
Robe’s Circular Restricted Three-Body Problem Under
Oblate and Triaxial Primaries

Jagadish Singh • Hafsah Laraba Mohammed

Received: 1 March 2012 / Accepted: 12 July 2012 / Published online: 25 July 2012
� Springer Science+Business Media B.V. 2012

Abstract This paper analyzes Robe’s circular restricted three-body problem when the

hydrostatic equilibrium figure of the first primary is assumed to be an oblate spheroid, the

shape of the second primary is considered as a triaxial rigid body, and the full buoyancy

force of the fluid is taken into account. It is found that there is an equilibrium point near the

center of the first primary, another equilibrium point exists on the line joining the centers of

the primaries and there exist infinite number of equilibrium points on an ellipse in the

orbital plane of the second primary. It is also observed that under certain conditions, all

these equilibrium points can be stable. The most interesting and distinguishable results of

this study are the existence of elliptical points and their stability.

Keywords Robe’s problem � Buoyancy force � Oblateness � Triaxiality �
Equilibrium points � Linear stability

1 Introduction

Robe’s problem which is still a new kind of restricted three body problem incorporates the

effect of buoyancy force, was formulated by Robe (1977). He regards the first primary m1

as a rigid spherical shell filled with a homogeneous incompressible fluid of density q1, the

second primary as a point mass m2 located outside the shell, and the third body which is

the infinitesimal mass m3 with density q3 moves inside the shell under the influence of the

gravitational attraction of the primaries and the buoyancy force of the fluid q1. He con-

sidered two cases. In the first case, m2 describes a circular orbit around the shell and in the

second case, its orbit is elliptic but the shell is empty, or the densities q1 and q3 are equal.
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He established the center of the first primary as an equilibrium point and discussed its

linear stability.

In estimating buoyancy force, Robe (1977) assumed that the pressure field of the fluid

q1 has spherical symmetry around the center of the shell and he considered only one out of

the three components of the pressure field, which is that due to the own gravitational field

of the fluid q1. The other two components are arising from the centrifugal force and

attraction of m2. Plastino and Plastino (1995) took into account all these components of

pressure field. But in their study, they assumed the hydrostatic equilibrium figure of the

first primary as Roche’s ellipsoid. They found that when the density parameter D is zero,

every point inside the fluid is an equilibrium point; otherwise, the ellipsoid’s center is the

only equilibrium point. They also examined the linear stability of equilibrium points.

Hallan and Mangang (2007) studied Robe’s circular restricted three body problem,

assuming the hydrostatic equilibrium figure of the first primary as an oblate spheroid

instead of a Roche’s ellipsoid. They obtained conditions for the existence of an infinite

number of equilibrium points and their linear stability.

In nature, some celestial bodies are not perfect spheres. They are either oblate principal

or triaxial principal. The Earth, Jupiter, Saturn and Ragulus are oblate, because two of the

three moments of inertia are equal, while the Moon, Pluto and Charon are triaxial because

all the three moment of inertia are distinct. The lack of sphericity of the heavenly bodies

causes large perturbations from a two-body orbit. The motions of artificial Earth Satellites

are example of this. This motivates several studies (Subbarao and Sharma 1975; Elipe and

Ferrer 1985; Sharma et al. 2001; Singh 2009; Singh and Begha 2011) to include oblateness

and triaxiality in the restricted three-body problem. So far, to the present authors’ knowl-

edge, no work on the Robe’s Problem has been done by taking a primary as a triaxial body.

In this paper, we examine the Robe’s problem by taking into consideration all the three

components of pressure field when the second primary moves in a circular orbit around the

first primary. We assume the hydrostatic equilibrium figure of the first primary as an oblate

spheroid and the second primary as a triaxial rigid body. We propose to find all the

equilibrium points in the plane of motion and then discuss their stability. This paper is

organized as follows: in Sect. 2, the pertinent equations of motion are presented; Sect. 3

locates the equilibrium points, while their stability is discussed in Sect. 4; finally, Sect. 5

concludes the results of this paper.

2 Equations of Motion

Let the first primary m1 be a fluid of density q1 in the shape of an oblate spheroid as

assumed by Hallan and Mangang (2007); the second primary m2 be a triaxial rigid body as

Sharma et al. (2001) which describes a circular orbit around m1. The infinitesimal mass m3,

whose density is q3 = q1, moves inside the first primary (see Fig. 1). We consider a

uniformly rotating coordinate system oxyz with the origin at the center of the mass m1, ox
points towards m2 and oxy being the orbital plane of m2 coinciding with the equatorial

plane of m1. Then, the equations of motion of the infinitesimal body of density q3 in this

coordinate system, as in Hallan and Mangang (2007) and Sharma et al. (2001), is given as:

€x� 2n _y ¼ Ux

€yþ 2n _x ¼ Uy

€z ¼ Uz

ð1Þ
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where

U ¼ V þ
n2 x� m2

m1þm2
R

� �2

þy2

� �

2

V ¼ Bþ B0 � q1

q3

Bþ B0 þ
n2 x� m2

m1þm2
R

� �2

þy2

� �

2

2
664

3
775

B ¼ pGq1 I � A1x2 � A1y2 � A2z2
� �

B0 ¼ Gm2

R� xð Þ2þy2 þ z2

h i1=2
þ Gm2 2r1 � r2ð Þ

2 R� xð Þ2þy2 þ z2

h i3=2
� 3Gm2 r1 � r2ð Þy2

2 R� xð Þ2þy2 þ z2

h i5=2

� 3Gm2r1z2

2 R� xð Þ2þy2 þ z2

h i5=2

I ¼ 2a2
1A1 þ a2

2A2;

A1 ¼ a2
1a2

Z1

0

du

D a2
1 þ u

� 	 ; A2 ¼ a2
1a2

Z1

0

du

D a2
2 þ u

� 	; D2 ¼ a2
1 þ u

� 	2
a2

2 þ u
� 	

n2 ¼ G m1 þ m2ð Þ
R3

1þ 3

2
aþ 3

2
2r1 � r2ð Þ


 �

a ¼ a2
1 � a2

2

5R2
; r1 ¼

a2 � c2

5R2
; r2 ¼

b2 � c2

5R2
; a� 1; ri � 1; i ¼ 1; 2ð Þ :

Here Ux, Uy and Uz are the partial derivatives of U with respect to x, y and z respectively;

V is the potential that explains the combined action of the forces upon the infinitesimal

mass; B denotes the potential due to the fluid mass of the first primary in the shape of an

oblate spheroid, B0 stands for the potential due to the second triaxial primary; R is the

distance between the primaries and G is the gravitational constant. n is the mean motion.

a1, a2 are the equatorial and polar radii of the first primary and a its oblateness coefficient,

while a, b, c are semi axes of the second primary used in defining its triaxiality with the

help of parameters r1, r2 in the tridimensional form. I is the polar moment of inertia of the

oblate primary with index symbol Ai(i = 1, 2). The last term in V arises from the buoyancy

force per unit mass, as in Plastino and Plastino (1995), given as

E ¼ � q1

q3

D Bþ B0 þ
n2 x� m2

m1þm2
R

� �2

þy2

� �

2

2
664

3
775

Now, we choose the unit of mass such that the sum of the masses of the primaries is

taken as unity, thus we take m2 ¼ l; 0\l ¼ m2

m1þm2
\1. For the unit of length, we take

the distance between the primaries as unity i.e. R = 1 and the unit of time is also selected

such that G = 1. With these units, the potential used in Eq. (1) becomes
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U ¼D pq1 I�A1x2�A1y2�A2z2
� 	

þ l

1� xð Þ2þy2þ z2

n o1=2

2
64 þ l 2r1�r2ð Þ

2 1� xð Þ2þy2þ z2

n o3=2

� 3l r1�r2ð Þy2

2 1� xð Þ2þy2þ z2
n o5=2

� 3lr1z2

2 1� xð Þ2þy2þ z2
n o5=2

þ
n2 x�lð Þ2þy2
n o

2

3
5 ð2Þ

n2 ¼ 1þ 3

2
aþ 3

2
2r1 � r2ð Þ; a� 1; ri � 1; i ¼ 1; 2ð Þ ð3Þ

3 Location of Equilibrium Points

The equilibrium points are those points at which the velocity and acceleration of the

infinitesimal mass are zero. Therefore, these points are the solutions of the equations

Ux ¼ 0; Uy ¼ 0; Uz ¼ 0: That is,

Ux ¼D �2pq1A1xþ l 1� xð Þ

1� xð Þ2þy2 þ z2

n o3=2
þ 3l 2r1 � r2ð Þ 1� xð Þ

2 1� xð Þ2þy2 þ z2

n o5=2

2
64

� 15l r1 � r2ð Þ 1� xð Þy2

2 1� xð Þ2þy2 þ z2

n o7=2
� 15lr1 1� xð Þz2

2 1� xð Þ2þy2 þ z2

n o7=2
þ n2 x� lð Þ

3
75 ¼ 0;

Uy ¼D

"
�2pq1A1y� ly

1� xð Þ2þy2 þ z2
n o3=2

� 3l 2r1 � r2ð Þy

2 1� xð Þ2þy2 þ z2
n o5=2

:

� 3l r1 � r2ð Þy

1� xð Þ2þy2 þ z2

n o5=2
þ 15l r1 � r2ð Þy3

2 1� xð Þ2þy2 þ z2

n o7=2
þ 15lr1yz2

2 1� xð Þ2þy2 þ z2

n o7=2

þn2y

#
¼ 0;

Fig. 1 The Robe’s CRTBP with an oblate first primary and a triaxial second primary. F1, F2 = Grav-
itational forces, FB = Buoyancy force. m1 (oblate primary), m2 (triaxial primary)
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Uz ¼ D �2pq1A2z� lz

1� xð Þ2þy2 þ z2
n o3=2

� 3l 2r1 � r2ð Þz

2 1� xð Þ2þy2 þ z2
n o5=2

2
64

þ 15l r1 � r2ð Þy2z

2 1� xð Þ2þy2 þ z2

n o7=2
� 3lr1z

1� xð Þ2þy2 þ z2

n o5=2
þ 15lr1z3

2 1� xð Þ2þy2 þ z2

n o7=2

3
75 ¼ 0:

ð4Þ
In order to study the existence of equilibrium points lying in the orbital plane of motion,

we consider the case where z = 0 and so the x, y coordinates of the equilibrium points are

the solutions of the following systems of equations treated under case I and case II below:

4 Case I: Axial Equilibrium Points

The axial points are the solutions of the system (4) with y = z = 0. Thus, these points lie

on the x-axis.and their x coordinates are the roots of the equation

�2pq1A1xþ l 1� xð Þ
1� xj j3

þ 3l 2r1 � r2ð Þ 1� xð Þ
2 1� xð Þj j5

þ 1þ 3

2
aþ 3

2
2r1 � r2ð Þ


 �
x� lð Þ ¼ 0

ð5Þ
We first find the roots by neglecting the oblateness and triaxiality terms, that is

a = r1 = r2 = 0 so that, n2 = 1, then we apply perturbation method to find the expected

equilibrium points.

When a = r1 = r2 = 0, Eq. (5) becomes

�2pq1A1xþ l 1� xð Þ
1� xj j3

þ x� l ¼ 0 ð6Þ

Equation (6) is satisfied for x = 0. So the centre of the first primary, which is the origin, is

an equilibrium point for all values of the parameters l;A1;A2; q1 and D whenever

a = r1 = r2 = 0. Other roots of Eq. (6) satisfying the condition 0 \ |x| \ 1 can be

obtained, when it is written as

1� 2pq1A1ð Þx2 þ 4pq1A1 � 2� lð Þxþ 1þ 2l� 2pq1A1ð Þ ¼ 0 ð7Þ
The roots of Eq. (7) are

x1 ¼ 1þ lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 8pq1A1l� 4l

p
2 1� 2pq1A1ð Þ ; x2 ¼ 1þ l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 8pq1A1l� 4l

p
2 1� 2pq1A1ð Þ ð8Þ

and are real if l ? 8pq1A1 - 4 C 0.

An analysis of the roots (8) shows that the point (x1, 0, 0) is an equilibrium point and it

lies within the fluid when 1� 2pq1A1\� 3
4
l and x1j j\a1.

Therefore, for a = r1 = r2 = 0; x1 = 0 is always a root of Eq. (5) and x = x1 is also a

root provided 1� 2pq1A1\� 3l
4

and x1j j\a1.

In order to find the roots of Eq. (5) when a = 0, r1 = 0, r2 = 0; we let them be
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x ¼ 0þ b1; b1j j � 1

x ¼ x1 þ b2; b2j j � 1

Putting these values of x in Eq. (5) and neglecting second and higher powers of a, b1, b2,

r1, r2, we obtain

b1 ¼ �
3

2

la
2pq1A1 � 1þ 2lð Þ


 �

b2 ¼ �
3

2

aþ 2r1 � r2ð Þ x1 � lð Þ 1� x1ð Þ þ l 2r1 � r2ð Þ 1� x1ð Þ�3

1� 3x1ð Þ 1� 2pq1A1ð Þ þ 2l

" # ð9Þ

Hence, when the oblateness of m1 and triaxiality of m2 are considered, the point (b1, 0, 0) is

always an equilibrium point and when 1� 2pq1A1\� 3l
4

and x1j j\a1, the point

x1 þ b2; 0; 0ð Þ is another equilibrium point. These points constitute the axial equilibrium

points. It is observed that the point (b1, 0, 0) is the same as that of Hallan and Mangang

(2007), and is only affected by oblateness of the first primary; whereas the point (x1 ? b2,

0, 0) differs from therein and is affected by both oblateness and triaxiality of the primaries.

5 Case II: Elliptical Equilibrium Points

The elliptical equilibrium points are the solutions of the system of Eq. (4) with x = 0,

y = 0, z = 0. Thus, these points lie in the xy- plane and their x and y coordinates are the

solutions of the following equations

� 2pq1A1xþ l 1� xð Þ

1� xð Þ2þy2
h i3=2

þ 3l 2r1 � r2ð Þ 1� xð Þ

2 1� xð Þ2þy2
h i5=2

� 15l r1 � r2ð Þ 1� xð Þy2

2 1� xð Þ2þy2
h i7=2

þ n2 x� lð Þ ¼ 0

� 2pq1A1 �
l

1� xð Þ2þy2
h i3=2

� 3l 2r1 � r2ð Þ

2 1� xð Þ2þy2
h i5=2

� 3l r1 � r2ð Þ

1� xð Þ2þy2
h i5=2

þ 15l r1 � r2ð Þy2

2 1� xð Þ2þy2
h i7=2

þ n2 ¼ 0

ð10Þ

Let

r2 ¼ 1� xð Þ2þy2 ð11Þ

Then from the system (10), we obtain

2pq1A1 ¼
�3l r1 � r2ð Þ 1� xð Þ

r5
þ n2 1� lð Þ ð12Þ

and

1

r3
þ 3 2r1 � r2ð Þ

2r5
þ 3 r1 � r2ð Þx

r5
� 15 r1 � r2ð Þy2

2r7
� n2 ¼ 0 ð13Þ
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In the absence of oblateness and triaxiality terms, that is, a1 = r1 = r2 = 0, we have

r = 1. Now, in the presence of these oblateness and triaxiality terms, r will change slightly

by e, say, such that

r ¼ 1þ e; e� 1 ð14Þ
Substituting Eq. (14) into (13) and neglecting second and higher powers of e, a, r1, r2 as

well as the products of r1 and r2 too, we obtain an expression for e:

e ¼ � 1

2
aþ r1 � r2ð Þx� 5 r1 � r2ð Þy2

2
ð15Þ

By the use of Eqs. (14) and (15), Eq. (11) yields

x2 � 2 1þ r1 � r2ð Þxþ 1þ 5r1 � 5r2ð Þy2 þ a ¼ 0 ð16Þ
This is an equation for a conic section, an ellipse to be precise. The center of the ellipse

is located at (1 ? r1 - r2, 0); if we take r1 [r2, the foci are at

1þ r1 � r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 r1 � r2ð Þ

p
; 0

� 	
and if r1 \r2, the foci are imaginary and they are

neglected; thus the semi major axis is 1� 1
2
aþ r1 � r2and the semi minor axis is

1� 1
2
a� 3

2
r1 � r2ð Þ. The eccentricity is obtained as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 r1 � r2ð Þ

p
. With the help of the

eccentric angle h, the general coordinates of a point on the ellipse can be written as

x ¼1þ r1 � r2 þ 1� 1

2
aþ r1 � r2


 �
cos h

y ¼ 1� 1

2
a� 3

2
r1 � r2ð Þ


 �
sin h

ð17Þ

And so the value of r in Eq. (14) on neglecting the product of a and ri i ¼ 1; 2ð Þ
becomes

r ¼ 1� 1

2
a� 1

2
r1 � r2ð Þ 3� 2 cos h� 5 cos2 h

� 	
ð18Þ

Thus the points on the ellipse (16) lying within the first primary are equilibrium points

and we call them elliptical points. These points are affected by both oblateness and tri-

axiality of the primaries, and have no analogies in Hallan and Mangang (2007).

6 Stability of Equilibrium Points

In order to study the motion near any of the equilibrium points (xo, yo, zo), we write

x ¼xo þ n

y ¼yo þ g

z ¼zo þ f

where n; g; f are small displacements in (xo, yo, zo). Putting these values in Eq. (1), we

obtain the variational equations of motion as

€n� 2n _g ¼Uo
xxnþ Uo

xygþ Uo
xzf

€gþ 2n _n ¼Uo
yxnþ Uo

yygþ Uo
yzf

€f ¼Uo
zxnþ Uo

zygþ Uo
zzf

ð19Þ
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Here, only linear terms in n; g and f have been taken. The second partial derivative of U
are denoted by subscripts. The superscript o indicates that the derivatives are to be eval-

uated at the equilibrium point (xo, yo, zo).

6.1 Stability of Axial Points

At axial equilibrium point (b1, 0, 0), the values of the second order partial derivatives are

Uo
xy ¼0; Uo

xz ¼ 0; Uo
yz ¼ 0;

Uo
xx ¼Dl

2n2 1� b1ð Þ5�3 2r1 � r2ð Þ 1� 5b1ð Þ � 2 1� 3b1ð Þ 1� b1ð Þ2

2b1 1� b1ð Þ5

" #
;

Uo
yy ¼Dl

2n2 1� b1ð Þ5�2 1� b1ð Þ2�3 2r1 � r2ð Þ
2b1 1� b1ð Þ5

" #
;

Uo
zz ¼� D 2pq1A2 þ

2l 1� b1ð Þ2þ3l 4r1 � r2ð Þ
2 1� b1ð Þ5

" #
:

Substituting these values in the system (19) in order to obtain

€n� 2n _g ¼Uo
xxn

€gþ 2n _n ¼Uo
yyg

ð20Þ

€f ¼ �D 2pq1A2 þ
2l 1� b1ð Þ2þ3l 4r1 � r2ð Þ

2 1� b1ð Þ5

" #
f ð21Þ

Equation (21) is independent of the system of Eq. (20), and its solution being periodic is

bounded and therefore the motion of the infinitesimal mass along the z-axis is stable. The

system (20) has solutions of the form

n ¼c1 expðktÞ
g ¼c2 expðktÞ

where c1 and c2 are constants provided k is a root of the characteristic equation

k4 � ðUo
xx þ Uo

yy � 4n2Þk2 þ Uo
xxUo

yy ¼ 0

This equation is quadratic in k2, and its roots are

k2
1 ¼

1

2
Uo

xx þ Uo
yy � 4n2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUo

xx þ Uo
yy � 4n2Þ2 � 4Uo

xxUo
yy

q
 �

k2
2 ¼

1

2
Uo

xx þ Uo
yy � 4n2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUo

xx þ Uo
yy � 4n2Þ2 � 4Uo

xxUo
yy

q
 �

The equilibrium point is stable if the following conditions are satisfied

k2
1 þ k2

2 ¼ Uo
xx þ Uo

yy � 4n2\0; ð22Þ

k2
1k

2
2 ¼ Uo

xxUo
yy [ 0: ð23Þ

By neglecting second and higher powers of a, b1, r1 and r2, we can write

8 J. Singh, H. L. Mohammed
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Uo
xx ¼3Dl

a
2b1

 �
;

Uo
yy ¼3Dl

a
2b1

� 1

 �
:

Here, we find that

að Þ if b1\0; then Uo
xx \0 and Uo

yy\0;

bð Þ if 0\b1\
1

2
a; then Uo

xx [ 0 and Uo
yy [ 0;

cð Þ if 0\
1

2
a\b1; then Uo

xx [ 0 and Uo
yy\0:

Hence, if b1 \ 0, the equilibrium point is stable since the conditions required are satisfied.

For 0\b1\ 1
2
a, the condition (23) is satisfied; but if in addition (22) is satisfied, and then

the equilibrium point is stable. Under the inequality 0\ 1
2
a\b1, the condition (23) is not

satisfied, so the equilibrium point is unstable. To the first order, the triaxiality of the second

primary has thus no significant effect on the stability of the equilibrium point (b1, 0, 0).

Similarly, for the stability of the axial equilibrium point (x1 ? b2, 0, 0), the linearized

variational equations are given as

€n� 2n _g ¼U0xxn

€gþ 2n _n ¼U0yyg
ð24Þ

€f ¼ �D 2pq1A2 þ
2l 1� x0ð Þ2þ3l 4r1 � r2ð Þ

2 1� x0ð Þ5

" #
f ð25Þ

where

U0xx ¼Dl
2n2 1� x0ð Þ5�3 2r1 � r2ð Þ 1� 5x0ð Þ � 2 1� 3x0ð Þ 1� x0ð Þ2

2x0 1� x0ð Þ5

" #
;

U0yy ¼Dl
2n2 1� x0ð Þ5�2 1� x0ð Þ2�3 2r1 � r2ð Þ � 6 r1 � r2ð Þx0

2x0 1� x0ð Þ5

" #
;

x0 ¼ x1 þ b2

Equation (25) is independent of the system (24) and its solution being periodic is

bounded. Thus, the motion along the z-axis is stable. The characteristic equation for the

system (24) is given as

k4 � ðU0xx þ U0yy � 4n2Þk2 þ U0xxU0yy ¼ 0 ð26Þ

Suppose k01 and k02 are its roots, then the axial equilibrium point is stable if the following

conditions are satisfied:

k021 þ k022 ¼ U0xx þ U0yy � 4n2\0 ð27Þ

k021 k022 ¼ U0xxU0yy [ 0 ð28Þ

Whenever, x1 \ 0, we have x
0
\ 0 and since b2j j � 1, we have U0xx\0 and U0yy\0,

thus both conditions (27) and (28) are satisfied and so the equilibrium point is stable. Also,
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when x1 [ 0, the equilibrium point is stable provided the conditions (27) and (28) are

satisfied.

Thus, we find that both oblateness and triaxiality of the primaries have significant effect

on the stability of the equilibrium point (x1 ? b2, 0, 0).

6.2 Stability of the Elliptical Points

At any elliptical point (x, y), the values of the second partial derivatives are

Uo
xz ¼ 0; Uo

yz ¼ 0;

Uo
xx ¼ 3Dl



r1 � r2ð Þ 1þ 2 cos hð Þ

þ 1þ 3a
2
� 3r1 þ

11r2

2
� 5 r1 � r2ð Þ cos h� cos2 h

� 	� �
cos2 h

�
¼ U�xxðsayÞ;

Uo
yy ¼ 3Dl 1þ 3a

2
þ 13r1 �

21r2

2
� 5 r1 � r2ð Þ cos hþ sin2 h

� 	
 �
sin2 h ¼ U�yyðsayÞ;

Uo
xy ¼ 3Dl r1 � r2ð Þ þ 1þ 3a

2
� r1

2
þ 3r2 � 5 r1 � r2ð Þ cos h� cos2 h

� 	� �
cos h


 �

� sin h ¼ U�xyðsayÞ;
Uo

zz ¼ �D 2pq1A2 þ 3lr2 � 3l r1 � r2ð Þ cos hþ ln2
� �

So that the variational equations can be written as

€n� 2n _g ¼U�xxnþ U�xyg

€gþ 2n _n ¼U�xynþ U�yyg
ð29Þ

€f ¼ �D 2pq1A2 þ 3lr2 � 3l r1 � r2ð Þ cos hþ ln2
� �

f ð30Þ

Equation (30) is independent of the system (29). Its solution is purely imaginary and so,

the motion of the infinitesimal mass along the z axis is stable. The characteristic equation

of motion of the system (29) can be written as

k4 � ðU�xx þ U�yy � 4n2Þk2 þ U�xxU�yy � ðU�xxÞ
2 ¼ 0

This equation is quadratic in k2 and so let k2 = K, then

K2 þ h1Kþ h2 ¼ 0 ð31Þ

where

h1 ¼4n2 � U�xx þ U�yy

� �

h2 ¼U�xxU�yy � U�xy

� �2

If K1, K2 be the two roots of Eq. (31), then elliptical points are stable if

K1 þ K2 ¼� h1

¼3Dl 1þ 3

2
aþ 9r1 �

13

2
r2 � 3 r1 � r2ð Þ cos hþ 2 cos2 h

� 	
 �

� 4 1þ 3

2
aþ 3

2
2r1 � r2ð Þ


 �
\0

ð32Þ
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and

K1K2 ¼ h2 ¼ 9D2l2 r1 � r2ð Þ 1þ 5 cos2 h� 6 cos4 h
� �

[ 0 ð33Þ

Now, condition (32) holds for all values of D, r1 [r2, -1 B cos h B 1, while con-

dition (33) holds for D \ 0, D [ 0, r1 [r2, -1 \ cos h\ 1. Therefore, the elliptical

points are stable for, D [ 0, r1 [r2 and -1 \ cos h\ 1.

7 Conclusion

By considering the buoyancy force on the infinitesimal mass due to the fluid of the first

primary, the hydrostatic equilibrium figure of the fluid of the first primary as an oblate

spheroid and the shape of the second primary as a triaxial rigid body, we have seen the

existence and stability of an axial equilibrium point (b1, 0, 0) as in Hallan and Mangang

(2007). When 1� 2pq1A1\� 3l
4

and x1j j\a1, there is another axial point (x
0
, 0, 0) where

x
0

= x1 ? b2. If x1 \ 0, it is stable and if x1 [ 0, it is stable whenever both conditions (27)

and (28) are satisfied. There also exist equilibrium points on the ellipse (16) lying within

the first primary. These points, called the elliptical points, are stable if D [ 0, r1 [r2 and

-1 \ cos h\ 1. The existence and stability of another axial point and elliptical points are

affected by parameters involved due to buoyancy force, oblateness and triaxiality. The

elliptical points have no analogies in the Robe’s problems studied under various aspects. It

is also noticed that in the case when the second primary is spherical (r1 = r2 = 0), the

elliptical points reduce to the circular points and are unstable. The model of this study can

be applied to the study the oscillations of the Earth’s core caused by the attraction of the

Moon because they are respectively oblate and triaxial.
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