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Abstract This paper studies the asymmetric solutions of the restricted planar problem of

three bodies, two of which are finite, moving in circular orbits around their center of

masses, while the third is infinitesimal. We explore, numerically, the families of asym-

metric simple-periodic orbits which bifurcate from the basic families of symmetric

periodic solutions f, g, h, i, l and m, as well as the asymmetric ones associated with the

families c, a and b which emanate from the collinear equilibrium points L1, L2 and L3

correspondingly. The evolution of these asymmetric families covering the entire range of

the mass parameter of the problem is presented. We found that some symmetric families

have only one bifurcating asymmetric family, others have infinity number of asymmetric

families associated with them and others have not branching asymmetric families at all, as

the mass parameter varies. The network of the symmetric families and the branching

asymmetric families from them when the primaries are equal, when the left primary body

is three times bigger than the right one and for the Earth–Moon case, is presented. Min-

imum and maximum values of the mass parameter of the series of critical symmetric

periodic orbits are given. In order to avoid the singularity due to binary collisions between

the third body and one of the primaries, we regularize the equations of motion of the

problem using the Levi-Civita transformations.

Keywords Asymmetric orbit � Critical orbit � Homoclinic orbit �
Levi-Civita regularization � Periodic orbit � Restricted three-body problem

1 Introduction

The study, the determination and the calculation of families of symmetric periodic orbits

in the restricted three-body problem is the popular subject of decades researchers while

hundreds papers about them have been written. On the contrary, only few papers have
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dealt with families of asymmetric periodic solutions of the problem (e.g. Kristiansson

1933; Strömgren 1935; Message 1958, 1959; Bartlett 1964; Danby 1967; Deprit et al.

1967; Markellos 1974, 1977, 1978; Taylor 1983a, 1983b; Zagouras et al. 1996; Hènon

2005 etc). A systematic exploration of the families of asymmetric periodic orbits is not

as simple as in the case of symmetric ones, because now two initial values must be

simultaneously adjusted instead of one. The initial condition space of planar asymmetric

periodic orbits is three dimensional while that of symmetric ones which is two

dimensional.

The main goal of the present work is the determination of families of asymmetric

periodic orbits associated with the families of symmetric simple-periodic orbits throughout

the entire range of the mass parameter of the restricted three-body problem. When we

mention asymmetric periodic orbit we mean the periodic solution of the problem which is

non-symmetric with respect to the horizontal x-axis. The asymmetric families were found

consist of asymmetric periodic orbits which are non-symmetric with respect to the hori-

zontal x-axis or with no symmetry at all.

The method we use has been developed by Hénon (1965, 2005). We find the horizontal

stability indices ah and bh of known symmetric periodic orbits and we check if ah = 1 and

bh = 0 at the same time. In this case the symmetric periodic orbit is a critical orbit, and a

family of planar asymmetric periodic orbits bifurcates from it. Once an asymmetric orbit

has been found then we calculate the whole one-parameter family to which that orbit

belongs. In this way we can calculate the network of the asymmetric families which

bifurcate from the symmetric families.

We have, numerically, explored the families of asymmetric simple-periodic (two

intersections with x-axis) orbits which bifurcate from the basic symmetric families

(Strömgren 1935) f, g, h, i, l and m, as well as the asymmetric ones associated with the

families c, a and b which emanate from the collinear equilibrium points L1, L2 and L3

correspondingly. For these nine symmetric families we study the existence and the

determination of their critical symmetric periodic solutions with ah = 1 and bh = 0 for the

entire range of the mass parameter l. Then we calculate the bifurcating asymmetric

families of these critical points for three cases: when the primary bodies are equal

(l = 0.5), when the left primary is three times bigger than the right one (l = 0.25) and

finally for the Earth–Moon case (l = 0.012141).

The equations of motion of the infinitesimal mass m3, of the planar, circular restricted

problem of three bodies, in the usual dimensionless rectangular rotating coordinate system

are written as (Szebehely 1967),

€x� 2 _y ¼ oX
ox
; €yþ 2 _x ¼ oX

oy
; ð1Þ

where dots denote time derivatives while the gravitational potential X in synodic coor-

dinates is defined as

X ¼ 1

2
ðx2 þ y2Þ þ 1� l

r1

þ l
r2

; ð2Þ

where

r2
1 ¼ ðxþ lÞ2 þ y2; r2

2 ¼ ðxþ l� 1Þ2 þ y2 ð3Þ

and l is the mass parameter of the problem. The primaries m1 and m2 have masses 1-l
and l, and coordinates (-l, 0), (1-l, 0) correspondingly.

26 K. E. Papadakis

123



The energy (Jacobi) integral of this problem, is given by the expression

_x2 þ _y2 ¼ 2X� C; ð4Þ

where C is the Jacobi constant.

Due to the large number of calculated periodic orbits and the often fact that the third

body collides with the two primaries, we regularize the equations of motion (Szebehely

1967) using the Levi-Civita (1906) transformations. The Levi-Civita regularization is a

local regularization and therefore we eliminate the two singularities of the problem (for

each primary body) separately.

2 Case of Equal Primaries l = 0.5

In this section we present the network of the planar symmetric simple-periodic orbits of the

classical restricted three-body problem as it has illustrated by Papadakis (1996) when the

masses of the primary bodies are equal (l = 0.5, Copenhagen problem). By symmetric

simple-periodic orbits we mean the solutions which have two perpendicular intersections

with the horizontal x-axis.

In this case, there are 22 families which are classified in three groups. The first group

consists of pairs of families which are symmetric to each other with respect to the origin

(namely the family pairs are: i-g, h-f, a-b, s-t, u-v, w-x and y-z), the second one contains

families with periodic orbits which have the y-axis as an axis of symmetry (namely the

families of this group are: c, m, l, k and r) and the third group has families with the

following property: for each periodic orbit of the family with Jacobian constant C, there

is a symmetric, with respect to the y-axis, periodic orbit which corresponds to the same

value of the Jacobian constant C (namely the families of the third group are: j, n and o).

In Fig. 1 we present the network of the symmetric families of the problem (simple-

periodic solutions) and we distinguish the families a, b and c which emanate from the

collinear equilibrium points as well as the six basic families f, g, h, i, l and m where we

are going to study. Families a and b consist of retrograde symmetric periodic orbits

around the equilibrium points L2 and L3 correspondingly, family f has periodic orbits

which are retrograde around the second body m2, family h has retrograde orbits around

the first body m1, family i has direct orbits around m1 and family g consists of direct

orbits around m2. As we have already mentioned all these families belong to the first

group and therefore for a given periodic orbit of one family, one obtains the symmetric

to it periodic orbit of its pair family by replacing x, y and l by -x, -y and 1-l. So, for

instance, family a changes into family b and vice versa. We will use this property in

order to determine these coupled-families.

Family c consists of symmetric periodic orbits which are retrograde orbits around the

inner collinear equilibrium point L1, and families l and m have periodic orbits which are

retrograde solutions around the two primaries m1 and m2. Properties, initial conditions,

evolution, etc. of the above mentioned 22 families in the case of equal masses (l = 0.5) or

not (l = 0.5) in the gravitational and in the photogravitational restricted three-body

problem are given, in detail, by Hénon (1965), Papadakis (1996) etc.

Although we have calculated asymmetric solutions from several symmetric families of

the problem, the main goal of this work is the determination of the asymmetric families

which bifurcate from the nine basic symmetric families and to study their evolution as the

parameter of mass varies.
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We remark that in Fig. 1, as well as in all the Figures in this paper, only those parts of

the family characteristics are presented which represent simple-periodic orbits. The family

characteristics continue with other parts corresponding to higher-multiplicity orbits which

evolve after collisions with one of the primaries, but these parts are not considered in this

paper.

In Fig. 1 with small circles we denote the positions of the critical symmetric periodic

orbits (ah = 1, bh = 0) from which families of non-symmetric periodic orbits bifurcate

for l = 0.5, while the dotted vertical lines denote the positions of the primary bodies. The

predictor-corrector procedure for the determination of asymmetric periodic solutions (and

the continuation of a family) of a dynamical system of two degrees of freedom, as our

problem, is given in detail by Markellos and Halioulias (1977). All calculations reported

here were performed using the variable step R-K 8th-order direct integration and settings

the allowable energy variation DC = |Cstart - Cend| \ 10-12 and jx0 � xT j\10�8 (initial

and final conditions at t = 0 and t = T).

2.1 Families of the Equilibrium Points

In this subsection we present the network of the symmetric and asymmetric families

around the collinear equilibrium points Li, i = 1,...,3. In the left frame of Fig. 2 the 8

families of symmetric simple-periodic orbits (i.e. the families c, i, x, r, o, s, y and n) which

exist around the inner collinear equilibrium point L1, are illustrated. In the middle frame we

zoom in the area A of the left frame while in the right frame we enlarge the area B of the

middle frame. In all these frames we present the characteristic curves (blue lines) of

Fig. 1 The network of the families of symmetric (black lines) and asymmetric (blue lines) periodic orbits of
the restricted three-body problem with equal primaries. Small circles denote the positions of the critical
symmetric periodic orbits (ah = 1, bh = 0)
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families of asymmetric simple-periodic orbits which bifurcate from critical symmetric

periodic orbits (small circles) of the above symmetric families. Although we will focus our

attention in the family c and their asymmetric families bifurcate from it, we note here that

the characteristic curve of the only asymmetric family which bifurcates from family c

for l = 0.5, and all the asymmetric families bifurcating from the other families which we

present in Fig. 2, spiral around points in the (x0, C) plane which have ordinate C ¼ CLð4;5Þ :
The characteristic curves of the asymmetric families near the other two collinear

equilibrium points L2 and L3 have the same property as we see in Fig. 3.

We note that the characteristic curves of the families of symmetric periodic orbits specify

the initial conditions of the periodic orbits namely x0 ¼ fx0; y0 ¼ 0; _x0 ¼ 0; _y0ðCÞg:
Contrary, the characteristic curves of the families of asymmetric periodic orbits in the

(x0, C) plane do not define the complete set of the initial conditions of the orbits since they

do not provide any information about the values of the vertical or the horizontal component

of the velocity of the third body. For comparison reasons, between symmetric and asym-

metric families, we use the same presentation on the (x0, C) plane. We also note that in all

figures, we plot the characteristic curves of the families of asymmetric periodic orbits which

correspond to _x0 [ 0: In Fig. 4 we present characteristic curves of the two families: the

family a of the symmetric periodic orbits which emanate from the collinear point L2 as well

as the family of asymmetric periodic orbits which bifurcate from it. In the third frame of this

Figure the stability diagram of these two families using the isoenergetic stability horizontal

parameters ah and bh for the symmetric family and the index Sh = (ah + dh)/2 for the

asymmetric one (Hénon 1965a, 1973), is illustrated. The first periodic orbits of the asym-

metric family are stable since -1 B Sh B 1.

In the next Figure three members of this asymmetric family are plotted. The first

periodic orbit is the critical one from which the asymmetric family starts. The second one

is a typical asymmetric periodic orbit of the family while the last is one of the termination

orbits of the family. The family terminates with a homoclinic asymptotic orbit on the

triangular equilibrium point L5 (Fig. 5). All the asymmetric periodic orbits of this family

are non-symmetric and with respect to the y-axis. If we calculate the family when the initial

velocity _x0\0; then the family terminates with homoclinic asymptotic orbit on the sym-

metric triangular equilibrium point L4. As we have already mentioned, family b is

symmetric to family a and therefore we find the critical symmetric periodic orbit of family

b by the corresponding critical orbit of family a by replacing x0 = -xT/2 (the Jacobi

constant C is the same). The family of asymmetric periodic orbits which bifurcate from

family b has orbits which are symmetric, with respect to y-axis, to the asymmetric periodic

Fig. 2 The network of the symmetric and asymmetric families near the equilibrium points L1 (left).
Zooming in area A (middle) and B (right)
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orbits of family a and it is not presented here. In Figs. 6 and 7 we present the symmetric

family c, which emanate from the inner collinear equilibrium point L1, as well as the

family of asymmetric periodic orbits which bifurcates from it. The asymmetric family has

its first periodic orbits stable, from one side has termination orbits which are homoclinic

Fig. 3 The network of the symmetric and asymmetric families near the equilibrium points L2 (left) and L3

(right)

Fig. 4 Characteristic curve of the asymmetric family which bifurcates from the symmetric family a (left). C
versus T from the symmetric family a and the asymmetric family (middle). The stability diagram of the
symmetric family a (solid lines) and of the asymmetric family (dashed line) (right)

Fig. 5 The critical symmetric periodic orbit of family a (left) and a typical member of the family of
asymmetric periodic orbits which bifurcate from family a (middle). The ‘‘end‘‘ of the asymmetric family is a
homoclinic asymptotic orbit on L5 (right)
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asymptotic orbits at L5 (third frame of Fig. 7), and from the other side ð _x0\0Þ the family

terminates at L4. All the asymmetric periodic orbits of this family are symmetric with

respect to the y-axis. This asymmetric family was described at first by Strömgren (1930)

who published some limiting members from this ‘‘class of pear-shaped orbits‘‘ and were

asymptotic at L4, later Danby (1967) gave the evolution of this family from the critical

symmetric periodic orbit of ‘‘Strömgren’s class c’’ up to the asymptotic orbit at L4.

2.2 The Basic Families f, g, h, i, l and m

Families f, h and m, for l = 0.5, have not critical simple-symmetric periodic orbits of type

ah = 1 and bh = 0 hence there are no intersections with another family of asymmetric

periodic orbits.

Family i (and its symmetric g) has one critical symmetric orbit and one family of

asymmetric periodic orbits bifurcates from it. In Figs. 2 (first frame) and 3 (left frame) we

plot the characteristic curves (blue lines) of the asymmetric families i and g correspond-

ingly. Both characteristics spiral around points in the (x0, C) plane which have ordinate

C ¼ CL4ð5Þ : The asymmetric family i begins with stable periodic orbits as we see from its

stability diagram in Fig. 8 (left frame). The critical bifurcating symmetric periodic orbit

(middle frame) and the termination asymptotic orbit to L5 (right frame) of the asymmetric

family, are plotted. All the asymmetric periodic orbits of this family (and its symmetric g)

are non-symmetric with respect to both x and y-axis.

Fig. 6 Characteristic curve of the asymmetric family which bifurcates from the symmetric family c (left). C
versus T from the symmetric family c and the asymmetric family (middle). The stability diagram of the
symmetric family c (solid lines) and of the asymmetric family (dashed line) (right)

Fig. 7 The critical symmetric periodic orbit of family c (left) and a typical member of the family of
asymmetric periodic orbits which bifurcate from family c (middle). The ‘‘end‘‘ of the asymmetric family is a
homoclinic asymptotic orbit on L5 (right)
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Symmetric family l and its bifurcating families of asymmetric periodic orbits, is the

most popular subject concerning the asymmetric solutions of the restricted three-body

problem in the bibliography.

Excluding the asymmetric Trojan type of orbits, the first family of asymmetric simple

periodic orbits was determined by Kristiansson (1933) for the case of equal masses of the

primaries. It was an asymmetric family which bifurcates from the symmetric family l at a

point of bifurcation called l2 by Hénon (1965). Strömgren in 1935 found, among others

asymmetric-asymptotic orbits, the terminating orbit of this asymmetric family and Bartlett

(1964) added to this list several asymmetric orbits. Message (1959, 1970) determined the

same asymmetric family in the Sun-Jupiter case and Markellos (1978) did the same for

l = 0.45, while Taylor (1983) described the evolution of the family as the mass parameter

varies. A second family of asymmetric periodic orbits bifurcating from the point l3 (Hénon,

1973) of the family l of symmetric orbits was determined numerically by Markellos et al.

(1978) for l = 0.45.

Family l has a different property with respect to the previous eight presented symmetric

families. The characteristic curve of this family in the (x0, C) plane, spirals in to a point

which has ordinate C ¼ CL4ð5Þ (Left frame-Fig. 9). In the next two frames of the same

Fig. 9, which are enlargements of the first frame, we see the evolution of the characteristic

curve. As the curve spirals in toward the limit, the oscillations of C become smaller in

amplitude.

We calculated the stability parameters of the family l and we found the symmetric

periodic orbits with ah = 1 and bh = 0. From the first four bifurcation points we deter-

mined numerically the families of asymmetric periodic orbits which bifurcate from them.

In Fig. 9 the first four asymmetric families (blue lines) are presented. The characteristic

curves of these families spiral around points which have ordinate C ¼ CL4ð5Þ : In every loop

of the characteristic curve of the symmetric family l, a new bifurcating family of asym-

metric periodic orbits exist. The family l possesses, theoretically, infinity number of

bifurcation-critical points and therefore infinity families of asymmetric periodic orbits

bifurcate from them.

In the left frame of Fig. 10 we illustrate the characteristic curves of the first four

asymmetric families of family l in the ðx; _xÞ plane. The inside windows of this frame are

enlargement areas of the characteristic curves of the third and fourth asymmetric family.

Projection of the family l of symmetric periodic orbits and the branching of the four

families of asymmetric periodic orbits in the (C, T) plane are shown (Fig. 10—middle). In

Fig. 8 Left: The stability diagram of the symmetric family i (solid lines) and of the asymmetric family
(dashed line). Middle: The critical symmetric periodic orbit of family i. Right: The termination homoclinic
asymptotic orbit of the family of asymmetric periodic orbits
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the last frame of Fig. 10 we plot the stability parameters ah and bh versus C of the

symmetric family l as well as the stability curve Sh of the first bifurcating asymmetric

family (dotted line). The first asymmetric periodic orbits of this family are stable. Similarly

the rest of the three families of asymmetric periodic orbits have their first periodic orbits

stable. The small circles which are labeled by the numbers 1,...,4 indicate the first four

critical symmetric periodic orbits of family l.

In the first row of Fig. 11 we present the first four critical symmetric periodic orbits of

family l while in the second row we plot the ‘‘termination‘‘ orbits (orbits which approx-

imate the asymptotic orbits) of the four asymmetric families correspondingly. In the last

frame of the second row the two inside windows which are enlargements of the area near

the triangular equilibrium points, are presented.

From the present results we see that all the determined four families of asymmetric

periodic orbits terminate from one side, with a homoclinic asymptotic orbit at L4 or L5

alternatively. From the other side ( _x\0;) due to the symmetrical property of the solutions

(Szebehely 1967), these families terminate again with homoclinic asymptotic orbits at L5

or L4 (alternatively). So we ascertain, numerically, for the specific family the conjecture of

Markellos et al. (1978) that, infinite number of families of asymmetric simple-periodic

orbits branching from the symmetric family l and terminate with homoclinic asymptotic

orbits at the equilateral Lagrangian points L4 (from one side) and L5 (from another side).

Fig. 9 The symmetric family l and the first four asymmetric families which bifurcate from it. Left: The first
and the second families of asymmetric periodic orbits. Center: Zoom in the area of the second and the third
asymmetric families. Right: Zoom in the area of the third and the fourth asymmetric families

Fig. 10 Characteristic curves of the first four asymmetric families which bifurcate from the symmetric
family l (left). C versus T from the symmetric family l and the first four asymmetric families (middle). The
stability diagram of the symmetric family l (solid lines) and of the first asymmetric family (dashed line)
(right)
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3 Series of Critical Periodic Orbits

In this subsection we explore how the bifurcating asymmetric families from the nine

symmetric families of periodic solutions evolve with the mass parameter. So we need to

know how the critical symmetric periodic orbits with ah = 1 and bh = 0 change as l
varies. We shall call the set of initial conditions and other quantities describing a critical

orbit for a range of values of l, a bifurcation series or a series of critical orbits.

The families f, h and m have not critical symmetric periodic orbits, of the above type,

and therefore there are not bifurcating asymmetric families from them throughout the range

of the mass parameter.

The other six families have critical orbits for various values of l and asymmetric families,

when the primary bodies are not equal, bifurcate from the corresponding symmetric families

a, b, c, l, i and g of the problem. So, for these six families, we computed numerous critical

periodic orbits with ah = 1 and bh = 0 for the entire range of l in order to trace the series

accurately and densely. In Fig. 12 we illustrate the characteristic curves of these series of

critical periodic orbits where x0 is the initial condition (t = 0, y = 0) (solid lines) and x1 the

position of the particle on the x-axis at the period t = T/2 (dashed lines).

We have plotted the characteristic curves only in the range l [ [0, 0.5] since we can obtain

the curves for l [ [0.5, 1] as follows: The curves of the family a (corresponding the family b)

for l C 0.5 are obtained from the curves of the family b (corresponding the family a) for

l B 0.5 by substituting l = 1-l, x0 = -x1 and x1 = -x0. Similarly working we obtain the

series of the critical periodic orbits of the families i and g for l C 0.5. The curves of the

family c for l C 0.5 are obtained from the same family c for l B 0.5 by substitut-

ing l = 1-l, x0 = -x1 and x1 = -x0. Similarly we work for the family l.

From the first bifurcation point of family l we obtain the only series of critical periodic orbits

which exists in the entire range of l (solid and dashed black lines in the fourth frame of Fig. 12).

In the fourth frame of Fig. 12 we present the characteristic curves of the three first series of

critical periodic orbits of the family l. We note here that the second series l2 starts at l = 0.5

and has a minimum at l = 0.0737 and then it comes back at l = 0.5 on the third series of

critical periodic orbits l3. Similarly, the third series goes up to a minimum l = 0.1058 and

then it comes back on the fourth series (at l = 0.5) and so on.

Fig. 11 First Row: Four critical symmetric periodic orbits of family l from which four families of
asymmetric periodic orbits bifurcate. Second row: The ‘‘termination‘‘ orbits of these four families are
homoclinic asymmetric asymptotic orbits to L4 or L5
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In two small windows inside the forth frame of Fig. 12, we present details of the

characteristic curves around the areas A and B where the minima, with respect to l, of the

series l2 and l3 occur.

Fig. 12 Series of the critical periodic orbits of families a, b, c, l, i and g for varying l. The dotted lines
named by m1 and m2 represent the positions of the primary bodies

Families of Asymmetric Periodic Orbits in the Restricted Three-body Problem 35

123



In Table 1 we give the corresponding minimum and maximum values of the mass

parameter for each series of critical periodic orbits. We note here that in this Table we give

the range of l in which families g and i have infinite number of bifurcating asymmetric

families gk and ik, k = 1,...,? correspondingly.

4 Cases of Non-equal Primaries

In this subsection we study the evolution of the families of asymmetric periodic orbits

when the primary bodies of the problem are not equal. Two cases are examined. In the first

case we consider that the left primary body is three times bigger than the right one

(l = 0.25) and then we study the Earth–Moon case where l = 0.012141.

4.1 Case of l = 0.25

Five families, of the families we study, have critical symmetric periodic orbits for l = 0.5.

Namely, the families a, b and c which emanate from the collinear equilibrium points, have

one critical symmetric periodic orbit with ah = 1 and bh = 0 and therefore one family of

asymmetric periodic orbits bifurcates from each such point. Family l, as in the Copenhagen

problem (l = 0.5), keeps to contain infinite number of critical periodic orbits and thus

there exist infinite number of families of asymmetric simple periodic orbits branching from

this family. The difference, with respect to the case when l = 0.5, is that now family g has

infinite number of families of asymmetric simple periodic orbits which bifurcate from it. In

the right frame of Fig. 13, where we zoom in the area of family g, we observe that now

(for l = 0.25), the characteristic curve of this family, in the (x, C) plane, spirals

asymptotically around point which has ordinate C ¼ CL4ð5Þ : This means that for every new

loop of the characteristic curve, a new critical symmetric periodic orbit exists and therefore

a new asymmetric family bifurcates from this point.

In the first row of Fig. 14 we plot the critical symmetric periodic orbits of families a, b,

c, l (one of the infinite) and g (one of the infinite) while in the second row of the same

figure we present the corresponding ‘‘termination‘‘ orbits of the bifurcating families of

asymmetric periodic orbits of these five families. All the calculated asymmetric periodic

orbits of these families are unstable except the first few orbits, for each family, near the

bifurcating point.

Table 1 Minimum and maxi-
mum of the mass parameter l of
the series of critical symmetric
periodic orbits

Family lðfamilyÞ
min lmax

a 0.0499 1

b 0 1� lðaÞmin

c 0.0668 1� lðcÞmin

l(l1) 0 1

l(l2) 0.0737 1� lðl2Þmin

l(l3) 0.1058 1� lðl3Þmin

g 0.0651 1� lðiÞmin

g(gk) 0.1205 0.4805

i 0.3558 1� lðgÞmin

i(ik) 1� lðgkÞ
max 1� lðgkÞ

min

36 K. E. Papadakis

123



4.2 Earth–Moon Case (l = 0.012141)

In the Earth–Moon case the network of the symmetric and asymmetric families is quite

different with respect to the two previous cases. Only two families, of the nine symmetric

families we study, have critical periodic orbits. Namely, the families a, c, h, f, m, i and g

have not asymmetric families which bifurcate from them. Only the families b and l have

branching asymmetric families. Family b has one critical symmetric periodic orbit and

therefore one bifurcating asymmetric family. In contrast of the previous examined cases,

family l has not any more infinite number of asymmetric bifurcating families. Now, in the

Earth–Moon case, family l has one critical periodic orbit and thus only one asymmetric

family bifurcates from it.

In Fig. 15 we present the network of the families of symmetric simple-periodic orbits (black

solid lines) as well as the characteristic curves of the two families of asymmetric periodic orbits

which bifurcate from the families b and l correspondingly (blue solid lines). In the left frame of

Fig. 16 we present the evolution of the family of asymmetric periodic orbits which bifurcates

from the family b. The black periodic orbit is the critical symmetric one and the rest colored

Fig. 13 Left: The network of the symmetric and asymmetric families of the restricted three-body problem
with unequal primaries (l = 0.25). Right: Zooming areas near the family g

Fig. 14 First row: Critical symmetric periodic orbits of families a, b, c, l and g for l = 0.25. Second row:
The corresponding ‘‘termination‘‘ orbits of the bifurcating asymmetric families of the above families
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orbits are typical members of the asymmetric family. The asymmetric family terminates on the

triangular equilibrium point L5. As we have already mentioned about the symmetry property of

the solutions of the problem, there is the symmetric part, with respect to the synodical axis, of

this asymmetric family which terminates on the other triangular equilibrium point L4. The

initial conditions corresponding to a symmetric orbit are x ¼ ðx0; y0 ¼ 0; _x0 ¼ 0; _y0Þ;but when

the orbit is not symmetric (with respect to the synodical line x) then the initial conditions are

x ¼ ðx0; y0 ¼ 0; _x0; _y0Þ i.e. we have three free variables. So for the numerical determination

of one periodic orbit we need the intersection points of the orbit with the x-axis. From the left

frame of Fig. 16 we observe that there are asymmetric periodic orbits of the family which do

not intersect the synodical axis any more. In the search for symmetric periodic orbits, the

numerical integration of the equations of motion only need to proceed for half the period

because of the symmetry property of the solutions. For asymmetric orbits, however,

numerical integration continues until the orbit is closed again and the periodicity conditions

are established at the end of the period. Therefore, for asymmetric periodic orbits the x-axis

does not offer any special advantage and any other line in the plane (x,y) can be used instead.

So, for the computation of asymmetric periodic orbits which do not intersect the synodical

line we use the horizontal line that passes through the equilateral equilibrium point L5.

The blue solid line in Fig. 15 presents the characteristic curve of the asymmetric family

which bifurcates from family b. This stops at the point where the last asymmetric periodic

orbit intersects the synodical line. The blue dotted line presents the characteristic curve of

the same asymmetric family with initial conditions on the horizontal line that passes

through the equilibrium point L5.

The family of asymmetric periodic orbits which bifurcates from the symmetric family b

consists of stable solutions as we see from the stability diagram of the family (dashed line)

in the right frame of Fig. 16.

Fig. 15 The network of the symmetric and asymmetric families in the Earth–Moon case (l = 0.012141)
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This calculated asymmetric family is the known short-period family emanating from the

Lagrangian equilibrium point L5 and terminates on a symmetrical periodic orbit belonging to

the family b, which family b emanates from the collinear equilibrium point L3 (Deprit et al.

1967). The critical symmetric simple-periodic orbit of family b is the orbit where the branches

of the short-period family of L4 and L5 meet the branch of L3. Family l, as we have already

mentioned, has only one bifurcating asymmetric family. This occurs because the charac-

teristic curve of the symmetric family l, in the (x,C) plane, does not spiral at any point

(Fig. 15). In the first row of Fig. 17 we present the evolution of the family of asymmetric

periodic orbits. The asymmetric family consists of simple periodic orbits (blue solid char-

acteristic curve) and then has orbits with four intersections with x-axis (blue dashed line). The

family terminates on a symmetrical periodic orbit which belongs to a family of symmetric

periodic orbits with multiplicity 2 (two intersections with x-axis at the half period).

In the second frame of Fig. 17 we have plotted a member of the family of asymmetric

simple periodic orbits which has the horizontal stability parameter Sh = -1. This means

Fig. 16 Left: The evolution of the family of asymmetric periodic orbits in the Earth–Moon case
(l = 0.012141) which bifurcates from family b. Right: The stability diagram of the family b of the
symmetric periodic orbits (solid lines) and the stability diagram of the bifurcating asymmetric family
(dashed line)

Fig. 17 First row: The evolution of the family of asymmetric periodic orbits which bifurcates from the
symmetric family l in the Earth–Moon case (l = 0.012141). Second row: First frame: Characteristic curves
of two bifurcating families of asymmetric periodic orbits. Rest frames: The evolution of the family of
asymmetric double-periodic orbits which bifurcates from the family of asymmetric simple-periodic orbits.
The red periodic orbit is the critical bifurcation orbit of the two families of asymmetric solutions
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that this critical orbit represents bifurcation of the asymmetric family with another family

of asymmetric double-periodic orbits (Hénon 1965a). We found several critical asym-

metric periodic orbits with Sh = -1, of the calculated asymmetric families in the present

work, but this time as an example, we have calculated this new asymmetric family and we

present its characteristic curve in the (x, C) plane (red closed line in Fig. 15) and in ðx; _xÞ
plane (red closed curve in the frame of second row of Fig. 17). Typical members of this

family of asymmetric double-periodic orbits we plot in the second row of Fig. 17. Initial

conditions and other quantities describing all the critical symmetric simple-periodic orbits

(ah = 1 and bh = 0), which are presented in the figures of this paper, are given in Table 2.

Initial conditions, energy, period and stability of random members, corresponding to the

families of asymmetric periodic solutions plotted in Figs. 2, 13 (right frame, inside window)

and 17 (second row), are listed in Table 3. In all these asymmetric orbits we have _y0 [ 0:

Table 2 Critical symmetric simple-periodic orbits (ah = 1, bh = 0)

Family l x0 x1(T/2) C T/2

a 0.5 0.54973450 1.71555788 2.02078684 2.89508541

c -0.26244069 0.26244069 2.37166911 2.63087648

g 0.52175463 0.28156252 2.54711125 3.40768754

l(l1) -1.90796196 1.90796196 3.30259300 5.28375403

l(l2) -1.88907644 1.88907644 2.66225013 8.42225075

l(l3) -1.90339996 1.90339996 2.76057550 11.81689814

l(l4) -1.90191789 1.90191789 2.74869430 15.11283265

a 0.25 0.78115988 1.63775363 2.37032896 2.96099972

b -1.80632811 -0.31567295 1.82246021 2.98219685

c 0.08987333 0.61317517 2.47431147 2.76392241

l -1.83547046 1.88981911 3.27818551 5.39332848

g 0.77295861 0.61992992 2.66154110 3.69834839

b 0.012141 -1.91180429 -0.09369536 1.79196369 3.13234178

l -1.57028764 1.68202488 3.16434457 6.13130872

Table 3 Initial conditions, energy, period and stability of random samples of asymmetric periodic solutions
presented in this paper

Family l x0 _x0 C T/2 Stability

i 0.5 -0.27866644 0.1 2.57929096 6.94974065 U

k 0.51903319 0.2 2.70674272 8.81753309 U

x -0.31214126 0.025 2.75248421 20.83509587 U

x -0.32328401 0.0035 2.74980150 26.03999882 U

o -0.36470615 0.1 2.82572625 12.72061054 U

o -0.31834744 0.01 2.74018352 19.21881279 U

r -0.42287296 0.05 2.87288018 12.58167815 S

r -0.34751974 0.05 2.81183657 12.51793657 U

r -0.31997515 0.005 2.74373282 19.01412215 U

g 0.25 0.76647865 0.0005 2.83788921 14.62115179 S

l(bif) 0.012141 -2.10470209 0.12502 2.97742856 24.83930402 S
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5 Comments

We have studied the families of asymmetric periodic orbits which bifurcate from the basic

symmetric families of the restricted three-body problem. Namely, we calculated the

bifurcating asymmetric families from the symmetric families c, a and b, which emanate

from the collinear equilibrium points Li, i = 1,2,3 correspondingly, as well as from the six

basic symmetric families l, m, h, f, i and g, of the problem. We have examined the

evolution of these asymmetric families as the mass parameter l of the problem varies. In

order to avoid the singularity due to binary collisions between the third body and one of the

primaries, we regularize the equations of motion of the problem using the Levi-Civita

transformations.

From our results we conclude:

1. Families m, h and f have not critical symmetric periodic orbits of type ah = 1 and

bh = 0 and therefore there are not bifurcating families of asymmetric simple-periodic

orbits from these families for the entire range of l.

2. Families a, b and c have bifurcating asymmetric families for the majority of values of

the mass parameter but not for every value of l (Table 1). For the values of l, where

asymmetric families exist, each of the families a and b always has one bifurcating

asymmetric family.

3. Family c in the range of l [ [0.0668, 0.5] has families of asymmetric simple-periodic

orbits bifurcate from it. Namely, for each value of l [ (0.1479, 0.5) family c has one

bifurcating asymmetric family while for each value of l [ (0.0668, 0.1479) has two

bifurcating asymmetric families. Substituting l = 1-l we obtain the corresponding

intervals of the mass parameter l for l [ 0.5.

4. Family l is the only family which has at least one bifurcating asymmetric family for

the entire range of the mass parameter. For the majority of values of l (Table 1),

family l has infinite number of asymmetric families which bifurcate from it. Namely,

as we observe from the fourth frame of Fig. 12 and the minima and maxima values

of l as they are given in Table 1, family l has one asymmetric family for each value

of l in the interval 0 B l \ 0.0737, two asymmetric families for l = 0.0737, three

asymmetric families for each value of l when 0.0737 \l \ 0.1058 and four

asymmetric families for l = 0.1058. For l [ 0.1058 family l has more (but finite

number) asymmetric families (zoom area A in the fourth frame of Fig. 12) up to the

value l = 0.122. For l [ [0.123, 0.5] the characteristic curves, in the (x, C) plane, of

the family l spiral around points which have ordinate C ¼ CL4ð5Þ and infinite number of

bifurcating asymmetric families exist. For l [ 0.5 we have the symmetric situation

(l = 1-l).

5. Family g in the interval l [ [0.0651, 0.6442] has asymmetric families as follows: one

asymmetric family for each value of l [[0.0651, 0.12], infinite number of asymmetric

families for each value of l [ [0.1205, 0.4805] and one asymmetric family for each

value of l [ [0.481, 0.6442] (fifth frame of Fig. 12 and Table 1). Substituting l =

1-l we obtain the corresponding intervals of the mass parameter for the symmetric

family i.

6. All the families of asymmetric simple-periodic orbits we found which bifurcate from

the basic simple-symmetric families under consideration, terminate from one side at

the Lagrangian point L4 and from the other at L5. The terminating orbits are

homoclinic asymptotic orbits to one or to the other equilibrium point.
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7. The asymmetric families we found mainly consist of periodic solutions which are

strongly unstable except in a small vicinity near the bifurcation critical periodic orbits

(index -1 \ Sh \ 1 in Figs. 4, 6, 8 and 10). The only family which consist of stable

asymmetric periodic solutions entirely, is the bifurcating asymmetric family from the

symmetric family b in the Earth–Moon case (right frame of Fig. 16).

8. When the primary bodies are equal (l = 0.5), the asymmetry families a, b, i and g

consists of periodic orbits without any symmetry (Figs. 5 and 8) whilst the asymmetry

families c and l have periodic orbits which are symmetric with respect to the vertical y-

axis (Figs. 7 and 11). For l = 0.5 all the periodic orbits of the asymmetry families we

found are without any symmetry (Figs. 14, 16 and 17).
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