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Abstract Mission to asteroids and comets has been the hot spot of deep space
exploration in the new century. The choice of a suitable target, which involves both
scientific value and technical feasibility, becomes a difficult task to accomplish due to
limited energy and technology. The aim of this paper is to provide an approach to
selecting a target and evaluating accessibility for rendezvous with a Near-Earth
Asteroid mission, taking into account scientific value and engineering feasibility.
Firstly, according to the orbital characteristics and physical properties of Near-Earth
asteroids, we make a summary of some of the most frequent factors influencing the
target selection of scientific significance. When selecting the target for a space
mission, these factors can be regarded as the scientific motivations. Then in order to
avoid the possibility that some high priority targets for science would be discarded
due to requiring too high an energy budget by using a classical direct transfer
strategy, we calculate the transfer trajectory for rendezvous with candidates by using
the planetary swingby technique and the global optimal two-impulse method.
Finally, through a comparison between the scientific relevance of each possible
target and the corresponding estimate of energy needed for rendezvous missions, the
ranking of some candidates is identified.

Keywords Target selection - Accessibility - Near-Earth asteroid

1 Introduction

Asteroid exploration missions attract many scientists’ interest, because asteroids
hold key clues to the understanding of the origin of our solar system and the for-
mation of the planets. Near-Earth asteroids (NEAs) comprises a population sub-
class composed of objects that move in orbits, which may present a significant hazard
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to human civilization. These objects, whose dynamic characteristics allow close
approaches to our planet, are gaining an increasing importance in many respects:
science, technology and low cost (e.g. lower velocity increments, smaller launch
vehicle, etc.). These celestial bodies are scientifically relevant as dynamically and
physically evolved primitive bodies of the solar system, technologically challenging
for their possible future exploitation as extraterrestrial resources.

To select a suitable target and analyze the accessibility of NEAs, some studies
have been carried out in the past. Lau and Hulkower (1987) introduced a measure of
accessibility, which is taken to be the global minimum total AV for a two-burn
impulse rendezvous mission profile; and they presented a ranking of accessibility of
NEAs. Perozzi, Rossi, & Valsecchi (2001) discussed the global characterization of
the NEAs population on the basis of their dynamics, physical properties and flight
dynamic considerations, investigated some basic targeting strategies for rendezvous
and nodal and resonant fly missions to the NEAs, and presented a group of candi-
dates, whose scientific motivations and some relevant orbital parameters were re-
ported. A similar procedure was used by Binzel et al. (2004). They brought together
an analysis of both Near-Earth Objects accessibility and preliminary assessments of
their compositions. Using an H-plot analysis, they identified 234 currently known
Near-Earth Objects that are accessible for rendezvous with a “‘best case’” AVof less
than 7.0 km/s. In order to assess the accessibility of celestial bodies, the Hohmann
strategy was used. These studies proved to be extremely useful in addressing the
general topic of NEAs target selection. However, it is worthwhile noting that, in
previous literature, the classical Hohmann transfer strategy and Lambert problem
were used to estimate the minimum energy for rendezvous missions. Some targets in
orbits similar to that of the Earth are easier to reach by using these classical transfer
strategies. Yet, some high priority targets for science, in particular the large semi-
major or eccentric ones, appear definitely out of reach given the present technolo-
gical level when considering basic rendezvous missions (i.e. no gravity-assisted
trajectories are foreseen). These high priority targets for science are extremely likely
to be abandoned by a mission designer.

In what follows, we have primarily aimed this study at two aspects. Firstly, from the
point of view of selecting scientifically interesting targets, we summarize some of the
frequent factors influencing target selection on the basis of their physical properties
and orbital characteristics. When selecting the target for a space mission, these factors
can be regarded as the scientific motivations. Secondly, when analyzing the accessi-
bility of targets, instead of the classical transfer strategies in previous literature, we
calculate transfer trajectories to objects using the planetary swingby techniques.
There are several reasons that lead us to adopt this approach. The main reason is that
planetary swingby can reduce the total velocity increments and launch energy ef-
fectively. After calculating the transfer trajectory, an estimate of the energy needed
for a “best case” mission scenario is presented. Finally, through a comparison be-
tween the scientific relevance of each possible target and the corresponding estimate
of energy needed for rendezvous missions, the ranking of candidates is identified.

2 Target selection

NEAs are generally believed to be dynamically evolved fragments of main belt
asteroids entering the inner solar system on chaotic orbits. Dynamical calculations
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show that the life spans for NEAs are typically a few million years, eventually
meeting their doom by crashing into the Sun, being ejected from the solar system, or
impacting a terrestrial world (Morbidelli, Bottke, Froeschlé, & Michel, 2002). With
such short lifetimes, the NEAs observed today cannot be residual bodies that have
continued orbiting among the inner planets since the beginning of the solar system.
Understanding the sources and mechanisms of their evolution is one of the funda-
mental scientific goals for NEAs studies. The orbital characteristic, peculiar physical
properties, in particular the taxonomic and mineralogical characterization of NEAs,
may be extremely useful information for pinpointing the source regions of NEAs
and their dynamical evolution. So it is very possible that the NEAs with peculiar
orbital and physical properties become high scientific priority targets for exploration
missions. The scientifically significant target will play an important role in under-
standing the origin and formation of the solar system and the planets. Of course, it is
impossible and unwise to sum up all scientifically significant targets on the basis of
our present lack of knowledge concerning their physical nature. Therefore, we will
sum up some frequent factors influencing scientifically significant target selection on
the basis of their physical properties and orbital characteristics. When selecting the
target for a space mission, these factors can be regarded as the scientific motivations.

2.1 Physical properties

When analyzing and summarizing the frequent factors that influence scientifically
significant target selection, we focus on those properties that give the best indication
of the origin and dynamical evolution. We particularly focus on taxonomy, the
relationships of NEAs to comets and ordinary-chondrite meteorites and the peculiar
properties of NEAs such as shapes, rotations, optical properties and so on.

Taxonomic classes are from the system defined by Tholen (1984) and extended to
include the additional designations developed by Bus (1999) and Bus and Binzel
(2002). Almost all the taxonomic classes of main-belt asteroids are represented
among classified NEAs, including the P-types and D-types most commonly found in
the outer asteroid belt, between the Hilda and Trojan asteroid, or possibly among
comet nuclei (Barucci, Cruikshank, Mottola, & Lazzarin, 2002; Weissman, Bottke, &
Levison, 2002). Unique taxonomic classifications and mineralogical interpretations
do show evidence for specific ties to main-belt sources. In particular, E-type asteroids
appear both compositionally and dynamically related to the Hungaria region (high-
inclination objects) of the inner asteroid belt (Gaffey et al., 1992). The C-type bodies
would represent a sample of the pristine material characterizing the outer asteroid
main belt. From the point of view of hazard-assessment and resource utilization,
perhaps the objects of most practical interest are the M-types that may be highly
metallic in composition (Tedesco & Gradie, 1987). V-type asteroids are also inter-
esting, because they are widely believed to be fragments of the basaltic (pyroxene
rich) surface of the large main belt asteroid 4 Vesta and are thought to be possible
parent bodies of the Howardite Eucrite Diogenite meteorites (Binzel & Xu, 1993;
Cruikshank, Tholen, Hartmann, Bell, & Brown, 1991; Migliorini et al., 1997; Thomas
et al., 1997). So unique taxonomic classifications and mineralogical interpretations
are the significant factor influencing scientifically significant target selection.

From the point of view of dynamical evolution, NEAs are widely believed to be
dynamically evolved fragments of main belt asteroids entering the inner solar sys-
tem. Taxonomic and mineralogic characterizations of NEAs also provide confident
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links to main-belt origins. Yet a fraction of NEAs might be composed by extinct
cometary nuclei (Gladman et al., 1999). For instance, the taxonomic classification
for 3200 Phaethon and 4015 Wilson—-Harrington appears consistent with primitive
solar system materials presumed to dominate in comets. D-type asteroids such as
3552 Don Quixote and 1997 SE5 do add to the list of NEAs having taxonomic
characteristics that make them extinct comet candidates (Hicks, Buratti, Newburn,
& Rabinowitz, 2000). These asteroids are well-known examples of this kind. So these
objects, which might be cometary candidates, fragments of the main belt asteroid,
meteor parent bodies etc., are potentially high value targets for science.

Though the taxonomic classes of NEAs show close similarities to main belt as-
teroids and the corresponding meteorites, the physical properties of NEAs may
differ from those of main belt asteroids and meteorites. According to radar ob-
servations and the study of photometric light curves, some NEAs show the occur-
rence of highly elongated shapes, binary system, fast rotators and so on. These
peculiar properties are valuable for the studies of origin and evolution of NEAs. For
example, studies of amplitude brightness variation indicate that elongated shapes
may provide some suggestions, when combined with dynamical and compositional
factors, for discerning NEAs as having a cometary origin. Similarly, Binzel, Xu, Bus,
and Bowell (1992) found that slower rotations might also indicate cometary candi-
dates. Rotation and shape can help us understand these problems, which we focus
on, notwithstanding the fact that rotation and shape alone are not sufficient by
themselves to conclusively reveal a cometary origin for an individual NEA. There-
fore, some peculiar properties such as exotic rotation station states, binary system,
elongated shape, low albedo and so on, will also be significant factors influencing
scientific target selection.

2.2 Orbital characteristics

The orbital characteristics of objects directly influence their accessibility for ren-
dezvous mission, especially the semimajor axis a, eccentricity e and inclination i. A
larger semimajor axis or inclination will make a challenge for rendezvous mission.
On the other hand, NEAs moving on highly eccentric or inclined orbits have non-
trivial dynamical implications. For example, most Amor asteroids are generally
believed to be dynamically evolved fragments of main belt asteroids and short
period comets. The inclination poses severe constraint on mission profiles, especially
as far as rendezvous missions are concerned, in that out of plane maneuvers are in
general rather demanding in terms of energy changes. According to the available
estimates, there should be about more than half of NEAs having i > 10°. A few
objects may reach 50° or more. These larger inclination objects always attract many
scientists’ attention because some of the larger inclination objects provide extremely
useful information. For instance, among them, 1580 Betulia, whose inclination is
52.1°, D-class giant object 3552 Don Quixote asteroid, whose i is 30.8°, and 2,102
Tantalus (i = 64.0°) are well-known examples of this kind (Perozzi et al., 2001).
Therefore, the orbital characteristics, which have nontrivial dynamic implications,
are also an important factor, which impacts on target selection.

With the development and application of high sensitivity telescope techniques,
the number of new asteroid discoveries increases dramatically with time. Scientific
interest in the new individual targets is not very clear at present. So it is impossible to
summarize all of the scientifically significant targets. On the other hand, a rather
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subjective parameter or finding a rigorous criterion to access the scientific relevance
of an asteroid is also an elusive endeavor. Whereas, according to influencing factors
mentioned above, the “scientific objects” can be easily updated and supplemented.
In previous literature, Perozzi et al. (2001) presented the set of 60 scientifically
significant targets. In this paper, we supplement 18 new candidates listed in Table 1.
For each of them, the scientific motivations, and some relevant orbital and physical
parameters are reported.

When selecting the target for a space mission, it usually happens that some objects
are the “best candidates” from a scientific point of view, but they don’t satisfy the
technical requirements. Therefore, when choosing a suitable target for exploration
mission, the scientific and technical information about the target asteroid should be
taken in account. In the next section, we will discuss the accessibility of NEAs.

3 Analyzing the accessibility of NEAs

We know the rendezvous missions would be in favor of investigating some object
details such as composition, the morphology of its surface, shape, rotational prop-
erties, measuring its mass and obtaining indications of the internal structure and so
on. The primary mission design consideration for a NEA rendezvous is usually the
delta-V budget. This is a function of the velocity increment needed at the point of
departure to insert the spacecraft into the transfer path and the change required to
cancel the relative velocity between spacecraft and target at arrival. In previous
literature, the direct transfer was used for analyzing the accessibility of NEAs. For
example, the Hohmann transfer trajectories and the Lambert problem were used for
giving a reference on the accessibility of NEAs (Binzel et al., 2004; Perozzi et al.,
2001); the Gauss algorithm with boundary condition was used for calculating the
transfer trajectory for NEAs (Christou, 2003). The global minimum total AVfor a
two-impulse transfer was used to measure the accessibility (Helin, Hulkower, &
Bender, 1984; Hulkower, Lau, & Bender, 1984; Lau et al., 1987). Asteroids in orbits
similar to that of the Earth have better accessibility by using these classical transfer
strategies. However, some high priority targets for science, in particular the large
semimajor and eccentric ones, appear definitely out of reach at the present tech-
nological level when considering basic rendezvous missions. Therefore, in this paper,
the planetary swingby techniques will be applied to generate transfer trajectories
when measuring the accessibility of candidates. This approach can reduce the launch
energy and total velocity increments and present a significant reference for the
mission designer when selecting the maximized superposition between a scientifi-
cally significant and a technically feasible target for a space mission.

3.1 Transfer trajectory generation

The problem of finding the trajectory in space allowing a spacecraft to reach a given
target can be solved in many different ways. For the purpose of this paper, namely to
give a quick reference on the accessibility of NEAs, the approach based on Ke-
plerian motion will suffice. In particular, the method of optimum two-impulsive
transfer for preliminary interplanetary trajectory design (Hulkower et al., 1984) and
the approach of Earth gravity-assist with deep-space maneuver (AV-EGA) (Far-
quhar, Dunham, & McAdams, 1995; Sim et al., 1997) will be used. AV-EGA refers
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Accessibility for rendezvous with a Near-Earth asteroid 143

to the use of a relatively small deep space maneuver to modify the excess hyperbolic
velocity at a body. This maneuver, in conjunction with a gravity assist at the body,
reduces the launch energy requirements and the total velocity increments for a
mission.

3.1.1 Direct transfer

Asteroids in orbits similar to that of the Earth are easier to reach by using direct
transfer profiles. So we adopt the optimum two-impulse transfer profiles. The
method for numerically determining the optimum two-impulse transfer between two
positions in two different heliocentric orbits was described (Hulkower et al., 1984).
In this paper, it will not be reviewed. The optimum transfers obtained are ‘‘time-
open” and the trajectories are computed using the patched-conic method. The
minima are found by varying the semilatus rectum for each fixed pair of mean
anomalies on the grid. The contours of minimum total AVare plotted on axes of
mean anomaly of the launch body at launch and mean anomaly of the target body at
arrival. In the case of the 1998 KY26 Asteroid, the entire space of optimum ren-
dezvous trajectories from Earth to target is displayed in Fig. 1 (It assumes that the
Earth parking orbit is circular and of 200 km altitude). Through global search al-
gorithms, the exact value of the global minimum total AV is found. The flight path is
shown in Fig. 2.

Some of the “‘scientifically significant’ targets in orbits similar to that of the Earth
are calculated by using optimum two-impulse transfer profiles; and the trajectory
parameters are displayed in Table 2 [The total AVfor two-impulse transfer consists
of the launch from an Earth parking orbit (circular, 200 km altitude) AVy and the
impulse for rendezvous AV,].

350 |

0F
250 |
200 |
150 - /

100 +

Mean Anomaly of 1998KY26 Asteroid at rendezvous (deg)

0 50 100 150 200 250 300 350
Mean Anomaly of Earth at launch (deg)

Fig. 1 Contours of minimum total AV for a two-impulse transfer trajectory to rendezvous with the
1998 KY26 asteroid
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Fig. 2 The flight trajectory to rendezvous with the 1998 KY26 asteroid

Table 2 Global minimum two-impulsive trajectory parameters for rendezvous with target asteroid

Asteroid name AViotar (km/s) M. (deg) M, (deg) T (days)
1998 KY26 3.916 169.151 224.908 338
1999 SF10 3.979 295.200 221.552 349
1998 SF36 4.267 144.281 157.365 235
4660 Nereus 4.454 20.083 115.808 208
1995 HM 5.013 133.059 103.137 193
3361 Orpheus 5.280 62.515 143.778 180

The total velocity increments (AViora), Mean anomaly of Earth at launch (M.), Mean anomaly of
asteroid at arrival (M,), time of flight (7) is listed respectively

3.1.2 Earth swingby transfer

Candidates moving on large eccentric or semimajor orbits require too much launch
energy and total velocity increments for rendezvous mission by using the direct
transfer strategies. In order to reduce further the dynamical requirements and avoid
time-dependency, the gravity-assisted approach of Earth with deep-space maneuver
(AV-EGA) will be used. First, it determines the two-impulse transfer trajectory from
the Earth to asteroid. Then, through adjusting the mean anomaly of Earth at launch
and matching the C;, where C; defines the hyperbolic excess velocity squared V2 , it
adds the AV-EGA to the beginning of the two-impulse transfer trajectory to reduce
the required launch energy and the total AV for exploration missions. The flight path
of the AV-EGA transfer profile is described by using the mean anomaly at launch
My, the mean anomaly at swingby M, and the mean anomaly at rendezvous M,, is
the “‘time-open” or ‘“‘ephemeris-free’ solution. It is suitable for evaluating the ac-
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cessibility of NEAs (Qiao, Cui, & Cui, 2006). The detailed design characteristics will
not be reviewed.

The frequency of feasible opportunities is also an important factor when con-
sidering an asteroid for interplanetary mission. In previous literature, some studies
have been carried out (Lau & Hulkower, 1987; Perozzi et al., 2001); in particular,
Lau and Hulkower (1987) listed the frequency of feasible opportunities and average
time for rendezvous with an asteroid. Although these frequencies were for the 21-
years period, they were representative of what could be expected for these asteroids
in general. Here, it is worthwhile noting that the AV-EGA allows extension of the
classical two-impulse transfer strategy. The frequency of feasible opportunities for
the AV-EGA strategy is larger than that of the two-impulse strategy, because there
are several AV-EGA trajectories (such as 2:1 (z) AV-EGA etc.) that would corre-
spond to a two-impulse trajectory.

In what follows, taking the 1627 Ivar asteroid, whose aphelion and inclination is
2.602 AU and 8.4° respectively, as an example, we will provide the AV-EGA
strategy for analyzing its accessibility and predict the feasible opportunities from
2006 to 2016 years.

First, the two-impulse transfer trajectory of the global minimum total AV for a
rendezvous mission is found. It assumes that the Earth parking orbit is circular and
of 200 km altitude. The contour of minimum total AV for two-impulse transfer is
shown in Fig. 3. The exact value of the global minimum total AV is found by using
the global search algorithms. The flight path is shown in Fig. 4.

The mean anomaly of the Earth at launch for this two-impulse transfer trajectory
can be obtained. It is regarded as the mean anomaly of the Earth at swingby for the
AV-EGA transfer orbit. According to the characteristics of the Ivar asteroid orbit,
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Mean Anomaly of 1627 Ivar asteroid at rendezvous (deg)
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0 50 100 150 200 250 300 350
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Fig. 3 Contours of minimum total AV for 1627 Ivar asteroid
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Fig. 4 Flight path of two-impulse transfer for Ivar asteroid

we select the 2:1 type for AV-EGA transfer (Qiao et al., 2006; Sims, Longuski,
& Staugler, 1997). Then, we search a mean anomaly of the Earth at launch for the
AV-EGA transfer orbit and propagate the orbit to the aphelion. The deep-space
maneuver can be performed at aphelion; and the maneuver enables the Earth to be
used as a gravity-assisted body. After swingby, the spacecraft flies to the target
asteroid. The 2:1(x) AV-EGA transfer trajectory for rendezvous with Ivar asteroid is
shown in Fig. 5 and Fig. 6, respectively.

The trajectory parameters of optimum two-impulse profiles and 2:1(+) AV-EGA
profiles for rendezvous with the 1627 Ivar asteroid are listed in Table 3.

In Table 3, the My, Mg and M, stand for Mean Anomaly of Earth at Launch,
swingby and that of asteroid at arrival, respectively. For the swingby transfer, the
total AV consists of the launch from an Earth parking orbit (circular, 200 km alti-
tude) AV, the deep-space maneuver AV, at aphelion and the impulse for rendez-
vous AV,. The post-launch velocity increments AV, is the sum of AV}, and AV,. The
C; and T are launch energy and time of flight, respectively. From Table 3, we can see
that the total AV and launch energy C;, compared with optimum two-impulse
profiles, can be reduced 0.719 km/s and 24.237 km?/s?, respectively, by using 2:1(-)
AV-EGA profile. In addition, we also see that one two-impulse trajectory allows
extension of two AV-EGA trajectories. It also shows that the frequency of feasible
opportunities for AV-EGA strategy will be more than that of a two-impulse strategy.
According to Table 3, we can predict the feasible opportunities from 2006 to
2016 years. These feasible opportunities are listed in Table 4.

It should be noted that there is a difficulty in that the relative geometry of the
celestial bodies and flight time needed is consistent with the ideal case because of the
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Table 3 A comparison of the optimum two-impulse and the 2:1 AV-EGA trajectory parameters for
the Ivar asteroid rendezvous mission

M, M, M, AV Cs AV, T

(deg) (deg) (deg) (km/s)  (km%*s*)  (km/s) (days)
Optimum two-impulse ~ 206.894 - 236.556  6.108 50.593 0.796 564
2:1(+) AV-EGA 169.435  206.894  236.556  5.918 26.525 1.565 1,332
2:1(-) AV-EGA 242463  206.894  236.556  5.389 26.356 1.043 1,258

ephemeris constraints. So the parameters of these opportunities have changed
slightly. Although these opportunities are not optimal, they have a good initial value
for a trajectory optimizer.

4 Results

The AV-EGA transfer trajectory technique can reduce launch energy requirements
and total velocity increments at the cost of a deep-space maneuver and increasing
flight time. This approach is suitable for a target with large-eccentricity or a large-
semimajor. By using these classical two-impulse transfer strategies, some asteroids in
orbits similar to that of the Earth are usually the easiest to reach [e.g. 1998 KY26
(a =1.232 AU, e = 0.201), 1999 SF10 (a = 1.278 AU, e = 0.253), etc.]. However, to
the object with large-eccentricity or large-semimajor [e.g. 4015 Wilson—-Harrington
(a =4.258 AU, e = 0.623), 4179 Toutatis (a = 4.122 AU, e = 0.635), etc.], it requires
so much launch energy and total AV that it appears to be out of reach (i.e. no gravity-
assisted or low-thrust trajectories are foreseen). So in this case, the gravity-assisted
strategy should be considered. In Table 5, we show the comparison of accessibility of
some targets between using the two-impulse and gravity-assisted strategy. (It as-
sumes that the Earth parking orbit is circular and of 200 km altitude).

In Table 5, the O and e stand for the aphelion distance and eccentricity of as-
teroid, respectively. The total AV and launch energy C; required for rendezvous with
large-eccentricity asteroids are reduced obviously by using the AV-EGA transfer
technique, especially for candidates such as 4015 Wilson—Harrington (compared
with the optimal two-impulse profile, the total AV and launch energy C; can be
reduced by 1.168 km/s and 41.489 km?%s?, respectively), 4179 Toutatis (compared
with the optimal two-impulse transfer, the total AV and launch energy of the AV-
EGA transfer decreased by 17.32% and 60.36%, respectively), 6489 Golevka (the
AV-EGA transfer profile has 1.053 km/s and 37.46 km?/s* decrease in total AV and
launch energy, respectively), and so on.

It is worthwhile noting that the classical two-impulse strategy was used for some
asteroids in orbits similar to that of the Earth, when evaluating the accessibility of
these objects. There are several reasons which lead us to adopt this approach.
Perhaps the two most important ones are that (a) they display a very low launch
energy and total AV: they have already appeared reasonably accessible by using the
two-impulse transfer strategy; (b) if the AV-EGA strategy is used, it should need to
add a heliocentric orbit with a period slightly greater than an integer number of
years and a perihelion radius equal to the heliocentric orbit radius of Earth to the
beginning of the two-impulse transfer trajectory. The heliocentric orbit not only
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Table 5 A comparison of the accessibility of some targets between using the classic two-impulse
strategy and the gravity-assisted strategy

Number/designation 0 (AU) e i (deg) Global optimal AV-EGA
two-impulse strategy
strategy
AVlolal C3 Avlolal C3
(km/s)  (km%*s?)  (km/s)  (km?/s?)

1998 KY26 1.480 0.201 1.481 3.916 12.05 - -

1999 SF10 1.602 0.253  1.226 3.979 12.50 - -

25143 Itokawa 1.695 0.280  2.685 4.267 16.09 - -

4660 Nereus 2.025 0.360 1.424 4.454 23.09 - -

3361 Orpheus 1.599 0.323  2.683 5.280 19.45 - -

1627 Ivar 2.603 0.397  8.439 6.108 50.59 5.389 26.36

4015 Wilson-Harrington ~ 4.285 0.623  2.783 6.799 67.12 5.632 25.63

4179 Toutatis 4122 0.635  0.469 6.159 63.45 5.092 25.15

3551 Verenia 3.113 0.488  9.504 6.476 63.92 5.398 25.65

6489 Golevka 4.009 0.605 2291 6.499 63.94 5.446 26.48

The bold characters indicate that these results were calculated by using the two-impulse strategy

needs some launch energy C; (e.g. for the 2:1 AV-EGA, it usually requires
25 ~ 26 km?*/s?), but also adds a minor deep-space maneuver. So if the launch energy
C; is less than 26 km?/s* by using the classic two-impulse transfer, the AV-EGA
strategy will not usually be considered.

5 Discussion and conclusions

When selecting the target for a space mission, besides potential scientific value, we
need to take into account the technical feasibility of the mission. So the choice of a
suitable target, which both involves scientific relevance and takes into account
mission design considerations, is often a difficult task because of the limited launch
energy and limited total energy budget at disposal. In this paper, we provide some
approaches to resolving these problems. In this section, the ranking of accessibility
for potential scientific value NEAs is completed. These scientifically significant
targets include 60 objects (Perozzi et al.,2001) and 18 objects are listed in Table 1. A
summary of these results is presented in Table 6.

In Table 6, we consider some of the most frequent constraints for mission design:
(1) Total velocity increments AV, this is a crucial parameter influencing the
feasibility of a mission; this condition should ensure that the mission could be ac-
complished with a small or medium class launch vehicle; (2) Launch energy Cs: the
launch energy has impact on the choice of rocket, with the current trend towards
cheaper missions, the rocket may often represent the largest cost faced by a mission
designer; therefore reducing the launch energy and choosing the smallest possible
launcher able to accomplish a desired mission becomes crucial; (3) Post-launch ve-
locity increments AV, after the spacecraft escapes into interplanetary space by
supporting an upper stage of the rocket, the post-launch velocity increments will be
offered by the spacecraft on-board propulsion system; so the post-launch velocity
increments have an impact on the technical characteristics of the on-board propul-
sion systems, the dimensioning of the spacecraft and payload and the launch vehicle;
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(4) Physical property: the physical properties of a NEA influence its scientific value
from a mission operational aspect and its overall engineering feasibility for a ren-
dezvous mission. For example, NEAs belonging to specific taxonomic classes may be
preferred as mission targets for scientific reasons. The size of the asteroid combined
with its albedo and rotation rates have impact on the navigation system of the
spacecraft. Some parameters about these constraints are also listed in Table 6.

We know that the NEAR mission (Farquhar et al., 1995) showed the actual
feasibility of a highly sophisticated interplanetary mission with a first-class scientific
target, at a reasonably low cost and spacecraft and operation complexity. However,
the choice of a suitable target is a difficult task, because according to NASA in-
structions, Discovery mission must have well-focused scientific objectives as well as
strict limits on project costs and development time. In addition, Discovery missions
must use launch vehicles of the Delta class or smaller. According to these require-
ments, some constraints were determined. For example, the total AV requirements
should be less than 6.0 km/s and the post-launch AV requirements should not exceed
2.00 km/s and so on. Considering these conditions, we found that 4 candidates out of
60’s scientifically significant targets can satisfy them on the basis of Perozzi et al.
(2001) estimates. However, by using the Earth swingby technique, 19 candidates can
satisfy with these constraints, in particular several high priority targets for science
such as 4015 Wilson—-Harrington, 4179 Toutatis, 3551 Verenia, 6489 Golevka and 887
Alinda. In what follows, these scientifically relevant asteroids as listed in Table 6 can
be grouped for discussion according to the most important topics that a space mis-
sion could help investigate.

We know the difficulties involved in trying to reach cometary candidates, because
their dynamical characteristics have already been described. Among these strong
cometary candidates, 4015 Wilson—Harrington appears to have reasonable accessi-
bility in that the total velocity increments (AVig = 5.623 km/s) and post-launch
velocity increments (AV,, = 1.316 km/s) are not only lower than other cometary
candidates, but can also satisfy some of the requirements of the NEAR mission.

Meteor parent bodies are interesting because they possibly hold primitive infor-
mation about planetary evolution. Among these candidates, 6178 1986 DA, that is
generally believed to be the iron meteorites parent body, requires a high total
velocity for rendezvous mission (AV . = 9.1 km/s, Perozzi et al., 2001); yet by using
Earth swingby profiles, the AV, is reduced to 6.355 km/s. Giant NEAs are not
particularly accessible for rendezvous, apart from 433 Eros, because of the high
inclinations involved and the long revolution periods.

Some objects that have some peculiar properties such as exotic rotation station
states, a binary system, elongated shape, low albedo and so on, are also regarded as
primary targets. Among them, asteroid 4179 Toutatis, extensively imaged by radar
and possibly in a peculiar rotation state, exhibits some favorable accessibility. The
total velocity increments and post-launch velocity increments required for rendez-
vous mission are 5.092 and 0.796 km/s, respectively. In addition, 887 Alinda, 3288
Seleucus, 1995 HM, 1997 BR, 1998 KY26 that have exotic rotation station states,
also show extremely favorable accessibility.

V-type objects are also regarded as primary targets, because of their supposed
origin as fragments of the basaltic surface of Vesta. The 3361 Orpheus, whose period
is 1.33 years and inclination is 2.68° shows the lower rendezvous energy require-
ments (AVior = 5.280 km/s, AV}, = 1.223 km/s). For the others the situation is
worsened by the distant aphelia, which in the case of 6489 Golevka may exceed
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4 AU, is also found. Although the distant aphelia of 6489 Golevka exceeds 4 AU,
the asteroid is approachable because of the low total velocity increments
(AViota1 = 5.447 km/s) and post-launch velocity increments (AV,, = 1.095 km/s).

It should, however, be kept in mind that these considerations refer only to the
basic transfer trajectory. If multiple planetary swingby will be foreseen in the mission
design process, even the most difficult cases may become feasible; however, the two-
impulse and Earth swingby transfer trajectory should be computed starting from the
actual transfer orbit found.

In conclusion, the purpose of this paper was to give a basic reference for the target
selection and the analysis of the accessibility of a rendezvous mission. Some frequent
factors influencing target selection were summarized. According to these factors,
more and more potentially scientifically valuable asteroids will be found and up-
dated. When measuring the accessibility of candidates, the planetary swingby
techniques have been applied to the transfer path generation. It can effectively
reduce the launch energy and total velocity increments for rendezvous mission and
avoid the possibility that some high priority targets for science will be discarded due
to requiring too much launch energy and total velocity increments.
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