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Abstract. We introduce a three-dimensional version of Hill’s problem with oblate secondary, determine

its equilibrium points and their stability and explore numerically its network of families of simple periodic

orbits in the plane, paying special attention to the evolution of this network for increasing oblateness of

the secondary. We obtain some interesting results that differentiate this from the classical problem. Among

these is the eventual disappearance of the basic family g¢ of the classical Hill problem and the existence of

out-of-plane equilibrium points and a family of simple-periodic plane orbits non-symmetric with respect to

the x-axis.
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1. Introduction

In several papers of recent years modifications of the classical restricted
three-body problem have been employed to capture the effects of radiation
and/or oblateness of the two massive bodies (e.g. Hamilton and Krivov,
1996; Oberti and Vienne, 2003; Gurfil and Meltzer, 2005, among others). As
argued in Sharma (1987), perhaps the most relevant for Solar System
applications is the case of a radiating spherical primary (the Sun) and/or an
oblate non-radiating secondary (a major planet). With this consideration, in
a previous paper in this journal (Kanavos et al., 2002) the photogravitational
version of Hill’s problem introduced in Markellos et al. (2000) was explored
numerically in the case of radiating primary, with respect to its equilibrium
points and its network of families of periodic orbits and their stability,
among other features. The motivation for employing the Hill problem for-
mulation, instead of the corresponding version of the restricted three-body
problem, is to take advantage of the ensuing simplification in order to gain
insight on the orbital behaviour of the massless particle moving in the vicinity
of the secondary.

In the present paper we carry out a similar numerical exploration of the
Hill problem with oblate secondary, introduced in its coplanar form in
Markellos et al. (2001). Our aim is to consider the basic dynamical features
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of this new model, rather than to pursue some particular astronomical
application. In section 2 we present the equations of motion of the three
dimensional case and in section 3 we determine its equilibrium points and
their stability, while in section 4 we obtain analytical approximations of the
coplanar Lyapunov orbits. In section 5 we explore numerically the network
of families of simple periodic orbits in the plane and in particular the evo-
lution of this network away from the classical Hill problem. We conclude by
summarizing our results that characterize this model-problem and differen-
tiate it from the classical Hill.

2. Equations of Motion

The Hill problem with oblate secondary, introduced here in its three-
dimensional form, is derived from the restricted three-body problem with
oblate secondary, in a similar way as the classical Hill problem is derived
from the classical restricted problem, after some scale changes and a limiting
process on the mass parameter l=m2/(m1+m2) fi 0. The restricted prob-
lem with oblate secondary is described by the following equations of motion,
in rotating coordinates:

€X� 2n _Y ¼ XX; €Yþ 2n _X ¼ XY; €Z ¼ XZ; (1)

where:

X ¼ n2

2
ðX2 þ Y2Þ þ ð1� lÞ

r1
þ l
r2
þ lA2

2r32
1� 3Z2

r22

� �
; (2)

n¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3A2

2

r
; r1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX�lÞ2þY2þZ2

q
; r2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX�lþ1Þ2þY2þZ2

q

(3)

(Sharma and Subba Rao, 1976; Oberti and Vienne, 2003). The oblateness
coefficient A2 is defined as A2=(RE2

2)RP2
2)/5R2, where RE2 and RP2 are the

equatorial and polar radius respectively of the oblate secondary m2 and R is
the distance between the primaries. We place the origin at the secondary and
change the scale of lengths by a factor of l1/3: X=l )1+l1/3x, Y=l1/3y,
Z=l1/3z. Applying these transformations to X and setting A2=a2l

2/3 we
obtain:

1

l2=3
X� 3

2

� �
¼ 3a2

4
þ 3x2

2
� z2

2
þ 1

r
þ a2
2r3
� 3a2z

2

2r5
þ Oðl1=3Þ; (4)
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with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Taking the limit of the right-hand side for l fi 0 we

arrive at the potential function:

W ¼ 3a2
4
þ 3x2

2
� z2

2
þ 1

r
þ a2
2r3
� 3a2z

2

2r5
; (5)

giving the equations of motion:

€x� 2 _y ¼Wx ¼ 3� 1

r3
� 3a2

2r5
þ 15a2z

2

2r7

� �
x;

€yþ 2 _x ¼Wy ¼ � 1

r3
� 3a2

2r5
þ 15a2z

2

2r7

� �
y;

€z ¼Wz ¼ �1� 1

r3
� 9a2

2r5
þ 15a2z

2

2r7

� �
z:

(6)

The problem admits a Jacobi integral:

2W� ð _x2 þ _y2 þ _z2Þ ¼ C; (7)

where C is the new Jacobi constant related to the Jacobi constant C of the
restricted problem by the same relation as in the classical Hill problem:

C ¼ 3þ l2=3C: (8)

The last three terms of (5) represent a modified Kepler potential, corre-
sponding to a two-body problem where a particle of negligible mass moves
under the attraction of a central oblate spheroid whose equatorial plane
coincides with the plane of motion. The terms 3x2/2 and )z2/2 express a
further modification arising from the perturbation of the primary of infinite
mass located at infinite distance, according to the Hill problem formulation.
The constant term 3a2/4 can be omitted, but we choose to keep it here so that
(8) retains its simple form. We note that if oblateness of the primary m1 is
also included in the original potential function X and the corresponding
oblateness coefficient A1 is scaled in the same way as A2, then the Hill limiting
process produces the same W as above, the oblateness effect of the primary
being lost in the process. For coplanar motion (z ¼ _z ¼ 0) W reduces to:

W ¼ 3a2
4
þ 3x2

2
þ 1

r
þ a2
2r3

; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: (9)

The problem possesses the same symmetries as the classical Hill problem. For
example, if the functions x=x(t) and y=y(t) are a solution, then the func-
tions x=x()t) and y=)y()t) are also a solution. In particular, with respect
to periodic orbits this means that any periodic orbit of the problem is sym-
metric to itself or to another periodic orbit with respect to the x-axis. Also, if
in Equations (6) we change the signs of x and y the equations remain
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invariant, therefore any periodic orbit of the problem is symmetric to itself or
to another periodic orbit with respect to the origin. For a fuller discussion of
the symmetries involved we refer to Hénon’s recent paper on the periodic
orbits of the classical Hill problem (Hénon, 2003).

3. Equilibrium Points and Zero-Velocity Curves

3.1. COLLINEAR EQUILIBRIUM POINTS

The positions of the coplanar equilibrium points are determined by putting
the right-hand sides of the equations of motion resulting from (9) equal to
zero:

3x� x

r3
1þ 3a2

2r2

� �
¼ 0; � y

r3
1þ 3a2

2r2

� �
¼ 0; (10)

and solving for x, y. From the second equation we see that for a2 ‡ 0 there do
not exist equilibrium points out of the x-axis. From the first of (10) for y=0
we have:

6r5 � 2r2 � 3a2 ¼ 0; r ¼j x j> 0; (11)

which for a2 ‡ 0 has exactly one positive root for r, giving two collinear
equilibrium points symmetrical with respect to the origin, L1 on the negative
axis and L2 on the positive axis. Solving this equation approximately we find
that these equilibrium points are located at the distance:

r0 ¼ 3�1=3 þ 31=3

2
a2 �

9

4
a22 þ

11� 32=3

2
a32 þ Oða42Þ: (12)

A more uniform approximation can be obtained in the form:

r0 ¼ 3�1=3uðBÞ; uðBÞ ¼ 1þ 53Bþ 153B2

1þ 44B
; B ¼ 3�4=3

2
a2: (13)

This can be used to obtain approximately the Jacobi constant value at the
collinear equilibrium points as a function of a2:

C0 ¼
3a2
2
þ 31=3 uðBÞ2 þ 2

uðBÞ þ
18B

u3ðBÞ

� �
: (14)

The expansion of C0 using (12) on the other hand is:

C0 ¼ 34=3 þ 9

2
a2 �

38=3

4
a22 þ

5� 37=3

4
a32 þ Oða42Þ; (15)
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which coincides up to the terms given with the expansion of C0 arising from
(14). Note that in the classical Hill problem (a2=0) we have r0=3)1/3 and
C0=34/3.

To study the stability of L1 (or L2) at (x0,0,0) we place the origin at the
equilibrium point by setting x=x0+n, y=g, z=f and linearize the equations
of motion obtaining:

€n� 2 _g ¼Wð0Þxx n; €gþ 2 _n ¼Wð0Þyy g; (16)

€f ¼Wð0Þzz f; (17)

where the superscript (0) denotes evaluation at the equilibrium point. The
characteristic equation of (16) is:

k4 þ ð4�Wð0Þxx �Wð0Þyy Þk2 þWð0ÞxxW
ð0Þ
yy ¼ 0; (18)

and has roots:

k1;2 ¼�h; h¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1þ 9a2

6r50
þ 1

s
; k3;4 ¼�iw; w¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1� 9a2

6r50
� 1

s
; (19)

with k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
112r40 þ 480r20a2 þ 549a22

q
. To first order terms in a2 we have:

h¼h0þ
38=3

4h0

2ffiffiffi
7
p þ1
� �

a2þOða22Þ; w¼w0þ
38=3

4w0

2ffiffiffi
7
p �1
� �

a2þOða22Þ; (20)

where h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
7
p
þ 1

p
¼ 2:508 . . . ;w0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
7
p
� 1

p
¼ 2:071 . . ., are the cor-

responding quantities of the classical Hill problem. Similarly, the charac-
teristic equation of (17) is:

k2 �Wð0Þzz ¼ 0; (21)

with roots:

k ¼ �is; s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3a2

r50

s
¼ s0 þ

38=3

4
a2 þ Oða22Þ; (22)

where s0=2 is the corresponding quantity of the classical Hill problem. It
follows that the equilibrium points are unstable due to the real roots k1,2.

3.2. OUT-OF-PLANE EQUILIBRIUM POINTS

We now consider equilibrium points out of the (x,y) plane. For the right-
hand side of the third of Equations (6) to be zero for z 6¼ 0 we must have:
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� 1

r3
� 3a2

2r5
þ 15a2z

2

2r7
¼ 1þ 6a2

2r5
; (23)

and the brackets in the right-hand sides of the first two Equations (6) become:

4þ 6a2
2r5

and 1þ 6a2
2r5

:

For a2>0 these are positive, therefore any equilibrium points with z6¼ 0 must
have x=y=0 and will be located on the z-axis. The equation which deter-
mines their position is:

r5 þ r2 � 3a2 ¼ 0; r ¼ jzj > 0: (24)

From this equation we find two equilibrium points at (0,0,±z0), Lz on the
positive z-axis and L)z on the negative z-axis. Their distance from the origin
is given by:

z0 ¼
ffiffiffi
3
p ffiffiffiffiffi

a2
p � 9

2
a22 þ

243

8

ffiffiffi
3
p

a
7=2
2 þ Oða52Þ; (25)

while a more uniform approximation of this is:

z0 ¼
4
ffiffiffi
3
p ffiffiffiffiffi

a2
p þ 63a22

4þ 27
ffiffiffi
3
p

a
3=2
2

: (26)

The expansion of the Jacobi constant valueC0=2W(0,0,±z0) at these points is:

C0 ¼
4

3
ffiffiffi
3
p ffiffiffiffiffi

a2
p � 3

2
a2 þ

9

2

ffiffiffi
3
p

a
5=2
2 þ Oða42Þ: (27)

We note that such out-of-plane equilibrium points have also been found in
the restricted three-body problem with oblate primaries, similarly located
almost exactly above and below the center of each oblate body (Douskos and
Markellos, 2006). We have not checked, however, if their existence might be
due to the truncation of the potential employed in deriving the equations of
motion.

In order to study the stability of the out-of-plane equilibrium points we
work as in the previous section. The corresponding characteristic equations
are again (18) and (21) with the partial derivatives now computed at Lz. In
this case the roots of (18) are complex of the form:

k ¼ �a� ib; (28)

with:

a ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� 2

r50
k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2k3

p� �s
; b ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

r50
k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2k3

p� �s
; (29)
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and k2=r0
2) 6a2< 0, k3=3r0

5) r0
2+6a2>0. The expansions of a and b in

powers of a2 are:

a ¼ a? þ Oða9=42 Þ; a? ¼ ð3a2Þ�3=4 þ 2ð3a2Þ3=4;

b ¼ 1� 37=2

32
a
3=2
2 þ Oða32Þ:

(30)

Similarly, the roots of (21) are now:

k ¼ �isz; sz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2k2

r50

s
¼

ffiffiffi
2
p

a? þ Oða9=42 Þ: (31)

We conclude that due to the complex roots (28) the out-of-plane equilibrium
points are unstable. We note however that the imaginary roots give rise to
periodic straight-line oscillations on the z-axis, which is another feature
characteristic of the present problem.

3.3. ZERO-VELOCITY CURVES

The Jacobi integral, for zero velocity, provides the boundaries of the allowed
regions of motion. Contours of the surface:

C ¼ 3a2
2
þ 3x2 � z2 þ 2

r
þ a2

r3
� 3a2z

2

r5
; (32)

for values of the Jacobi constant corresponding to the collinear and the out-
of-plane equilibrium points are shown in Figure 1 for z=0 (left) and for y=0
(right). We note that the oblateness effect does not essentially change the
zero-velocity curves in the (x, y) plane, but new features appear in the (x,z)
plane. However, the curves remain symmetrical with respect to both axes as
in the classical Hill problem. The first and third row show the two possible
topologies of the curves for a2>0, while the case of a2. 0.029293 (middle
row) shows the transition from one to the other occurring when
C(L1)=C(Lz).

4. Analytical Approximation of the Lyapunov Orbits

We now apply a Lindstedt–Poincaré technique to obtain a third order
approximation of the planar periodic orbits emanating from the collinear
equilibrium points, the so-called Lyapunov orbits. To do this we transfer the
origin at the equilibrium point L2 by setting: x=xL2+n, and y=g.
Expanding the equations of motion around L2 in Taylor series to third-order
terms we obtain:
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€n� 2 _g ¼ P10
1 nþ P20

1 n2 þ P02
1 g2 þ P12

1 ng2 þ P30
1 n3 ¼ f1ðn; gÞ;

€gþ 2 _n ¼ P01
2 gþ P11

2 ngþ P21
2 n2gþ P03

2 g3 ¼ f2ðn; gÞ;
ð33Þ

where the coefficients of the powers of n, g are constants ultimately
depending only on the oblateness coefficient a2. We seek solutions in the form
of the following expansions in powers of an orbital parameter e:

nðtÞ ¼
X3
i¼1

xiðtÞei þ Oðe4Þ; gðtÞ ¼
X3
i¼1

yiðtÞei þ Oðe4Þ; (34)

where

x1ðtÞ ¼ cosðwtÞ; y1ðtÞ ¼ s11 sinðwtÞ;
x2ðtÞ ¼ c20 þ c22 cosð2wtÞ; y2ðtÞ ¼ s22 sinð2wtÞ;
x3ðtÞ ¼ c31 cosðwtÞ þ c33 cosð3wtÞ; y3ðtÞ ¼ s33 sinð3wtÞ;

(35)

while time is ‘‘strained’’ through the transformation t=(1+E)s, where
E ¼ B2e2 þ Oðe4Þ. With s as the new independent variable System (33)
becomes:

-1 0 1

-0.5

0

0.5

-1 0 1

-0.5

0

0.5

-1 0 1

-0.5

0

0.5

-1 0 1

-0.5

0

0.5

-1 0 1

-0.5

0

0.5

-1 0 1

-0.5

0

0.5

Figure 1. Zero-velocity curves – projections of the zero-velocity surface (32) – in the (x,y) (left)
and (x,z) (right) planes for a2=0.02, 0.029293 and 0.04 (from top to bottom).
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n00 � 2ð1þ EÞg0 ¼ ð1þ EÞ2f1ðn; gÞ;
g00 þ 2ð1þ EÞn0 ¼ ð1þ EÞ2f2ðn; gÞ:

(36)

By substituting (34) into (36) and equating the coefficients of the same powers
of e we obtain the following systems:

x001 � 2y01 ¼ P10
1 x1;

y001 þ 2x01 ¼ P01
2 y1;

x002 � 2y02 ¼ P10
1 x2 þ P20

1 x21 þ P02
1 y21;

y002 þ 2x02 ¼ P01
2 y2 þ P11

2 x1y1;

(37)

and a similar system for x3(t), y3(t), which is omitted. These are now solved in
succession, and the coefficients of the partial solutions (35) are determined as
follows:

s11 ¼ �
P10
1 þ w2

2w
¼ � 2w

P01
2 þ w2

; c20 ¼ �
P20
1 þ P02

1 s211
2P10

1

;

c22 ¼ � ðP20
1 � P02

1 s211ÞðP01
2 þ 4w2Þ � 4P11

2 ws11
� 	

=P;

s22 ¼ � 4wðP02
1 s211 � P20

1 Þ þ P11
2 s11ðP10

1 þ 4w2Þ
� 	

=P;

(38)

where P=2P1
10P2

01+8w2(P1
10+P2

01+4w2)4) and w is given by (19). The
coefficients c31, c33, s33 and B2 are more complicated expressions and are
omitted. Alternatively, the coefficients of (35) can be computed to high
accuracy as functions of a2 from the simple expression:

b0 þ b1a2 þ b2a
2
2

1þ b3a2 þ b4a
2
2

; (39)

where the numbers bk, k=0,..., 4 are given for each coefficient in Table I. This
provides an accuracy of at least eight decimal places for a2 £ 0.005. The
Lyapunov orbits emanating from L1 are symmetrical to those emanating from
L2 with respect to the origin and have the same stability properties. These two
families are called a and c and one of them (a) is determined numerically in the
following section togetherwith the other families of simple-periodic orbits of the
problem.

5. Periodic Orbits and their Stability

5.1. THE EVOLUTION OF FAMILY CHARACTERISTICS

In a preliminary calculation we have explored numerically the evolution of
the families of simple-periodic orbits (symmetric with respect to the x-axis),
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from the classical Hill case to the present case. To this purpose we have
used the Grid search method of Markellos et al. (1974). In Figure 2 we
show the effect of oblateness on the network of the family characteristics of
simple periodic orbits, including for comparison in Figure 2(a) the network
of these characteristics for the classical Hill problem (a2=0) given by Hé-
non (1969). The families a and c are the Lyapunov families discussed above.
For a2>0 families f and g have a maximum with respect to C (not shown),
while g¢ is a ‘‘closed’’ curve (frames (b) and (c)) which branches from family
g. Denoting by g1 and g2 the two critical orbits of g at which g¢ bifurcates
we can observe the eventual disappearance of g¢ by plotting these two
bifurcation points in the (C,a2) plane. This is shown in Figure 3 where the
evolution with a2 of g1, g2 and of three more horizontally critical orbits of
family g is presented. It is seen how g1 and g2 get closer together as a2
increases and finally disappear by coalescing with each other at a2 . 0.0015.
For larger values of a2 the basic family g¢ of the classical Hill problem does
not exist.

TABLE I
The coefficients of (35) computed from (39)

b0 b1 b2 b3 b4

s11 )3.20803719 )36.1377564 )82.9092705 9.76198786 18.6999570

c20 )2.98960402 )46.0437206 )180.620466 13.9651617 45.3561268

c22 1.29967903 21.9679050 86.0737265 12.2727696 34.5300903

s22 0.70950998 )0.34775838 )39.2143688 )1.72703729 )45.6495466
c31 1.80330799 30.0282358 123.294229 21.5952607 120.937665

c33 )1.63735160 0.96609451 231.888475 )5.82504193 )77.5240861
s33 )1.81007007 )0.19173124 142.715373 )3.36796196 )47.9857933
B2 1.62979242 )63.2066251 )1166.22266 )44.4318288 )419.297882

Figure 2. Families of simple periodic orbits in the (C,x) plane for sample values of a2.
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5.2. SYMMETRIC PERIODIC ORBITS FOR a2=0.005

The network of the families of simple-periodic orbits, symmetric with respect
to the x-axis, was determined numerically with high accuracy calculations of
the member orbits and their parameters, for the value of the oblateness
coefficient a2=0.005. The characteristic family curves of the basic families in
the (C,x) plane are given in Figure 4. The orbits of each family are shown in
Figures 5 and 6. The specific members plotted are represented by dots on the
characteristic curve of each family. The basic families f and g consist of orbits
symmetric with respect to both axes as in the classical problem.

The iso-energetic stability parameters are computed accurately using the
equations of variation and the relevant formulae of Markellos (1976):

a ¼ @x

@x0
þ @x

@ _y0
D1 þD2

�
@y

@x0
þ @y

@ _y0
D1

�
;

b ¼ @x

@ _x0
þ @x

@ _y0
D2 þD2

�
@y

@ _x0
þ @y

@ _y0
D2

�
;

c ¼ @ _x

@x0
þ @ _x

@ _y0
D1 �

€x0
_y0

�
@y

@x0
þ @y

@ _y0
D1

�
;

d ¼ @ _x

@ _x0
þ @ _x

@ _y0
D2 �

€x0
_y0

�
@y

@ _x0
þ @y

@ _y0
D2

�
;

(40)

Figure 3. Evolution of horizontally critical orbits of family g for varying a2.
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Figure 4. Characteristics of families of periodic orbits in (C,x) plane for a2=0.005. Regions

not allowed to motion are shown hatched. Continuous lines: positive crossings of the x-axis,
dotted lines: negative crossings. The projection in this plane of family ga (see Section 5.3) is
also shown (dashed line).

(a) (b)

Figure 5. Typical orbits of the Lyapunov family a (left) and family f of retrograde satellites

(right).
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where

D1 ¼
1

2 _y0

@C0

@x0
; D2 ¼ �

_x0
_y0
: (41)

The horizontal and vertical stability diagrams of the basic families are
given in Figure 7. Because of the large values of the horizontal stability
parameter we plot the quantity sinh�1 a ¼ lnðaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

Þ instead of a, and
similarly for av. In the case of the Lyapunov families a and c the limiting
values of the horizontal and vertical stability parameters a and av are given
by:

a ¼ cosh 2ph=wð Þ; av ¼ cos 2ps=wð Þ; (42)

(Hénon, 1969, 1973), where h, w and s are given by (19) and (22). The effect
of oblateness on these limiting values is given to first order terms in a2 by:

a ¼ cosh
2ph0
w0

� �
þ 38=3p

w3
0h0

1

2
� 1ffiffiffi

7
p

� �
h20 þ

1

2
þ 1ffiffiffi

7
p

� �
w2
0

� �
sinh

2ph0
w0

� �
a2;

av ¼ cos
2ps0
w0

� �
� 38=3p

w3
0

1

2
� 1ffiffiffi

7
p

� �
s0 þ

1

2
w2
0

� �
sin

2ps0
w0

� �
a2: ð43Þ

The horizontal and vertical critical orbits of the basic families are given in
Tables II, III and IV. In the last column we give the quantity being zero at
the critical orbit and characterizing the type of bifurcation. For details on the

(a) (b)

Figure 6. Typical orbits of family g of direct satellites. Evolution phases (a) and (b).
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(a)

(c) (d)

(b)

Figure 7. Horizontal and vertical stability curves of the families a (a), f (b), g (c) and ga (d).

TABLE II

Family a.

T/2 x0 x1 _y0 C

a1v 3.77261823 0.10283840 1.87072706 5.05928300 )1.51181748 Bv

a2v 3.20825731 0.12738525 1.39025705 4.31085150 )0.40798507 Dv

a3v 2.82053403 0.14843241 1.20048371 3.87138301 0.08905300 Av

a4v 1.82538508 0.31775198 0.88757084 2.16921761 2.05496063 Bv

a5v 1.53371074 0.61103543 0.76354199 0.52710647 4.14480078 Cv
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definitions of horizontal and vertical stability parameters and the types of
critical orbits (and resulting bifurcations) we refer to Hénon (1965, 1973).

We note in particular that if a=1 and b=0 (equivalently B=0) we have a
bifurcation with a family of simple periodic orbits non-symmetric with respect
to the x-axis. This type of bifurcation does not occur for the families of simple
periodic orbits of the classical Hill problem, but occurs in the present problem
at the critical orbit g3 of the basic family g of direct satellites. We further note
that the critical orbit g4 marks the bifurcation from family g of a family of
double-periodic symmetric orbits, while g5 is the orbit of maximum C along
the family g, and similarly for the critical orbits f1 and f2 of family f. The
evolution of these critical orbits for varying a2 has been shown in Figure 3.

5.3. PERIODIC ORBITS NON-SYMMETRIC W.R.T. THE x-AXIS

An important feature of this problem is the existence of a family of simple
non-symmetric periodic orbits (with respect to x-axis). This family bifurcates
from family g at the horizontally critical orbit g3 and consists of orbits

TABLE III
Family f.

T/2 x0 _y0 C

f1v 0.33711337 )0.24977300 2.38849869 2.81787740 Cv

f2v 0.31233242 )0.23730792 2.44086487 3.02063167 Bv

f3v 0.02995807 )0.06401100 6.71389916 5.25163175 Av, Dv

f1 0.09328264 )0.11381020 3.84063326 6.26078119 A, D

f2 0.05568796 )0.08663841 4.89103343 6.88070443 C

TABLE IV
Family g.

T/2 x0 _y0 C

g1v 4.75505815 0.11511093 4.57762728 )0.25478849 Bv

g2v 4.21134576 0.12916700 4.20545585 0.17566943 Av, Dv

g3v 3.45718972 0.15368836 3.71085169 0.69864588 Bv

g4v 2.51197020 0.20884921 2.95301408 1.54322169 Cv

g5v 1.27803439 0.33953097 1.73084919 3.37572522 Av, Dv

g3 0.34254885 0.22021004 2.09276319 5.32378720 B

g6v 0.03814351 0.07099514 5.84923391 7.95284807 Av, Dv

g4 0.09323314 0.11022786 3.72217763 8.06690362 A, D

g5 0.05773470 0.08663645 4.71791006 8.54528426 C
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symmetric with respect to the y-axis. The characteristic of this family com-
puted as a family of asymmetric periodic orbits with respect to the x-axis
cannot be represented in the (C,x) plane because it is a three-dimensional
curve in the ( C;x; _x) space, but we have plotted in Figure 4 its projection in
the (C,x) plane for a2=0.005. It follows from the symmetry properties dis-
cussed in section 2 that for any asymmetric periodic orbit with respect to the
x-axis another orbit exists which is symmetric with the first one with respect
to the x-axis. Therefore at g3 two branches of a family of asymmetric peri-
odic orbits bifurcate from g which are named here ga and ga¢ (but we may
refer to both branches collectively as the two-branch family ga). The evo-
lution of these branches as a2 increases from the classical case (a2=0) is
shown in Figure 8 where the family characteristics are plotted in the (C, y)
plane, and a log scale is used for the C values. The Grid search of Markellos
et al. (1974) was now employed in the (C,y) plane and the orbits of all
families shown have been recomputed as symmetric with respect to the y-axis.

The branches ga and ga¢ were found only for non-zero oblateness of the
secondary. Their orbits are shown in Figure 9, where the orbits of ga are
drawn with continuous lines and those of ga¢ with dotted lines. As the orbits
evolve away from the bifurcation orbit g3 (marked by 1 in frame (a) of
Figure 9), they develop loops and become double-periodic in the sense that
they possess four intersections with the y-axis (frame (b) of Figure 9). In
Figure 7 (d) we have given the horizontal and vertical stability curves of the
branch ga, while the horizontal and vertical critical orbits of this are given in
Table V. The critical orbits of ga¢ can be obtained from those of ga by
symmetry with respect to the x-axis. The importance of these branches of
non-symmetric with respect to the x-axis orbits is enhanced by the fact that in
their initial segments they consist of orbits which are horizontally (and ver-
tically) stable. In fact, their orbits are quite dominant elliptic points in the
sense that they are surrounded by invariant curves covering a substantial

Figure 8. Characteristics of families of simple periodic orbits in the (C, y) plane for sample
values of a2. Hatched regions are not allowed to motion.
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region on the surface of section. This appears in their Poincaré surface of
section portraits in the ðx; _xÞ and ðy; _yÞ planes shown in Figure 10. The two-
branch family ga plays a role similar to that of family g¢ in extending the
distance at which stable direct periodic satellites may exist when the family g
itself does not consist of stable orbits.

6. Conclusions

We have introduced a three-dimensional version of Hill’s problem with
oblate secondary and considered its main dynamical features. We determined
the equilibrium points and their stability and explored numerically the net-
work of its families of simple periodic orbits in the plane paying special
attention to the evolution of these families from the classical Hill problem.
Our main results characteristic of the present problem are as follows. The
basic families g and f of direct and retrograde periodic satellite orbits consist

(a) (b)

Figure 9. Typical orbits of the branches ga and ga¢ for a2=0.005. Evolution phases (a) and
(b). In frame (a) marked by 1 is the bifurcation orbit g3.

TABLE V
Family ga.

T/2 y0 y1 _x0 C

ga1 0.43622113 )0.13219990 0.40674490 3.58233415 4.46708384 A

ga1v 0.74273891 )0.08912669 0.72758524 5.17203381 2.75984347 Av

ga2v 0.77267904 )0.08733259 0.75682040 5.26995641 2.64257865 Dv

ga3v 1.46936383 )0.06905086 1.51961100 6.57177877 0.97005938 Cv

ga4v 2.58957899 )0.05926378 4.21806840 7.65355894 )0.80043307 Bv
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of two branches each, and do not exist for infinitely large values of the Jacobi
constant C as they do in the classical problem, but only up to finite maximum
values depending on the value of the oblateness coefficient. For non-zero
values of the oblateness coefficient a2 the basic family g¢ of the classical
problem closes upon itself; its two bifurcation orbits with family g get closer
to each other as a2 increases and eventually disappear by coalescing with each
other for a2 . 0.0015. Also, for a2>0 the present problem possesses out-of-
plane equilibrium points, as well as a two-branch family of stable simple-
periodic plane orbits non-symmetric with respect to the x-axis, although
symmetric with respect to the y-axis, features which do not exist in the
classical problem. The family of non-symmetric orbits plays a similar role to
that of family g¢ in extending the distance at which stable direct periodic
satellites may exist when the family g itself does not consist of stable orbits.
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Hénon, M.: 1969, Astron. Astrophys. 1, 223.
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