

will change from positive to negative when a increases and r is fixed. Whether the

electrostatic potential is positive or negative depends on the sign of the ratio of coefficient

of nonlinear term to dispersive term (A/B). It is also seen that the amplitude of the solitary

waves increases for hump soliton and decreases for dip soliton with the increase of a, if the

other parameters are kept fixed. This is owing to the fact that the increasing number of

nonthermal electrons decreases the nonlinearity and increase the dispersion. This shows

that the properties of soliton are affected by the presence of nonthermally distributed

electrons. This is in good agreement with the result of Mamun (1997) that the presence of

nonthermal electrons changes the properties of the solitary waves and that for a suitable

nonthermal electron distribution it is possible to obtain both positive (compressive) and

negative (rarefactive) solitary waves. Also, it is found that the amplitude of the solitary

waves decreases with the increase of r when a is kept fixed. Actually, the increase in ion

temperature can be depicted as increase in ion thermal velocities as a result of which the

convection thrives and at the same time dispersion debilitates in the system, consequently

the soliton amplitude is decreased. The behavior is similar to the results obtained by

Mamun (1997) in a plasma system consisting of warm adiabatic ions and nonthermally

distributed electrons. In Fig. 3 the coefficient of nonlinear term A against b and r for the

solution (31) is plotted. It is seen that the nonlinear term decreases with the increase of b

and becomes zero when b satisfies the relation b ¼ bc ¼
1�3ð1�bÞ2

12ð1�bÞ3 ¼ r. When b becomes

greater than bc, the soliton becomes a dip soliton. So the presence of nonthermal electrons

may completely change the nature of solitons. Figure 4 shows the evolution of solitary

wave structures for several values of g for the solution (33). In Fig. 5a and b we present the

cylindrical soliton solutions (34) for small and large values of g. It is interesting to note

that the transverse co-ordinate g will significantly affect the structure of solitons. It is seen

that the solitary waves propagate along a route of sinusoid as time goes on depending upon

the choice of arbitrary functions a1 and a2 as sinusoid. Figure 6 shows the effect of a on
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Fig. 8 (color online) Plot of the
solitary wave solution of
cylindrical KP equation (Eq. 34)
against n and g, where the other
parameters are
C = 3, R = 0.05, a = 0.01,
r = 0.5 and s = 4
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the propagation of IASWs given by (34). It is found that the amplitude of the cylindrical

solitons increases with the nonthermal parameter a. In Fig. 7 we plot the solutions of

cylindrical and spherical solitons for different values of a. It is seen that the spherical and

cylindrical solitons attend their respective peaks at different values of n, when the trans-

verse co-ordinate g is fixed. This figure reveals that the amplitude of the spherical solitons

is larger than that of the cylindrical one. It is also found that spherical solitary waves travel

faster than cylindrical solitary waves. Figure 8 shows an interesting phenomena viz. the

soliton changes its position due to the transverse co-ordinate g as time goes on. It forms

part of a loop soliton. It is to be noted that this kind of phenomena has been observed in

coronal plasma.

5 Conclusion

In the present study we have investigated the nature of nonlinear propagation of IASWs in

an unmagnetized collisionless plasma with nonthermally distributed electrons and warm

ions in nonplanar geometries. We have derived the CKPE/SKPE and modified CKPE/

SKPE (when the coefficients of the nonlinear terms in CKPE and SKPE vanish) using the

standard reductive perturbation technique. It is seen that nonthermally distributed electrons

have a very significant role in the formation of the propagation of IASWs in an unmag-

netized plasma in nonplanar geometries. When b, the nonthermal distribution parameter

becomes large the nature of solitons completely changes. It is also seen that the nature of

propagation of solitary structures changes with the transverse perturbation in nonplanar

geometry. We hope that the present investigation on the properties of solitary waves would

be helpful for better understanding of the nonlinear features of solitary waves in astro-

physical as well as in laboratory plasmas in a nonplanar geometry frame work.
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