A Multi-Wavelength Simultaneous Study of the Composition of the Halley Family Comet 8P/Tuttle

E. Jehin · D. Bockelée-Morvan · N. Dello Russo · J. Manfroid ·

D. Hutsemékers · H. Kawakita · H. Kobayashi · R. Schulz ·

A. Smette · J. Stüwe · M. Weiler · C. Arpigny · N. Biver ·

A. Cochran · J. Crovisier · P. Magain · H. Rauer · H. Sana ·

R. J. Vervack · H. Weaver · J.-M. Zucconi

Received: 26 January 2009/Accepted: 8 May 2009/Published online: 30 May 2009 © Springer Science+Business Media B.V. 2009

Abstract We report on simultaneous optical and infrared observations of the Halley Family comet 8P/Tuttle performed with the ESO Very Large Telescope. Such multi-wavelength and coordinated observations are a good example of what can be done to support space missions. From high resolution optical spectroscopy of the CN (0,0) 388 nm and NH₂ (0,9,0) 610 nm bands using UVES at UT2 we determined ${}^{12}C/{}^{13}C = 90 \pm 10$ and ${}^{14}N/{}^{15}N = 150 \pm 20$ in CN and we derived a nuclear spin temperature of NH₃ of 29 ± 1 K. These values are similar to those found in Oort-Cloud and Jupiter Family comets. From low resolution long slit spectroscopy with FORS1 at UT2 we determined the CN, C₃ and C₂ production rates and the parent and daughter scale lengths up to 5.2 10^5 km

Institut d'Astrophysique et de Géophysique de l'Université de Liège, Allée du 6 août 17, 4000 Liège, Belgium

e-mail: ejehin@ulg.ac.be

D. Bockelée-Morvan \cdot M. Weiler \cdot N. Biver \cdot J. Crovisier LESIA, Observatoire de Paris, 92195 Meudon, France

N. Dello Russo · R. J. Vervack · H. Weaver The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 2072, USA

A. Smette · H. Sana ESO, Vitacura Casilla, 19001 Santiago, Chile

H. Kawakita · H. Kobayashi Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan

A. Cochran Department of Astronomy and McDonald Observatory, University of Texas, Austin 1400, USA

R. Schulz ESA/RSSD, ESTEC, 2200 AG Noordwijk, The Netherlands

Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Prog. 080. C-0615 and 280.C-5053).

E. Jehin (🖂) · J. Manfroid · D. Hutsemékers · C. Arpigny · P. Magain

tailward. From high resolution IR spectroscopy with CRIRES at UT1 we measured simultaneously the production rates and mixing ratios of H_2O , HCN, C_2H_2 , CH_4 , C_2H_6 , and CH_3OH .

Keywords Comets \cdot 8P/Tuttle \cdot Spectroscopy \cdot Isotope ratios \cdot NH₂ OPR \cdot Production rates \cdot Mixing ratios

1 Introduction

Determining the composition of cometary nuclei is essential for understanding the formation and evolution of volatile material within our solar system. Observational evidence supports chemical diversity among comets that may reflect the diversity of conditions in comet-forming regions in the solar nebula.

However, comets experienced different processing histories whose importance has to be properly investigated both theoretically and observationally. The orbits of Halley-family comet (HFCs) have evolved to periods less than 200 years, making them the most processed Oort-cloud comets. However, HFCs are underrepresented in compositional surveys.

The 2008 apparition of comet 8P/Tuttle was an excellent opportunity to perform a detailed investigation of the composition of a HFC with modern techniques.

Observations during the 1980 apparition showed 8P/Tuttle to be typical in C₂ abundance relative to H₂O (C₂/H₂O ~4.1 × 10⁻³), with an inferred H₂O production rate between ~1.6 and 5.7 × 10²⁸ mol s⁻¹ at a heliocentric distance (R_h) between 1.02 and 1.16 AU (A'Hearn et al. 1995).

2 Observing Circumstances

8P/Tuttle made a close approach to Earth at 0.25 AU on Jan 2, 2008. On Jan 16, 28 and Feb 4 UT, we undertook simultaneous spectroscopic observations in the near-infrared and the visible range using the CRIRES, FORS1 and UVES instruments installed at the UT1 and UT2 units of the Very Large Telescope (VLT) of the European Southern Observatory (ESO). The observing circumstances are given in Table 1. The weather was cloudy on the visitor mode night of Jan 16 and only UVES spectra could be used. On the two other nights (service mode) simultaneous observations with the three instruments were performed, the weather was clear and the seeing was 0.5-1.5''.

J. Stüwe

J.-M. Zucconi Observatoire de Besançon, 25010 Besançon, France

Leiden Observatory, 2300 RA Leiden, The Netherlands

H. Rauer Institute of Planetary Research, DLR, 12489 Berlin, Germany

	-						
Date	R_{h} (AU)	V _{Rh} (km/s)	Δ (AU)	V_{Δ} (km/s)	P.A. (°)	α (°)	
16/01/08	1.04	-4.32	0.36	21.75	67.5	70.9	
28/01/08	1.03	0.38	0.52	24.79	74.7	70.5	
04/02/08	1.03	3.13	0.62	24.22	80.1	67.9	

Table 1 Observing circumstances

 R_h and V_{Rh} are the heliocentric distance and velocity, Δ and V_{Δ} are the geocentric distance and velocity, respectively. P.A. stands for position angle of the antisolar direction, α is the phase angle

3 C and N Isotope Ratios, NH₂ OPR

The high resolution spectroscopic observations in the optical domain ($\lambda/\Delta\lambda = 80000$, [303–1004 nm]) had several objectives, among which measurements of carbon and nitrogen isotopic ratios and the ortho-to-para (OPR) ratio in NH₂.

Synthetic spectra of ${}^{12}C^{14}N$, ${}^{13}C^{14}N$, ${}^{12}C^{15}N$ (0,0) bands at 388 nm were computed using a fluorescence model (Zucconi and Festou 1985). The isotope mixture was adjusted to best fit the observed continuum subtracted spectrum (Arpigny et al. 2003). This is illustrated in Fig. 1. The carbon isotopic ratio found in 8P/Tuttle (${}^{12}C/{}^{13}C = 90 \pm 20$) is in agreement with other comets and with the terrestrial and solar value (89). The ${}^{15}N$ enrichment (${}^{14}N/{}^{15}N = 150 \pm 25$) with respect to the terrestrial atmospheric value (272) is consistent with the value observed in about 20 comets of the Oort-Cloud and Jupiter-Family types (Manfroid et al. 2009, in preparation).

The red part of the UVES spectra gives access to the NH₂ (0,9,0) band at 610 nm, which was used to measure the OPR of NH₂ on the basis of a fluorescence excitation model (Kawakita et al. 2001) (Fig. 2). A mean OPR of 3.29 ± 0.07 was derived, providing a nuclear spin temperature of NH₃ of T_{spin} = 29 ± 2 K in agreement with measurements in other comets (27–35 K). If T_{spin} is correlated with the location of formation of the comet in

Fig. 1 A small part of the CN (0,0) mean spectrum (*black line*). The positions of the ${}^{13}C^{14}N$ (*red ticks*) and ${}^{12}C^{15}N$ (*blue ticks*) isotopic lines are indicated. The synthetic spectrum with ${}^{12}C/{}^{13}C = 90$ and ${}^{14}N/{}^{15}N = 150$ is superimposed (*blue line*). The *red dotted line* is the synthetic spectrum without ${}^{13}C^{14}N$ and ${}^{12}C^{15}N$ (Color figure online)

Fig. 2 Observed and modelled spectrum of the NH_2 (0,9,0) band at 610 nm on Feb 04. Strong ortho- and para- NH_2 lines are marked

the solar nebula, the Halley type comet 8P/Tuttle formed in a similar environment as most of the Oort-Cloud and Jupiter-family comets.

4 CN, C₃ and C₂ Density Profiles, Production Rates and Scale Lengths

Long slit spectroscopy ($\lambda/\Delta\lambda = 440$, [330–660 nm]) was performed to measure the radial distributions of the CN, C₂, C₃ radicals and their parent production rates, in order to constrain their origin. The slit was put along the tail and offsets were applied in order to cover continuously the coma up to 5.2 10⁵ km in the tail direction. Spatial profiles of the gaseous emissions of CN [3830–3905 Å], C₃ [3975–4150 Å] and C₂ [4860–5210 Å] were extracted by integrating the flux densities over the above cited wavelength ranges (Fig. 3). The fluxes were then converted to column densities.

The Haser model was used to fit the CN, C_3 and C_2 column density profiles and to derive production rates, parent (lp) and daughter (ld) scale lengths (Table 2). For CN, the spatial coverage was not sufficient on the sunward side, so that the scale lengths were fixed to the values measured tailward. A parent and daughter expansion velocity of 1.0 km/s was assumed.

 C_2 /CN and C_3 /CN production rate ratios are consistent with values measured by narrowband photometry (Schleicher IAUC8903, pers.com.) and fall near the mean values for typical comets according to A'Hearn et al. (1995) taxonomy (as already observed at previous 8P apparitions).

For CN the sunward side is not well fitted with the (lp, ld) parameters measured tailward. The CN parent scale length is not fully in agreement with that one expected from the photodissociation of HCN. Using the Haser-equivalent model, the photodissociation rates of $1.55 \times 10^{-5} \text{ s}^{-1}$ (HCN), $3.2 \times 10^{-6} \text{ s}^{-1}$ (CN) (Bockelée-Morvan and Crovisier 1985, Huebner et al. 1992) and a CN ejection velocity of 0.86 km/s (Fray et al. 2005) one gets lp = 4.5×10^{4} km and ld = 4.0×10^{5} km to be compared with the measured values of 3.5×10^{4} km and 1.9×10^{5} km, respectively. The comparison of the CN and HCN

Fig 3 Spatial profile of the gaseous emission of CN [3830–3905 Å], C_3 [3975–4150 Å] and C_2 [4860–5810 Å]

Radical	Date	Production rate	lp (km)	ld (km) Tail/Sun	
		Tail/Sun	Tail/Sun		
CN	28/01	$1.4/1.0 \times 10^{26}$	3.6×10^{4}	1.6×10^{5}	
	04/02	$1.3/1.1 \times 10^{26}$	3.4×10^{4}	2.1×10^{5}	
C ₃	28/01	$8.1/4.8 \times 10^{24}$	$5.6/3.9 \times 10^{3}$	$3.5/2.7 \times 10^4$	
	04/02	$10.2/4.8 \times 10^{24}$	$8.0/3.4 \times 10^{3}$	$3.3/4.7 \times 10^4$	
C_2	28/01	$1.9/1.2 \times 10^{26}$	$6.5/5.1 \times 10^4$	$6.7/5.1 \times 10^4$	
	04/02	$2.0/1.4 \times 10^{26}$	$5.8/4.9 \times 10^4$	$5.8/4.8 \times 10^4$	

Table 2 CN, C_3 , C_2 production rates and their parent (lp) and daughter (ld) scale lengths for the sunward and tailward sides using a Haser model

production rates presented in the next section suggests that HCN is not the major source of CN in this comet. A possible candidate is C_2N_2 (Bockelée-Morvan and Crovisier 1985; Festou et al. 1998; Fray et al. 2005). However, using the C_2N_2 photodissociation rate and CN ejection velocity of 2–3 km s⁻¹ given by Bockelée-Morvan and Crovisier (1985), we infer an equivalent parent scale length $lp = 0.6-1.2 \times 10^4$ km much shorter than observed.

The fits for C_2 are the poorest. A complex chemistry model is needed to reproduce the C_2 and C_3 profiles as these species are produced in more than one reaction step from several parent species (Helbert et al. 2005).

5 Mixing Ratios and Production Rates of Parent Molecules

Infrared high resolution spectroscopy observations ($\lambda/\Delta\lambda = 50000$, [2.9–3.3 µm]) with CRIRES were conducted to measure the production rates and abundance of several parent molecules (Fig. 4). An important objective was to compare HCN and C₂H₂ production rates to those of their daughter products CN and C₂ observed simultaneously with FORS 1 (Table 3).

The mixing HCN/H₂O ratio is lower, by a factor of 3, than the mean value of 0.26% (Disanti and Mumma 2008) measured in Oort-Cloud comets from IR observations. A similar conclusion is reached from millimetre observations (Biver et al. 2008) and from the

Fig. 4 Spectrum of H₂O and OH observed on January 28 with CRIRES

Table 3 Mixing ratios and pro-duction rates of parent molecules	Molecules	Trot (K)	Production rate (mol/s)	Mixing ratio (%)
(Kobayashi et al. 2009, in preperation)	Jan 28 H ₂ O	70 ± 15	$(4.6 \pm 0.4) \times 10^{28}$	100
	HCN C ₂ H ₂	54 ± 9 (70)	$(3.4 \pm 1.1) \times 10^{25}$ $(2.1 \pm 0.7) \times 10^{25}$	0.07 ± 0.02 0.05 ± 0.02
	Feb 4			
	H_2O	65 +15/-13	$(3.0 \pm 0.2) \times 10^{28}$	100
	CH_4	(70)	$(1.7 \pm 1.1) \times 10^{26}$	0.6 ± 0.4
	C_2H_6	(70)	$(6.7 \pm 1.3) \times 10^{25}$	0.23 ± 0.04
	CH ₃ OH	(70)	$(9.7 \pm 1.1) \times 10^{27}$	3.3 ± 0.3

NIR observations of Bonev et al. (2008) and Boehnhardt et al. (2008). Strong depletions of C2H2 and C2H6 are also observed, compared to the mean value in Oort-Cloud comets but the CH₃OH and CH₄ mixing ratios are typical.

The CN/HCN ratio is \sim 3, suggesting that there is another source of CN in the coma. This has been already noticed for a number of comets (Fray et al. 2005).

A similar conclusion is reached for C₂, as the C₂/C₂H₂ ratio is ~ 8 .

References

- M. A'Hearn et al., Icarus 118, 223 (1995). doi:10.1006/icar.1995.1190
- C. Arpigny et al., Science 301, 1522 (2003). doi:10.1126/science.1086711
- N. Biver et al., in Asteroids, Comets, Meteors, LPI Contribution No. 1405, Baltimore, MD, 14-18 July 2008
- D. Bockelée-Morvan, J. Crovisier, Astron. Astrophys. 151, 90 (1985)
- H. Boehnhardt et al., Astrophys. J. 683, L71 (2008)
- B.P. Bonev et al., Astrophys. J. 680, L61 (2008)

M.A. DiSanti, M.J. Mumma, Space Sci. Rev. 138, 127 (2008)

M. Festou et al., BAAS 30, 1089 (1998)
N. Fray et al., P&SS 53, 1243 (2005)
J. Helbert et al., Astron. Astrophys. 442, 1107 (2005)
W.F. Huebner et al., Ap&SS 195, 1 (1992)
H. Kawakita et al., Science 294, 1089 (2001)
J.-M. Zucconi, M. Festou, Astron. Astrophys. 150, 180 (1985)