Mobile Networks and Applications
https://doi.org/10.1007/s11036-023-02136-4

®

Check for
updates

Contact Tracing App Privacy: What Data is Shared by Non-GAEN
Contact Tracing Apps

Douglas J. Leith’

Accepted: 13 May 2021
© The Author(s) 2023

Abstract

We describe the data transmitted to backend servers by the contact tracing apps now deployed in France (TousAntiCovid),
Australia (CovidSafe), Singapore (TraceTogether), US/Florida (CombatCovid), Israel (HaMagen), India (Aarogya Setu) with
the aim of evaluating the privacy of these contact tracing apps as actually deployed. To the best of our knowledge, the
measurements we present are the first public data of this sort for the French, Australian, Israeli, Indian and Florida apps. We
find that TousAntiCovid and CovidSafe are generally well-behaved with regard to privacy. TraceTogether and CombatCovid
make extensive use of Google Firebase services which means that that there are two main parties involved in handling data
transmitted from these apsp, namely Google and the health authority operating the app itself. HaMagen is well-behaved for
uninfected users of the app but GPS location data associated with infected is publicly published on the HaMagen server.
Aarogya Setu, with >160M users, is found to have a number of serious privacy issues, including silent upload of logged

location data.

Keywords Contact Tracing - Covid - Privacy

1 Introduction

Over the last year there has been a great deal of interest in the
use of mobile apps to facilitate Covid-19 contact tracing. We
report here on measurements of the actual data transmitted to
backend servers by the contact tracing apps now deployed in
France (TousAntiCovid) [1], Australia (CovidSafe) [2], Sin-
gapore (TraceTogether) [3], US/Florida (CombatCovid) [4],
Israel (HaMagen) [5] and India (Aarogya Setu) [6] with a
view to evaluating user privacy. Our aim is to examine the
privacy of these contact tracing apps as actually deployed.
While many countries have now adopted the Google/Apple
Exposure Notification (GAEN) system for contact tracing [7,
8], France, Australia, Singapore, Florida, Israel and India
have developed their own alternative approaches. These
countries have often been early adopters, e.g. Singapore in
March 2020 was the first country to roll out a contact tracing
app, with Israel (also March 2020), Australia (April 2020)

B<I Douglas J. Leith
doug.leith@tcd.ie

School of Computer Science & Statistics, Trinity College
Dublin, Dublin, Ireland

Published online: 05 September 2023

and India (April 2020) close behind. With >160M users [6]
the Indian app Aarogya Setu is probably the most widely
used contact tracing app globally. To the best of our knowl-
edge, the measurements we present are the first public data
for the French, Australian, Florida, Israeli and Indian apps.
We focus on the Android implementations of contact tracing
apps. Of course the Apple implementations are also impor-
tant, and we look forward to measurement studies of these.
The results of our study can be summarised as follows.

TousAntiCovid and CovidSafe The TousAntiCovid app
appears exemplary from a privacy point of view, sharing min-
imal information with central servers and sharing no data
with third parties such as Google. TousAntiCovid is open
source and its operation publicly documented. CovidSafe is
also generally well-behaved with regard to privacy, as well
as being open-source. The app uses Google’s Firebase Cloud
Messaging service for push notifications, but in our tests we
found that this makes few network connections. Since Covid-
Safe already makes regular connections to its own servers
this dependency could be removed, which would improve
privacy. The app requires the user to enter a valid Australian
phone number. Since photo ID must be presented to obtain
a SIM in Australia, a phone number is linked to a user’s real

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-023-02136-4&domain=pdf

Mobile Networks and Applications

identity which creates an immediate privacy concern. Simi-
larly to TousAntiCovid, this might be avoided by use of push
notifications based on randomised identifiers.

TraceTogether and CombatCovid Both apps are both derived
from the Open Trace app and backend server. Both apps make
extensive use of Google Firebase services. This means that
there are two main parties involved in handling data shared by
each app, namely Google (who operate the Firebase service)
and the health authority operating the app itself. As owner
of Firebase, Google has access to all data transmitted by the
app via Firebase but filters what data is made available to the
health authority e.g. to present only aggregate statistics. Both
apps also use Firebase Analytics to monitor app usage. Note
that the Google Analytics documentation [9] states that “Ana-
lytics derives location data from users’ IP addresses”. Hence,
the data sent by the handset potentially allows its location to
be tracked over time. The Firebase Analytics documentation
states that “Thresholds are applied to prevent anyone view-
ing a report from inferring the demographics, interests, or
location of individual users” [9]. Assuming this is effective
(note that the effectiveness of de-anonymisation methods is
far from clear when applied to location data over time), then
the health authority operating the app cannot infer individ-
ual user locations. The primary privacy concern therefore
lies with the holding of rough location data by Google itself,
especially as there is an obvious potential conflict of inter-
est for Google whose primary business is advertising based
on collection of user personal data. We recommend stop-
ping use of Firebase, and in particular Firebase Analytics,
to minimise data sharing with Google. TraceTogether and
CombatCovid both require the user to enter a valid phone
number and, similarly to CovidSafe, we recommend replac-
ing this by use of push notifications based on randomised
identifiers. While OpenTrace is open source, TraceTogether
and CombatCovid are not. We could find no public technical
documentation on the operation of CombatCovid, the obser-
vation that it is derived OpenTrace is based on our inspection
of the decompiled code.

HaMagen GPS location data associated with infections is
publicly published on the HaMagen server, raising obvious
privacy concerns for infected users asked to upload their data
to the server. We could not find any documentation describ-
ing mitigating measures (such as obfuscation/redaction of
locations) taken by the HaMagen server prior to publishing
this location data. On the plus side for privacy, for uninfected
users of the app HaMagen shares no identifiers with its own
servers or with third-party servers such as Google. We note,
however, that HaMagen requires Google Play Services to
be enabled in order to operate, which is known to result in
substantial sharing of information on device activity with
Google [10]. HaMagen is open source.

@ Springer

Aarogya Setu From a privacy perspective we found a num-
ber of serious issues with the Aarogya Setu app. Firstly, upon
launch of the app the user’s location is automatically shared
with the central server, with no dialogue or popup raised noti-
fying the user of this or asking for their consent. Secondly,
and this is positively disturbing, the app silently uploads
the bluetooth and GPS location data stored on the handset
upon receipt of an instruction from the server. This hap-
pens without notifying the user or asking for their consent.
Both of these are clearly problematic and we recommend
that as a matter of urgency the app be updated to always
require explicit user consent for uploads of such sensitive
data. Thirdly, the bluetooth frames that the app broadcasts
send a persistent identifier of the handset in the clear. This
is in marked contrast to all of the other apps studied (and
also all GAEN-based apps) which take care to frequently
change the identifier that is broadcast so as to make it difficult
for observers to use bluetooth transmissions to track users
movements. Note that commercial providers are already
seeking to build bluetooth sensor networks specifically tar-
getting COVID-19 surveillance of this sort by embedding
code within common apps [11, 12], and so concerns regard-
ing such attacks are not just hypothetical. Fourth, the Aarogya
Setu server can be queried for statistics on the number of
infected and unwell people in a 500m vicinity of a speci-
fied location. This might be used, for example, to discover
data about a hospital or business, a politician’s house and so
on. By intersecting data from nearby locations the precision
could be reduced to below 500m. Access to this server API
requires an authorization header but it is easy to extract this
header from app network connection traces and use this to
make requests, as we demonstrate. Based on our measure-
ments the data returned is not obfuscated i.e. exact values
are returned. Aarogya Setu requires Google Play Services
to be enabled in order to operate which, as already noted,
is known to result in substantial sharing of information on
device activity with Google. The app also makes use of the
Firebase Analytics, Remote Configuration and Cloud Mes-
saging services. We recommend that these dependencies on
Google be removed. Aarogya Setu is open source but other-
wise we failed to find public technical documentation on app
operation.

2 Related work

There are three main strands of work on privacy analysis
of contact tracing apps. The first, and most prominent, is
analysis of cryptographic schemes for managing the identi-
fiers transmitted in Bluetooth frames for proximity detection,
see for example DP3T [13] (used by the Google/Ap-

Mobile Networks and Applications

ple Exposure Notification system), ROBERT (ROBust and
privacy-presERving proximity Tracing protocol) [14] (used
by the French app) and BlueTrace [15] (used by Open-
Trace and associated apps). The second strand is applying
static code analysis tools to contact tracing apps, i.e. inspect-
ing permissions requested, tracing ithe flow of identifiers
within the code and so on, building on existing analysis
tools developed for Android, see [16] and [17]. The third
strand, to which the present work belongs, involves taking
network measurements to evaluate the privacy of contact
tracing apps as actually deployed. Previous work includes
early analysis of the network traffic generated by the Singa-
pore OpenTrace/TraceTogether app, see [18], and analysis
of the network traffic generated by the GAEN-based apps
now deployed across much of Europe, see [10]. The present
work is complementary to [10] since that work studies
GAEN-based apps whereas here we focus on non-GAEN
apps. The present work substantially extends that in [10] to
include measurements from the French TousAntiCovid, Aus-
tralian CovidSafe, Indian Aarogya Setu, Israeli HaMagen
and Florida CombatCovid apps plus updated measurements
for the Singapore TraceTogether app that reflect recent soft-
ware releases.

3 Threat model: What do we mean
by privacy?

It is important to note that transmission of user data to
backend servers is not intrinsically a privacy intrusion. For
example, it can be useful to share details of the user device
model/version and the locale/country of the device and this
carries few privacy risks if this data is common to many users
since the data itself cannot then be easily linked back to a spe-
cific user [19, 20]. Issues arise, however, when data can be
tied to a specific user. One common way that this can hap-
pen is when an app generates a long randomised string when
first installed/started and then transmits this alongside other
data. The randomised string then acts as an identifier of the
app instance (since no other apps share the same string value)
and when the same identifier is used across multiple transmis-
sions it allows these transmissions to be tied together across
time. Linking a sequence of transmissions to an app instance
does not explicitly reveal the user’s real-world identity. How-
ever, the data can often be readily de-anonymised. One way
that this can occur is if the app directly asks for user details
(e.g. phone number, address). But it can also occur indirectly
either when the user’s location is explicitly shared or when
it is implicitly shared using the fact that transmissions by an
app always include the IP address of the user device (or more
likely of an upstream NAT gateway). The IP address acts as
a rough proxy for user location via existing geolP services

and many studies have shown that location data linked over
time can be used to de-anonymise [21, 22].

4 Measurement setup
4.1 Viewing content of encrypted Web connections

All of the network connections we are interested in are
encrypted. To inspect the content of a connection we route
handset traffic via a WiFi access point (AP) that we con-
trol. We configure this AP to use mitmdump [23] as a proxy
and adjust the firewall settings to redirect all WiFi traf-
fic to mitmdump so that the proxying is transparent to the
handset.

The immediate difficulty encountered when using this
setup is that all modern apps carry out checks on the authen-
ticity of server certificates received when starting a new
connection and aborts the connection when these checks
fail. To circumvent these checks we use a rooted phone and
make twoi interventions. Firstly, we install the mitmproxy
cert as a trusted root cert, which induces most system net-
work libraries to pass basic cert checks. Secondly, for each
contact tracing app we use Frida [24] to patch the app on the
fly to replace custom certificate validation functions (typi-
cally identified by decompiling the apps and carrying out
manual inspection) with dummy functions that always report
validation checks as being passed.

4.2 Additional material: Connection data

The content of connections is summarised and annotated in
the additional material.

4.3 Hardware and software used

Mobile handset: Google Pixel 2 running a fresh factory install
of Android 10. Rooted using Magisk v19.1 and running
Frida Server v12.5.2. Contact tracing app versions used:
TousAntiCovid v2.1.8, TraceTogether v2.5.2, CovidSafe
v1.14.0, CombatCovid v1.0.7, HaMagen v2.2.14, Aarogya
Setu v1.4.1. Laptop: Apple Macbook running Frida 12.8.20
and mitmproxy v5.0.1. Using a USB ethernet adapter the lap-
top is connected to a cable modem and so to the internet and
the laptop is configured to operate as a WiFi AP that routes
wireless traffic over the wired connection via the mitmproxy
listening on port 8080. The handset is also connected to the
laptop over USB and this is used as a control channel (no data
traffic is routed over this connection) to carry out dynamic
patching using Frida. In the Developer Options screen on the
handset the “Stay Awake” option is set on.

@ Springer

Mobile Networks and Applications

4.4 Test design

Test design is straightforward since the all of the apps sup-
port only a single flow of user interaction. Namely, in all
of the apps there is an “onboarding” process that involves
stepping through a sequence of screens until the main screen
is reached. Once the main screen is arrived at this is dis-
played thereafter. Testing therefore consists of recording the
data sent upon installation and startup of the app, followed
by navigation through these screens until the main screen
is reached. We distinguish between connectiions made on
launch of the app, with no user interaction, and later connec-
tions made after clicking on the start/proceed/consent button
that many apps display on their splash page. The data sent by
the app when left idle at the main screen is also recorded. A
number of apps also have symptom checking functions and
we also left these untouched to avoid interfering with the live
service.

Non-GAEN contact tracing apps are not constrained to use
Google Play Services, although the app developers may still
choose to create a dependency on Google Play Services. In
our tests we therefore repeat measurements with and without
Google Play Services enabled.

4.5 Finding identifiers in network connections

Potential identifiers in network connections were extracted
by manual inspection. Basically any value present in network
messages that stays the same across messages is flagged as a
potential identifier. Some values are app instance identifiers
and change between fresh installs of an app, and so to assess
this we took measurements for several fresh app installs and
looked for changes in the identifiers. Many of the apps studied
here link identifiers to a phone number entered by the user.
To evaluate this dependency we also took measurements with
different phone numbers. As we will see, many of the val-
ues of interest are associated with Firebase. We therefore try
to find more information on the nature of observed values
from Google privacy policies and other public documents
as well as by comparing them against known software and
device identifiers e.g. Firebase ID’s and the AndroidID of the
handset.

5 Google firebase

Most of the contact tracing apps studied here make use of
Google’s Firebase service (the notable exception is Tou-
sAntiCovid). In particular, the services used are Firebase
Crashlytics, Cloud Messaging, Authentication, Cloud Func-
tions, Remote Configuration and Analytics (also referred to
as Google Analytics).

@ Springer

To use Firebase, an app initially makes a connection to
Google servers to register with Firebase. A typical connec-
tion' is:

POST https://firebaseinstallations.googleapis.com/v1/projects/

covidsafe-prod/installations
"appld": "1:510731179958:android:73323

bd27306bf626d5317",
"fid": "d_CbabxsSGyWT7N8cJKZM-",
Response:

"authToken": {
"expiresIn": "604800s",
"token": "eyJhbGciOiJFUzIINilsInR<...>"

1
"fid": “‘d_CbabxsSGyWT7N8cJKZM-",
"refreshToken": *2_—456Fwbbge_WCn6Xt<...>"

Here the “fid” value is the FirebaselD, a unique identifier
of the app instance (to reset it requires uninstall and re-
install of the app). The token value in the response is used to
authenticate subsequent connections to Firebase servers. It is
JWT-encoded and the token in the above connection decodes
to:

"fid": "d_CbabxsSGyWT7N8cJKZM-",

"exp": 1608525081,
"appld": "1:510731179958:android:73323bd27306<...>"

from which it can be seen that it includes the FirebaselF
and so acts as a unique identifier of the app instance. The
refreshToken value is used to authenticate periodic requests
for fresh tokens. The “appld” value identifies the app, e.g
the value shown is for TraceTogether, and is the same for all
instances of the app.

When Google Play Services is enabled, registration with
Firebase generates a second connection to https://android.
clients.google.com/c2dm/register3:

POST https://android.clients.google.com/c2dm/register3
Headers:

Authorization: AidLogin
3876027569814251330:4707843177977026675
Body:

X—appid: d_CbabxsSGyWT7N8cJKZM-

X—Goog—Firebase—Installations—Auth:

eyJhbGciOiJFUzIINilsInR<...>
device: 3876027569814251330

The “X-Goog-Firebase-Installations-Auth” value is the Fire-
base token and so linked to the FirebaseID. The “device”
value (also echoed in the “Authorization: AidLogin” header)
is the AndroidID, a long-lived device identifier that requires
a factory reset to change. This connection therefore shares
the AndroidID with Google together with the FirebaselD,
thereby linking the two. This means that while the Fireba-
seld changes upon re-install of the app, once linked with the
AndroidID then the FirebaselD is effectively converted into
a strong, long-lived identifier.

! Taken from TraceTogether, but the connections made by the other
apps studied are of the same form.

https://firebaseinstallations.googleapis.com/v1/projects/covidsafe-prod/installations
https://firebaseinstallations.googleapis.com/v1/projects/covidsafe-prod/installations
https://android.clients.google.com/c2dm/register3
https://android.clients.google.com/c2dm/register3
https://android.clients.google.com/c2dm/register3

Mobile Networks and Applications

Fig.1 Example of Firebase
Functions logging visible to the

¥ Firebase

OpenTraceTest v

Go to docs ‘ Q

operator of the OpenTrace app. Ao Functions)
Observe that there is

ﬁne_grained logglng of Doveior Dashboard Health Logs Usage

individual function calls per

user (the uid value in these logs £ ‘iithentication

is a unique identifier linked to a Database Q search logs Allselected ~ Allloglevels v £ ~ »
users phone number). The Storage e 1

tempIDs function is , for Hosting

example, regularly called by the Functions 1103443pm R

OpenTrace app to refresh the set ML Kit

of tempIDs available for a
mobile handset to advertise on

Quality
Bluetooth

%, Crashlytics

Modify

<

Subsequent Firebase connections are linked together by
use of the authentication token (and so also linked to the
FirebaseID/AndroidID), and share data with Google servers.
When Firebase services are used this means there are at least
two parties involved in handling data shared by the app,
namely Google (who operate the Firebase service infrastruc-
ture) and the health authority operating the contact tracing
app. As owner of Firebase, Google has access to all data
transmitted by the app via Firebase but filters what data is
made available to the operator of the app e.g. to present only
aggregate statistics [9].

TraceTogether and CombatCovid, in particular, make
heavy use of Firebase services. Both are based on the Open-
Trace app and server backend, which is open source. The
Firebase Authentication service is used on startup of the app
to record the phone number entered by the user and verify
it by texting a code which the user then enters into the app.
The phone numbers entered are recorded by Firebase and
linked to a Firebase identifier. These two apps also use Fire-
base Cloud Functions to generate templIDs for broadcast over
bluetooth and for upload of logged tempIDs upon the user
becoming infected with Covid-19. The templDs are gener-
ated by reversible encryption using a key stored in Google
Cloud’s Secret Manager service and accessed by the getTem-
pIDs function hosted on Firebase Cloud Functions. Figure 1
shows an example of the Firebase Functions logging visible
to the operator of OpenTrace (and so presumably TraceTo-
gether and CombatCovid). This fine-grained logging data
shows individual function calls together with the time and
user making the call (the uid value is the user identfier used
by Firebase Authentication and so can be directly linked to
the user’s phone number). The Firebase privacy documen-
tation states that the Firebase Authentication service always

11:10:34.509 pm

11:10:34.801 pm

11:10:35.098 pm

11:10:35.102 pm R

getTempIDs
uid yEszgPWmUEgh1I15UaICwfx8skul
ryptionSecret: Getting encryptio

n key: projects/195668253963/secrets/opentr

Success. TempID count: 100

Logs are subject to Cloud Logging's Quota Policy, (4

processes its data in US data centres and non-US app’s may
prefer to avoid this.

The Firebase privacy documentation” outlines some of the
information that is exchanged with Google during operation
of the API. This privacy documentation notes that Firebase
Authentication logs user phone numbers and IP addresses.
Also that Firebase Analytics makes use of a number of iden-
tifiers including: (i) a user-resettable Mobile ad ID to “allow
developers and marketers to track activity for advertising pur-
poses. They’re also used to enhance serving and targeting
capabilities.”3, (i1) an Android ID which is “a 64-bit number
(expressed as a hexadecimal string), unique to each combina-
tion of app-signing key, user, and device”,” (iii) a InstancelD
that “provides a unique identifier for each app instance” and
“Once an Instance ID is generated, the library periodically
sends information about the application and the device where
it’s running to the Firebase backend.” and (iv) an Analyt-
ics App Instance ID that is “used to compute user metrics
throughout Analytics”. The Firebase Analytics documenta-
tion® states that “As long as you use the Firebase SDK, you
don’t need to write any additional code to collect a number of
user properties automatically”, including Age, Gender, Inter-
ests, Language,Country plus a variety of device information.
It also states that “Analytics derives location data from users’
IP addresses”.

2 https://firebase.google.com/support/privacy
3 https://support.google.com/admanager/answer/6274238

4 https://developer.android.com/reference/android/provider/Settings.
Secure.html#ANDROID_ID

3 https:/firebase.google.com/docs/reference/android/com/google/
firebase/iid/Firebaselnstanceld

6 https://support.google.com/firebase/answer/6317486

@ Springer

https://firebase.google.com/support/privacy
https://support.google.com/admanager/answer/6274238
https://developer.android.com/reference/android/provider/Settings.Secure.html#ANDROID_ID
https://developer.android.com/reference/android/provider/Settings.Secure.html#ANDROID_ID
https://firebase.google.com/docs/reference/android/com/google/firebase/iid/FirebaseInstanceId
https://firebase.google.com/docs/reference/android/com/google/firebase/iid/FirebaseInstanceId
https://support.google.com/firebase/answer/6317486

Mobile Networks and Applications

Fig.2 Example of Firebase | llaccounts > doug eith@gmailcom
Analytics data visible to the € ol Analytics | opentracetest-4167b -
operator of the OpenTrace app. @
Observe that data is available on © | proeptes e
events occurinng per individual o, Dy User explorer
device © o
Apr 21 - Apr 27, 2020 a TIMELINE
[=1] Select
SEGMENTS + events
2D us e
P e Descending
8 Paid traffic FILTERS
7 LI? Mobile traffic
2 Tablet traffic
d City = Dublin AND L
ol
DIMENSIONS +
Event name
@ Gender
> Country

Figure 2 shows an example of the data made available to
the operator of the OpenTrace app by Firebase Analytics. It
can be seen that per device event data is available showing
for example when OpenTrace is started on the device, when
it is viewed etc.

The data collected by Google during operation of its Fire-
base services need not be stored in the same country as the
user of an app is located. The Firebase privacy documentation
states that “Unless a service or feature offers data location
selection, Firebase may process and store your data anywhere
Google or its agents maintain facilities”. It also states “A few
Firebase services are only run from US data centers. As a
result, these services process data exclusively in the United
States” and it appears that these services include Firebase
Authentication, which OpenTrace uses to stores user phone
numbers.

It is important to note that only a filtered version of this
data collected by Google is made available to users of its
backend Firebase services. The Firebase Analytics documen-
tation states that “Thresholds are applied to prevent anyone
viewing a report from inferring the demographics, interests,
or location of individual users” [9].

6 Google play services

Google Play Services is closed-source propietary software
with only rather limited documentation on its operation and
privacy. Android is open-source and devices running Android
do not require Google Play Services to be installed or enabled
in order to operate (although the great majority of Android
handsets outside of China come pre-installed with Google
Play Services). Recent measurement studies of contact trac-
ing apps based on the Google/Apple Exposure Notification
(GAEN) system have highlighted the extensive data sharing
with Google that takes place when Google Play Services is

@ Springer

0 0 @ -

4 selected

Expand All

Drop or select dimension or
metric

Q, Try searching "Behavior ove erview” HE 2] o
@
CREATESEGMENT [© @ & 2 ©

f67be0634d5102bcfe0352bcObbeaded Top Events

= 7 1 o 20
First seen on Apr 25, 2020 ©'0:'0°0
from Dublin, Ireland
using io.bluetrace.opentrace.android

nt

ER-R-N:N

VIEW USER PROPERTIES

Event count Purchase revenue Transactions
28 $0.00 0

v ApI L0, 2UlU | £ Evems

User engagement

7m 11s
@ W WY L

@0 0:0:

7:57:14 PM

~ Apr25,2020| 11 Events
[®@ session_start

B screen_view 6:17:33 PM

BD screen_view 6:17:31 PM

B3 screen_view 6:17:31 PM

oo0ono

o sign_up 6:17:31 PM

enabled on a handset, even when the handset is configured
so as to minimise data sharing [10]. This includes sharing of
long-lived device identifiers including the IMEI, SIM serial
number, hardware serial number, WiFi MAC address, user
email address and of course the phone number, see [10] for
details. On Android users of GAEN-based contact tracing
apps are obliged to enable Google Play Services since the
GAEN system itself is implemented within Google Play Ser-
vices, and this raises concerns regarding privacy for those
users who did not previously have Google Play Services
enabled.

Non-GAEN contact tracing apps are not constrained to
use Google Play Services and our test protocol therefore
evaluates whether app developers have chosen to introduce
a dependency on Google Play Services.

As noted above, enabling Google Play Services converts
the FirebaselD into a strong, long-lived identifier. Google
Play Services also independently collects its own telemetry
on app operation, including contact tracing app operation,
and transmits this to Google servers. In particular, for most
of the apps that we studied we observed that Google Play
Services, when enabled, shares telemetry with Google server
using requests of the following form:

POST https://play.googleapis.com/log/batch
Headers:

authorization: Bearer ya29.m. EgwIARIEENfHARjHqw<...>

user—agent: com.google.android.gms/204516028 <...>

cookie: NID=204=MuyLPNP6QaT4<...>
Body:

<.>
\x08\x01\x10\x01\x 18\x00"\x 19
fr.gouv.android.stopcovid\xa0\x01\x01\xea\x0 1\x06:
\x0410.0\xb2\x03\x02\x08\x01\xe2\x03\x06\x08\x0 1\x 10\x 0 1\x 1 8\

x01\xfa\x04\x02\x08\x01X x\x00\x88
<..>

The “authorization: Bearer” header token links the request
to the many strong, persistent user and device identifiers
shared with Google by Google Play Services, observe

https://play.googleapis.com/log/batch

Mobile Networks and Applications

also the cookie. Note that the TousAntiCovid app (which
has identifier fr.gouv.android.stopcovid on Android) has no
dependencies on Firebase or other Google services, and so
this telemetry collection is happening independently of the
app configuration. The body of the request uses a proprietary
protobuf format for which there is no public documentation,
so we do not know the nature of the data shared with Google.

7 Data transmitted by contact tracing apps

In this section we summarise the data shared by the apps, see
the Additional Material for more details.

7.1 TousAntiCovid

The TousAntiCovid app uses the ROBERT protoco [14].
On first use the app sends a unique identifier (clientPub-
licECDHKey) of the app instance to the central server. The
server uses this identifier to generate a sequence of ephemeral
bluetooth identifers (EBIDs) that are then sent to the app. An
EBID is included each bluetooth transmission made by the
app and logged by other devices running the app that observe
the transmissions, together with the bluetooth received signal
strength (RSSI). The EBID value transmitted changes every
15 minutes to mitigate tracking of transmissions by the same
device over time. Upon being discovered to be infected with
COVID-19 an app user uploads the EBIDs logged by their
phone. The server uses a private key to decrypt these EBIDs
and recover the corresponding clientPublicECDHKey val-
ues, which can then be used by contact tracers to identify
handsets that may have been in proximity to the infected per-
son. Each copy of the app periodically contacts the server to
download fresh EBIDs and at this point the server can also
push a message notifying the user that they may have been
near an infected person.

The app has no dependence on Google Play Services, and
we confirmed that it can be used with Google Play Services
disabled. It also does not share the handset phone number
with the server. The app is open source, https://gitlab.inria.
fr/stopcovid19/stopcovid-android.

7.1.1 Data sent on initial startup

When launched, TousAntiCovid makes 12 requests to https://
app.stopcovid.gouv.fr which download app UI components
and covid statistics data. The requests themselves transmit no
identifiers. Upon clicking “I’m in” the app fetches a captcha
image. When the user enters the four letter code shown in the
image the app sends that code to https://app.stopcovid.gouv.
fr together with the image id for verification. In this request
the app also sends the clientPublicECDHKey value that is

a unique identifier of the app instance. The server responds
with a sequence of encoded EBID values.

7.1.2 Data sent when sitting idle at main screen

The app periodically contacts https://app.stopcovid.gouv.fr
to download fresh EBIDs and check for messages. An exam-
ple exchange is:
POST https://api.stopcovid.gouv.fr/api/v3/status

"ebid": "thg266WE9B4=",

"epochld": 18551,

"mac": "J49modR+Azle9gd2M3vHPZf/<...>Fo=",

"time": "432GyQ=="
Response:
"atRisk": false, "config": [], "lastExposureTimeframe": 0, "message":
null, "tuples": "GO8TSqsdCNhSQInOoc<...>

Since the EBID value can be decrypted by the server to
recover the clientPublicECDHKey it acts as a persistent iden-
tifier of the app instance. The “mac” value is a hash to prevent
spoofing. The tuples value in the response encodes EBID val-
ues.

7.2 TraceTogether, CombatCovid

We treat these two apps together since they are both closely
based on the OpenTrace app.” When first launched both of
these apps require the user to enter a valid phone number,
which is then uploaded to a central server. CombatCovidPBC
restricts this to a US number but TraceTogether does not
impose such a geo restriction. An SMS message containing
a one-time password/PIN is sent to the number and must be
entered to proceed with use of the app. In addition Trace-
Together requires a user to state whether they are “Visiting
Singapore” etc and depending on the answer to enter fur-
ther identification details e.g. a visitor is asked to enter their
name, date of birth, nationality and passport number. The val-
ues entered do not seem to be validated (we entered dummy
values to check).

The apps use the BlueTrace bluetooth protocol [15]. The
app uploads the phone number to the server, which uses
this to generate tempIDs that are then sent back to the app.
These act similarly to the EBIDs of TousAntiCovid: they are
included in bluetooth transmissions made by the app, logged
by other devices running the app that observe the transmis-
sions, together with the RSSI, and values logged by infected
users are decrypted by the server to recover the phone num-
bers of people who may have been in proximity to the infected
user.

While OpenTrace is open source, the derived TraceTo-
gether and CombatCovid apps are not. Inspection of the
decompiled app code indicates differences between TraceTo-
gether/CombatCovid and OpenTrace but that the bluetooth

7 https://github.com/opentrace-community/opentrace-android.

@ Springer

https://gitlab.inria.fr/stopcovid19/stopcovid-android
https://gitlab.inria.fr/stopcovid19/stopcovid-android
https://app.stopcovid.gouv.fr
https://app.stopcovid.gouv.fr
https://app.stopcovid.gouv.fr
https://app.stopcovid.gouv.fr
https://app.stopcovid.gouv.fr
https://api.stopcovid.gouv.fr/api/v3/status
https://github.com/opentrace-community/opentrace-android

Mobile Networks and Applications

protocol remains similar. The device identifiers transmitted
in the bluetooth frames are changed every 15 minutes to mit-
igate linking attacks.

Tracetogether and CombatCovid both use Firebase Ana-
lytics (also known as Google Analytics), Firebase Remote
Configuration, Firebase Cloud Functions, Firebase Authen-
tication, Firebase Cloud Messaging. In addition, TraceTo-
gether uses Firebase Crashlytics.

While TraceTogether makes extensive use of Firebase it
does not critically depend on Google Play Services to run: we
confirmed that it can be launched and used with Google Play
Services disabled, although push notifications via Firebase
Cloud Messaging will likely fail when Google Play Services
is disabled.® When run with Google Play Services enabled
then we observed that additional telemetry data is shared
with Google, see below. CombatCovid requires Google Play
Services to be enabled in order to pass the phone number
verification page in the app (when Google Play Services is
disabled the app hangs indefinitely at this page). However,
once onboarding is complete we found that the app could be
used with Google Play Services disabled.

7.2.1 Data sent on initial startup

When launched, both apps make a connection to Google
servers to register with Firebase.

TraceTogether In addition to registering with Firebase on
first launch, TraceTogether makes connections to https://
firebase-settings.crashlytics.com and to https://app-measure
ment.com to register the app instance with, respectively,
Crashlytics and Google Analytics. It also sends telemetry
to https://app-measurement.com. Clicking the “Open Mes-
sage” button and following the onboarding process generates
further requests to https://firebaseremoteconfig.googleapis.
com, https://asia-east2-govtech-tracer.cloudfunctions.net,
www.googleapis.com/identitytoolkit, https://app-measure
ment.com which access, respectively, Firebase Remote Con-
figuration, Firebase Cloud Functions, Firebase Authenti-
cation and Google Analytics. The Firebase authentication
token is sent with the request to https://firebaseremoteconfig.
googleapis.com, linking it to the Firebaseld. For the other
requests a new JWT-encoded token is generated and sent
along with the requests. An example of the decoded token
contents is:

"aud": "https://identitytoolkit.googleapis.com/google.identity.
identitytoolkit.v1.Identity Toolkit",

"iat": 1607920385,

"exp'": 1607923985,

"iss": "govtech—tracer @appspot.gserviceaccount.com",

"sub": "govtech—tracer @appspot.gserviceaccount.com",

"uid": "aVPkeB9TYLW3h0xA2VuMflSDIV92"

8 https://firebase.google.com/docs/android/android- play-services.

@ Springer

Here the uid value is linked to the phone number and so acts as
a long-lived identifier of the device (breaking the connection
between the uid and the device requires the device phone
number/sim to be changed and the app re-installed).

CombatCovid In addition to registering with Firebase on
first launch, CombatCovid makes connections to https://app-
measurement.com to share telemetry with Google Analytics.
During the subsequent onboarding process the app makes 15
connections to https://combatcovidapp.com which download
app UI components and covid statistics data. These requests
transmit no identifiers. However, the app also makes con-
nections to www.googletagmanager.com and www.google-
analytics.com to download Google Analytics javascript. This
javascript appears to be embedded in the Privacy Policy and
Terms of Use page of the app and used to send telemetry
for that page to www.google-analytics.com/collect. Sim-
ilarly to TraceTogether the CombatCovid app connects
to https://firebaseremoteconfig.googleapis.com, https://us-
central1-combatcovid-2d07d.cloudfunctions.net, www.goo
gleapis.com/identitytoolkit in order to use Firebase Remote
Configuration, Firebase Cloud Functions and Firebase Authen-
tication. The app also sends telemetry on the onboarding pro-
cess to https://app-measurement.com and makes a request to
https://combatcovidapp.com/combatcovid-pbc-links which
sets two Google Analytics cookies and sends telemetry to
www.google-analytics.com/collect.

7.2.2 Data sent when sitting idle at main screen

When idle both apps make periodic requests for fresh tem-
pIDs. These requests contain authentication tokens linking
them to the phone number. TraceTogether and Combat-
Covid also make intermittent connections to https://app-
measurement.com to share telemetry with Google Analyt-
ics.

7.3 CovidSafe

CovidSafe is also based on OpenTrace but appears to have
been substantially modified. Unlike TraceTogether/Combat-
Cobvid, CovidSafe is open source, https://github.com/AU-
COVIDSafe/mobile-android. CovidSafe uses a variant of the
BlueTrace bluetooth protocol [15] modified to use a different
cryptographic scheme for the bluetooth payload.® The device
identifiers (tempIDs) transmitted in the bluetooth frames are
changed every 7.5 minutes to mitigate linking attacks. When
first launched CovidSafe requires the user to enter a valid

9 https://dta-www-drupal-20180130215411153400000001.s3.
ap-southeast-2.amazonaws.com/s3fs-public/files/COVIDSafe
9%?20cryptography %20specification%20(with%20protocol %20version
%20numbering)_v3.pdf

https://firebase-settings.crashlytics.com
https://firebase-settings.crashlytics.com
https://app-measurement.com
https://app-measurement.com
https://app-measurement.com
https://firebaseremoteconfig.googleapis.com
https://firebaseremoteconfig.googleapis.com
https://asia-east2-govtech-tracer.cloudfunctions.net
www.googleapis.com/identitytoolkit
https://app-measurement.com
https://app-measurement.com
https://firebaseremoteconfig.googleapis.com
https://firebaseremoteconfig.googleapis.com
https://firebase.google.com/docs/android/android-play-services
https://app-measurement.com
https://app-measurement.com
https://combatcovidapp.com
www.googletagmanager.com
www.google-analytics.com
www.google-analytics.com
www.google-analytics.com/collect
https://firebaseremoteconfig.googleapis.com
https://us-central1-combatcovid-2d07d.cloudfunctions.net
https://us-central1-combatcovid-2d07d.cloudfunctions.net
www.googleapis.com/identitytoolkit
www.googleapis.com/identitytoolkit
https://app-measurement.com
https://combatcovidapp.com/combatcovid-pbc-links
www.google-analytics.com/collect
https://app-measurement.com
https://app-measurement.com
https://github.com/AU-COVIDSafe/mobile-android
https://github.com/AU-COVIDSafe/mobile-android
https://dta-www-drupal-20180130215411153400000001.s3.ap-southeast-2.amazonaws.com/s3fs-public/files/COVIDSafe%20cryptography%20specification%20 (with%20protocol%20version%20numbering)_v3.pdf
https://dta-www-drupal-20180130215411153400000001.s3.ap-southeast-2.amazonaws.com/s3fs-public/files/COVIDSafe%20cryptography%20specification%20 (with%20protocol%20version%20numbering)_v3.pdf
https://dta-www-drupal-20180130215411153400000001.s3.ap-southeast-2.amazonaws.com/s3fs-public/files/COVIDSafe%20cryptography%20specification%20 (with%20protocol%20version%20numbering)_v3.pdf
https://dta-www-drupal-20180130215411153400000001.s3.ap-southeast-2.amazonaws.com/s3fs-public/files/COVIDSafe%20cryptography%20specification%20 (with%20protocol%20version%20numbering)_v3.pdf

Mobile Networks and Applications

Australian phone number, which is then uploaded to a central
server. The server uses this to generate templIDs that are then
sent back to the app. With the notable exception of an initial
request registering with Firebase, the app does not contact
Google servers and instead requests are directed to https://
device-api.prod.lp.aws.covidsafe.gov.au, see below. Covid-
Trace does not depend on Google Play Services to run.

7.3.1 Data sent on initial startup

Similarly to TraceTogether/CombatCovid, when launched
CovidSafe makes a connection to Google servers to regis-
ter with Firebase and when Google Play Services is enabled
a second connection is also made to https://android.clients.
google.com/c2dm/register3 to register with Firebase. Inspec-
tion of the code indicates that the app makes use of Firebase
Cloud Messaging and that these connections are associated
with initialisation of that service. However, we observed no
further connections to Google servers in our tests. Since the
app seems able to fetch push messages via requests to https://
device-api.prod.lp.aws.covidsafe.gov.au additional use of
Firebase Cloud Messaging seems, on the face of it, unneces-
sary.

Clicking on the “I want to help” and following the
onboarding process then generates a sequence of connections
to https://device-api.prod.lp.aws.covidsafe.gov.au. The first
connection uploads the phone number and the second the
PIN code sent by SMS. The response to this second request
contains a JWT-encoded token which decodes, for example,
to:

"jat": 1607750013,

"exp": 1639307613,

"aud": "COVIDsafe",

"sub": "360a4fab—d5b6—4c0e—a269—8e9e5983d48b"

The sub value appears to be a unique identifier linked to the
phone number (it changes when the phone number used is
changed, but stays the same when the app is re-installed but
the same phone number is used). This token is sent along with
all subsequent connections to https://device-api.prod.lp.aws.
covidsafe.gov.au, thereby linking all of these together and to
the phone number.

Unlike TraceTogether/CombatCovid, CovidSafe was not
observed to use Google Analytics.

7.3.2 Data sent when sitting idle at main screen

When idle CovidSafe makes periodic requests to https://
device-api.prod.lp.aws.covidsafe.gov.au/prod/getTempld to
fetch fresh tempIDs. These requests contain an authentica-
tion token linking them to the phone number.

7.4 HaMagen

There appears to be little public technical documentation
on the operation of the HaMagen app. However, the app is
open source'? and its operation can (somewhat painfully) be
inferred from inspection of the source code. The app uses
two separate proximity detection approaches.

Firstly, the GPS location of the handset running the app
is logged over time, with nearby locations (within 20m)
aggregated and stored as a single database entry. The react-
native-background-geolocation library!'! is used to obtain
the GPS location. This data is stored locally on the phone.
When a person is discovered to be infected the logged data is
uploaded to a server. It is not clear how this data is processed
(e.g. whether locations are obfuscated to enhance privacy),
but in due course the server publishes a list of GPS locations
associated with infections, together with the date/time and
duration at each location. The app periodically fetches this
list from the server and intersects the locations on the list with
the locally stored locations. The user is notified of matches.

Secondly, HaMagen broadcasts bluetooth beacons con-
taining ephemeral identifiers while also logging any beacons
observed from other devices. The cryptographic scheme
used for the ephemeral identifiers appears to be docu-
mented at https://github.com/eyalr0/HashomerCryptoRef/
blob/master/documents/hashomer.pdf. As well as logging
the ephemeral identifier in observed bluetooth beacons and
the RSSI (similarly to other apps) HaMagen also stores the
GPS location where the observation took place. This data
is stored on the phone. The ephemeral identifier transmitted
in a bluetooth frame changes every 5 minutes to mitigate
tracking of transmissions by the same device over time. The
app periodically downloads a list of keys from the server
that can be used to reconstruct the ephemeral id’s associated
with infected people, compares these with the bluetooth data
logged on the phone and notifies the user of matches. This
appears to be a decentralised approach, similar to DP3T and
Google/Apple Exposure Notifications but using a different
cryptographic approach. In our tests the downloaded list of
bluetooth keys was always empty and so it may be that this
functionality is not being actively used.

We note that access to the main HaMagen server https://
gisweb.azureedge.net appears to be geo-restricted. In our
tests we therefore used a VPN so that our handset traffic
appeared to be from a location in Israel.

When HaMagen is run with Google Play Services disabled
it repeatedly raises popups asking for Google Play Services
to be enabled (saying “won’t work unless you enable Google

10 https://github.com/MohGovIL/hamagen-react-native and https:/
github.com/MohGovIL/rn-contact-tracing.

I https://github.com/transistorsoft/react-native-background-
geolocation.

@ Springer

https://device-api.prod.lp.aws.covidsafe.gov.au
https://device-api.prod.lp.aws.covidsafe.gov.au
https://android.clients.google.com/c2dm/register3
https://android.clients.google.com/c2dm/register3
https://device-api.prod.lp.aws.covidsafe.gov.au
https://device-api.prod.lp.aws.covidsafe.gov.au
https://device-api.prod.lp.aws.covidsafe.gov.au
https://device-api.prod.lp.aws.covidsafe.gov.au
https://device-api.prod.lp.aws.covidsafe.gov.au
https://device-api.prod.lp.aws.covidsafe.gov.au/prod/getTempId
https://device-api.prod.lp.aws.covidsafe.gov.au/prod/getTempId
https://github.com/eyalr0/HashomerCryptoRef/blob/master/documents/hashomer.pdf
https://github.com/eyalr0/HashomerCryptoRef/blob/master/documents/hashomer.pdf
https://gisweb.azureedge.net
https://gisweb.azureedge.net
https://github.com/MohGovIL/hamagen-react-native
https://github.com/MohGovIL/rn-contact-tracing
https://github.com/MohGovIL/rn-contact-tracing
https://github.com/transistorsoft/react-native-background-geolocation
https://github.com/transistorsoft/react-native-background-geolocation

Mobile Networks and Applications

Play Services”). From inspection of the app code it seems that
these popups are generated by the embedded react-native-
background-geolocation library, which relies on Google Play
Services to access devioce motion sensors for battery saving.
Its therefore appears that Google Play Services is required to
be enabled when using HaMagen.

In summary, apart from an initial connection to Fire-
base, HaMagen shares no identifiers with servers. However,
unlike TousAntiCovid, TraceTogether and CovidSafe, HaM-
agen requires Google Play Services to be enabled, which
is known to result in substantial sharing of information on
device activity with Google. From the point of view of unin-
fected app users who are already using Google Play Services
HaMagen is arguably amongst the most private of the apps
studied here. However, for users who have Google Play Ser-
vices disabled, the requirement to enable it in order to use
HaMagen results in a substantial loss of privacy. From the
point of view of infected users uploading data to HaMagen
servers the GPS location data associated with infections is
publicly published by the HaMagen server. On the face of
it this creates an obvious privacy risk since location time
histories can often be relatively easily de-anonymised. We
could not find any documentation describing mitigating mea-
sures (such as obfuscation/redaction of locations) taken by
the HaMagen server prior to publishing this location data.

7.4.1 Data sent on initial startup

When first launched HaMagen makes a connection to Google
servers to register with Firebase and a second connection
is also made to https://android.clients.google.com/c2dm/
register3 to register with Firebase. Telemetry data is sent
to https://app-measurement.com. The app also makes 4
requests to https://gisweb.azureedge.net to fetch config infor-
mation but these requests contain no identifiers.

Note that in our tests we saw no further connections to
Google servers by the app. Inspection of the source code
indicates that the app uses Firebase Cloud Messaging for
push notifications. Similarly to CovidSafe, we comment that
this data sharing with Google might be avoided by checking
for messages during the periodic connections that the app
already makes to https://gisweb.azureedge.net.

Upon clicking “Start” and proceeding with onboarding
the app repeats (four times, so five times in total) the earlier
fetches of config information from https://gisweb.azureedge.
net. It also makes requests to https://gisweb.azureedge.net/
BleUtc.json.sign and https://gisweb.azureedge.net/Points
Utc.json.sign to fetch, respectively, the lists of bluetooth keys
and GPS locations associated with infections. No identifiers
are sent with any of these requests.

The lists of bluetooth keys and GPS locations are publicly
visible within Israel (the servers appear to be geo-restricted).
As noted above, in our tests the downloaded list of bluetooth

@ Springer

keys was always empty. An example of a request to fetch
GPS locations is:

GET https://gisweb.azureedge.net/PointsUtc.json.sign?r=0.
3700706993999472

Response consists of a list of entries of the following form:

<>
{"type":"Feature","id":1,"geometry":{"type":"Point","coordinates"
:[5.6843418860808e—14,5.6843418860808e—14]},"properties":{"
OBJECTID":24024957,"ID":0,"Name":"","Place":"\xd7\xaa\xd7<...>
" "Date":1607183070000,"types":"","Comments":"","POINT_X"
:5.6843418860808e—14,"

POINT_Y":5.6843418860808e— 14,"fromTime":1607000460000,"
toTime":1607002260000,"sourceOID":1,"flight":0,"flightFrom":0,"
flightArrival":0,"stayTimes":"\xd7\x9e 2020—12—03 12:01 \xd7\xa2\
xd7\x93 2020—12—-0312:31","fromTime_utc":1606989660000,"
toTime_utc":1606991460000,"Key_Field":24024957,"radius":0,"
valid":1,"
address":"","geohash":"s00000000000","geohashFilter":"s00000" } }
<>

Observe that the GPS data includes not only a location and
a time interval but also an OBJECTID value (echoed in the
Key_Field) that can link multiple entries, and also binary
Place data.

7.4.2 Data sent when sitting idle at main screen

When idle HaMagen periodically fetches config informa-
tion and the lists of bluetooth keys and GPS locations from
https://gisweb.azureedge.net. No identifiers are sent with
these requests.

7.5 Aarogya Setu

According to the stats displayed in the app UI the Aar-
ogya Setu app has 16.7 crore users, i.e. 167M users,
and that is also consistent with the Google Play Store
which states that the app has had > 100M downloads.
Aarogya Setu is therefore probably the most widely down-
loaded contact tracing app globally. Unfortunately, there
is a notable lack of technical documentation on the oper-
ation of Aarogya Setu. However, the app is open source
at https://github.com/nic-delhi/AarogyaSetu_Android and
https://github.com/tachyons/aarogyasetubackend, and at the
cost of some effort we can infer operation details from that.
Note that we decompiled the app apk and compared the code
with the source code since some comments in github sug-
gested that the published source code may be stale. Although
we indeed observed differences between the decompiled
code and the source code (e.g. in file FcmMessagingSer-
vice.java), they appeared to be minor in nature.

When first launched Aarogya Setu registers with Fire-
base and then requires the user to enter a valid Indian phone
number, which is then uploaded to a server at https://api.
swaraksha.gov.in. An SMS message containing a one-time
password/PIN is sent to the number and must be entered to

https://android.clients.google.com/c2dm/register3
https://android.clients.google.com/c2dm/register3
https://app-measurement.com
https://gisweb.azureedge.net
https://gisweb.azureedge.net
https://gisweb.azureedge.net
https://gisweb.azureedge.net
https://gisweb.azureedge.net/BleUtc.json.sign
https://gisweb.azureedge.net/BleUtc.json.sign
https://gisweb.azureedge.net/PointsUtc.json.sign
https://gisweb.azureedge.net/PointsUtc.json.sign
https://gisweb.azureedge.net/PointsUtc.json.sign?r=0.3700706993999472
https://gisweb.azureedge.net/PointsUtc.json.sign?r=0.3700706993999472
https://gisweb.azureedge.net
https://github.com/nic-delhi/AarogyaSetu_Android
https://github.com/tachyons/aarogyasetubackend
https://api.swaraksha.gov.in
https://api.swaraksha.gov.in

Mobile Networks and Applications

proceed with use of the app. The phone number and PIN are
uploaded to the server, which responds with an authentication
token. This token is therefore linked to the phone number. A
second request to https://fp.swaraksha.gov.in sends both this
token and a Firebase authentication token together, thereby
linking the two. The response is a DiD value. Owing to the
process used, this DiD value is linked to the phone number
entered, the FirebaseID and the AndroidID. It therefore acts
as a strong, long-lived device identifier (breaking the con-
nection between the DiD and the device requires a factory
reset, the device phone number/sim to be changed and the
app re-installed).

The app transmits bluetooth beacons that contain the DiD
value. Unlike the other apps analysed here, which frequently
change the identifier broadcast in the bluetooth beacons, with
Aarogya Setu this value is fixed and does not change over
time. This means that it is easy to link beacons transmitted
by the same device and so potentially reconstruct the move-
ments of the device, provided a suitable network of bluetooth
sensors is available. Commercial providers are already seek-
ing to build bluetooth sensor networks specifically targetting
COVID-19 surveillance by embedding code within common
apps [11, 12] and so concerns regarding linking attacks are
not just hypothetical.

The app also listens for beacons and for observed beacons
records the beacon DiD, RSSI and the GPS location where
the observation took place. This data is stored locally on
the phone. It can be uploaded to a server via three separate
mechanisms. Firstly, the user can click on a button within
the app. Secondly, a push notification can be remotely sent
to the app commanding it to upload the data — this upload can
occur silently, without notifying the user or requesting con-
sent.!? Thirdly, when the app is launched it makes a request to
https://fp.swaraksha.gov.in/api/v1/users/status (see below).
The response to this request can instruct the app to upload
the stored bluetooth/location data, again without notifying
the user or requesting consent.'> An example of the type of
data uploaded is:

"dl": [{"d": "0f150ec4","dist": —78,"tx_level": "—2147483648","

tx_power": "127"}],
"I {"lat": "53.3<..>","lon": "—6.2<...>"},"ts": "1608483030"

Here the “dl” value is Bluetooth data (the observed DiD iden-
tifier 0f150ec4 and RSSI -78dB), the “I” value is the GPS
location when the Bluetooth beacon was observed and “ts”
the unix timestamp.

Aarogya Setu uses Firebase Analytics, Firebase Remote
Configuration and Firebase Cloud Messaging. Aarogya Setu

12 onMessageReceived() in file FemMessagingService.java calls push-
DataToServer() when an appropriate message is pushed.

13 checkStatus() in file CorUtilitykt calls uploadDataU-
til.startinBackground() when the response to the status request
contains appropriate json entry.

requires Google Play Services to be enabled. When launched
with Google Play Services disabled the app halts with a popup
asking for it to be enabled and if that popup is ignored then
the app exits.

In summary, Aarogya Setu seems significantly less private
than the other apps examined here and we urgently recom-
mend that it be modified to (i) not upload the user’s location
upon launch without explicit notification and consent, (ii) not
upload logged bluetooth/location data without explicit noti-
fication and consent and (iii) not send the DiD value in the
clear in Bluetooth transmissions. In addition, we recommend
that the dependencies on Google services and Google Play
Services are reduced, or preferably removed and that docu-
mentation giving technical details of the operation of the app
be published.

7.5.1 Data sent on initial startup

When first launched Aarogya Setu makes three connections
to Google servers. Namely, (i) https://settings.crashlytics.
com/spi/v2/platforms/android/apps/nic.goi.aarogyasetu/sett
ings to register with Crashlytics, (ii) https:/firebaseinstallatio
ns.googleapis.com/v1/projects/covid19-6¢396/installations

to register with Firebase and (iii) https://android.clients.
google.com/c2dm/register3 to link Firebase with Google
Play Services (linking FirebaseID with the AndroidID). The
app then makes a request to https://firebaseremoteconfig.
googleapis.com/v1/projects/645345756042/namespaces/fir

ebase:fetch, sending the FirebaseID and Google Play Ser-
vices authentication token and calls https://app-measuremen
t.com to send telemetry to Google Analytics.

After selecting the language, clicking “next” and pro-
ceeding with the onboarding the app sends the entered
phone number to https://api.swaraksha.gov.in/generateOTP,
and then the phone number plus PIN (which has been sent
by SMS) to https://api.swaraksha.gov.in/validateOTP. The
response is a JWT-encoded auth_token value that decodes
to:

"exp": 1607773824, "iat": 1607687424, "sub": "+919<...>",
"username": "8bae6238—66ac—4bda—9731—-508a742d75¢0"

Here the “sub” value is the phone number entered and
“username” is self-explanatory. Also sent is a JWT-encoded
refresh_token which decodes to the same content but a dif-
ferent “exp” expiry time.

The app next sends a request to https://fp.swaraksha.gov.
in/api/v1/users/register:

POST https://fp.swaraksha.gov.in/api/v1/users/register
Headers:
authorization: eyJOeXAiOiJKV1QiL<...>
Body:
"d": "02:00:00:00:00:00",
"ft": "crUG7jyPRES5ghOHE9F6<...>",
<>

@ Springer

https://fp.swaraksha.gov.in
https://fp.swaraksha.gov.in/api/v1/users/status
https://settings.crashlytics.com/spi/v2/platforms/android/apps/nic.goi.aarogyasetu/settings
https://settings.crashlytics.com/spi/v2/platforms/android/apps/nic.goi.aarogyasetu/settings
https://settings.crashlytics.com/spi/v2/platforms/android/apps/nic.goi.aarogyasetu/settings
https://firebaseinstallations.googleapis.com/v1/projects/covid19-6c396/installations
https://firebaseinstallations.googleapis.com/v1/projects/covid19-6c396/installations
https://android.clients.google.com/c2dm/register3
https://android.clients.google.com/c2dm/register3
https://firebaseremoteconfig.googleapis.com/v1/projects/645345756042/namespaces/firebase:fetch
https://firebaseremoteconfig.googleapis.com/v1/projects/645345756042/namespaces/firebase:fetch
https://firebaseremoteconfig.googleapis.com/v1/projects/645345756042/namespaces/firebase:fetch
https://app-measurement.com
https://app-measurement.com
https://api.swaraksha.gov.in/generateOTP
https://api.swaraksha.gov.in/validateOTP
https://fp.swaraksha.gov.in/api/v1/users/register
https://fp.swaraksha.gov.in/api/v1/users/register
https://fp.swaraksha.gov.in/api/v1/users/register

Mobile Networks and Applications

Response:
"data": { "did": "17d8a9b1" }, "error": {}

The authorization header is the auth_token value and the
“ft” value in the body of the request is the Google Play Ser-
vices authentication token. The request therefore acts to link
these. Recall that the Google Play Services authentication
token is linked to the FirebaseID and the AndroidID, and so
the effect of this request is to link the phone number, Fire-
baselID and the AndroidID. The response is a DiD value that
acts as a strong, long-lived device identifier, as already noted.
We note that inspection of the code indicates the “d” value
sent in the request is intended to be the MAC address of the
handset bluetooth adapter, but for security reasons (“MAC
addresses are globally unique, not user-resettable, and sur-
vive factory resets””) Android 6 and later block access to the
MAC address.'

The app now makes a request to https://fp.swaraksha.gov.
in/api/v1/users/status, also sending the auth_token value in
an authorization header. An example response is:

"did": "17d8a9b1", "full_upload": "0",

n,on "o

"meta": {"color": "green","radius": 0,<...>},
"p": 0, <..>

When the “p” value in this reponse is set to 1 then the app
responds by uploading its logged bluetooth/location data to
the server (we identified this functionality by inspection of
the source code and confirmed its operation by intercepting
the response and setting p to 1). The “full_upload” value is
used in the decompiled apk but not in the published source
code.

Next it sends requests to https://fp.swaraksha.gov.in/api/
v1/openapi/approval/ and then to https://web.swaraksha.gov.
in/ncv19?locale=en. The response to the latter request is
HTML, and the app then proceeds to download the associ-
ated HTML resources from using 62 separate requests for
images, fonts, CSS and javascript — in this way the bulk
of the app UI appears to be dynamically loaded. These
requests do not carry any identifiers. The app also makes con-
nections to https://webapi.swaraksha.gov.in/ncv19/nearby-
stats/, https://fp.swaraksha.gov.in/api/v1/openapi/userpref/,
https://webapi.swaraksha.gov.in/ncv19/did-state, https://we
bapi.swaraksha.gov.in/ncv19/show-policy/ which send the
auth_token value. Importantly, the connection to https://
webapi.swaraksha.gov.in/ncv19/nearby-stats/ sends the
device GPS location to the server (see below). That is, upon
launch of the app the user’s location is automatically shared
with the central server. No dialogue or popup is raised noti-
fying the user of this or asking for their consent. Finally the
app calls https://app-measurement.com/a to share telemetry
with Google Analytics.

14 https://developer.android.com/training/articles/user-data-ids#mac-
addresses.

@ Springer

7.5.2 Data sent when sitting idle at main screen

When left idle, in our tests we observed no further con-
nections by the app. However, interaction with the UI does
generate network connections. In particular, navigating to
the “Your Status” page prompts a call to https://webapi.
swaraksha.gov.in/ncv19/nearby-stats, for example:

GET https://webapi.swaraksha.gov.in/ncv19/nearby-stats/?dist=1km
Headers:

lon: —6.2<...>

distance: 0.5km

lat: 53.3<..>

authorization: eyJOeXAiOiJKV1Q<...>
Response:"bluetoothPositive": 0, "infected": 0, "selfAsses": 1, "
success": true, "unwell": 1, "usersNearBy": 3

Here the “lat” and “lon” header values are the device
location, specified to high accuracy (they correctly locate
the house where the handset is located). The response
appears to be various statistics on infections in the vicin-
ity (given by the “dist” header value) of this location. The
accuracy of these statistics is unclear. They may be obfus-
cated in some way, we found no documentation on this,
but based on our measurements they are not. When we
changed the location to be in the ocean the response cor-
rectly indicated no people while when the location was
set to Bombay Hospital in Mumbai a typical response
was "infected":60,"unwell":3,"bluetoothPositive":10530,"suc-
cess":true,"selfAsses":93, " usersNearBy":46278 and for the
parliament in New Dehli "infected":38,"unwell":5,"bluetooth
Positive":14301,"success":true,"self Asses":66, "usersNearBy"":
33917.

While this request requires an authorization header, it
is easy to extract this header from app network connec-
tion traces and use this to make requests to https://webapi.
swaraksha.gov.in/ncv19/nearby-stats targetting arbitrary
locations, raising obvious privacy concerns.

8 Conclusions

We find that TousAntiCovid and CovidSafe are generally
well-behaved with regard to privacy. TraceTogether and
CombatCovid make extensive use of Google Firebase ser-
vices which means that that there are two main parties
involved in handling data transmitted from these apsp,
namely Google and the health authority operating the app
itself. HaMagen is well-behaved for uninfected users of
the app but GPS location data associated with infectied is
publicly published on the HaMagen server. Aarogya Setu
is found to have a number of potentially serious privacy
issues.

Funding Open Access funding provided by the IReL. Consortium.

https://fp.swaraksha.gov.in/api/v1/users/status
https://fp.swaraksha.gov.in/api/v1/users/status
https://fp.swaraksha.gov.in/api/v1/openapi/approval/
https://fp.swaraksha.gov.in/api/v1/openapi/approval/
https://web.swaraksha.gov.in/ncv19?locale=en
https://web.swaraksha.gov.in/ncv19?locale=en
https://webapi.swaraksha.gov.in/ncv19/nearby-stats/
https://webapi.swaraksha.gov.in/ncv19/nearby-stats/
https://fp.swaraksha.gov.in/api/v1/openapi/userpref/
https://webapi.swaraksha.gov.in/ncv19/did-state
https://webapi.swaraksha.gov.in/ncv19/show-policy/
https://webapi.swaraksha.gov.in/ncv19/show-policy/
https://webapi.swaraksha.gov.in/ncv19/nearby-stats/
https://webapi.swaraksha.gov.in/ncv19/nearby-stats/
https://app-measurement.com/a
https://developer.android.com/training/articles/user-data-ids#mac-addresses
https://developer.android.com/training/articles/user-data-ids#mac-addresses
https://webapi.swaraksha.gov.in/ncv19/nearby-stats
https://webapi.swaraksha.gov.in/ncv19/nearby-stats
https://webapi.swaraksha.gov.in/ncv19/nearby-stats/?dist=1km
https://webapi.swaraksha.gov.in/ncv19/nearby-stats
https://webapi.swaraksha.gov.in/ncv19/nearby-stats

Mobile Networks and Applications

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. TousAntiCovid App (Accessed 15 Dec, 2020). www.bonjour.
tousanticovid.gouv.fr
2. CovidSafe App (Accessed 15 Dec, 2020). www.covidsafe.gov.au
3. TraceTogether App (Accessed 15 Dec, 2020). www.tracetogether.
2OV.sg
4. CombatCovid App (Accessed
combatcovidapp.com/pbc/
5. HaMagen App (Accessed 15 Dec, 2020). www.govextra.gov.il/
ministry-of-health/hamagen-app/download-en/
6. Aarogya Setu App (Accessed 15 Dec, 2020). www.aarogyasetu.
gov.in
7. Exposure Notifications: Android API Documentation (accessed 6
June 2020). www.static.googleusercontent.com/media/www.
google.com/en/www.covid19/exposurenotifications/pdfs/
Android-Exposure-Notification- API-documentation-v1.3.2.
pdf
8. Leith D, Farrell S (2021) GAEN Due Diligence: Verifying The
Google/Apple Covid Exposure Notification API Proc Corona Def-
con21, NDSS
9. Firebase Help: Automatically collected user properties (Accessed
26 April 2020). www.support.google.com/firebase/answer/
6317486
10. Leith DJ, Farrell S (2021) A Measurement-Based Study of the
Privacy of Europe’s Covid-19 Contact Tracing Apps. In: Proc IEEE
INFOCOM

15 Dec, 2020). www.

11. Dehaye P,Reardon J (2020) Dehaye P,Reardon J (2020) Proximity
Tracing in an Ecosystem of Surveillance Capitalism. www.arxiv.
org/pdf/2009.06077.pdf

12. Cuebiq Mobility Insights (Accessed 15 Dec, 2020). www.cuebiq.
com/visitation-insights-covid 19/

13. Decentralised Privacy-Preserving Proximity Tracing (DP-3T) Doc-
uments (Accessed 26 April, 2020). www.github.com/DP-3T/
documents

14. ROBust and privacy-presERving proximity Tracing protocol
(Accessed 17 Dec, 2020). www.github.com/ROBERT-proximity-

tracing/documents

15. BlueTrace: A privacy—preserving protocol for community—
driven contact tracing across borders (9 April,
2020). www.bluetrace.io/static/bluetrace_whitepaper-

938063656596¢104632def383eb33b3c.pdf

16. Wen H, Zhao Q, Lin Z, DoXuan,Shrof N (2020) A Study
of the Privacy of COVID-19 Contact Tracing Apps. In: Proc
SECURECOMM

17. Sun R, Wang W, Xue M, Tyson G, Camtepe S, Ranasinghe DC
(2020) An Empirical Assessment of Global COVID-19Contact
Tracing Applications. www.arxiv.org/pdf/2006.10933.pdf

18. Leith D, Farrell S (2020) Coronavirus Contact Tracing App Pri-
vacy: What Data Is Shared By The Singapore OpenTrace App? In:
Proc SECURECOMM

19. Sweeney L (2002) k-anonymity: A model for protecting privacy.
International Journal of Uncertainty. Fuzziness and Knowledge-
Based System 10(05):557

20. Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M
(2007) ACM Transactions on Knowledge Discovery from Data
(TKDD) 1(1):3

21. Golle P, Partridge K (2009) On the Anonymity of Home/Work
Location Pairs Pervasive Computing

22. Srivatsa M, Hicks M (2012) Deanonymizing mobility traces: Using
social network as a side-channel. In: Proc CCS. pp. 628-637

23. Cortesi A, Hils M, Kriechbaumer T, contributors (2020) mitm-
proxy: A free and open source interactive HTTPS proxy (v5.01).
WWW.mitmproxy.org

24. Frida: Dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers (Accessed 26 April 2020).
www.frida.re

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.bonjour.tousanticovid.gouv.fr
www.bonjour.tousanticovid.gouv.fr
www.covidsafe.gov.au
www.tracetogether.gov.sg
www.tracetogether.gov.sg
www.combatcovidapp.com/pbc/
www.combatcovidapp.com/pbc/
www.govextra.gov.il/ministry-of-health/hamagen-app/download-en/
www.govextra.gov.il/ministry-of-health/hamagen-app/download-en/
www.aarogyasetu.gov.in
www.aarogyasetu.gov.in
www.static.googleusercontent.com/media/
www.google.com/en/
www.google.com/en/
www.covid19/exposurenotifications/pdfs/Android-Exposure-Notification-API-documentation-v1.3.2.pdf
www.covid19/exposurenotifications/pdfs/Android-Exposure-Notification-API-documentation-v1.3.2.pdf
www.covid19/exposurenotifications/pdfs/Android-Exposure-Notification-API-documentation-v1.3.2.pdf
www.support.google.com/firebase/answer/6317486
www.support.google.com/firebase/answer/6317486
www.arxiv.org/pdf/2009.06077.pdf
www.arxiv.org/pdf/2009.06077.pdf
www.cuebiq.com/visitation-insights-covid19/
www.cuebiq.com/visitation-insights-covid19/
www.github.com/DP-3T/documents
www.github.com/DP-3T/documents
www.github.com/ROBERT-proximity-tracing/documents
www.github.com/ROBERT-proximity-tracing/documents
www.bluetrace.io/static/bluetrace_whitepaper-938063656596c104632def383eb33b3c.pdf
www.bluetrace.io/static/bluetrace_whitepaper-938063656596c104632def383eb33b3c.pdf
www.arxiv.org/pdf/2006.10933.pdf
www.mitmproxy.org
www.frida.re

	Contact Tracing App Privacy: What Data is Shared by Non-GAEN Contact Tracing Apps
	Abstract
	1 Introduction
	2 Related work
	3 Threat model: What do we mean by privacy?
	4 Measurement setup
	4.1 Viewing content of encrypted Web connections
	4.2 Additional material: Connection data
	4.3 Hardware and software used
	4.4 Test design
	4.5 Finding identifiers in network connections

	5 Google firebase
	6 Google play services
	7 Data transmitted by contact tracing apps
	7.1 TousAntiCovid
	7.1.1 Data sent on initial startup
	7.1.2 Data sent when sitting idle at main screen

	7.2 TraceTogether, CombatCovid
	7.2.1 Data sent on initial startup
	7.2.2 Data sent when sitting idle at main screen

	7.3 CovidSafe
	7.3.1 Data sent on initial startup
	7.3.2 Data sent when sitting idle at main screen

	7.4 HaMagen
	7.4.1 Data sent on initial startup
	7.4.2 Data sent when sitting idle at main screen

	7.5 Aarogya Setu
	7.5.1 Data sent on initial startup
	7.5.2 Data sent when sitting idle at main screen

	8 Conclusions
	References

