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Abstract
As an important means of medical imaging, elastic imaging is an indispensable part of mobile telemedicine. Ultrasound
elastography has become a research hotspot because it can accurately measure soft tissue lesions. Displacement estimation
is the most important step in ultrasound elastography. At present, the phase zero search method is an accurate and fast
displacement estimation method. However, when the displacement exceeds 1/4 wavelength, it is invalid. The accuracy of
block matching method is not high, but it is suitable for large displacement, so it can overcome this shortcoming. It is
worth noting that the quality-guided block matching method has good robustness under complex mutation conditions. It can
provide prior knowledge to increase the robustness of the phase-zero search under large displacement conditions. So we
propose a novel displacement estimation method for real time tissue ultrasound elastography, which combines the quality-
guided block matching method and the phase-zero search method. The experimental results show that this method is more
accurate, faster and robust than other displacement estimation methods.
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1 Introduction

In order to improve the level of medical treatment, reduce
medical costs and meet the basic medical needs of the
masses, telemedicine has been launched as a new medical
service. At present, telemedicine technology has realized
the real-time communication of voice and high-definition
image using high-speed network, which provides a broader
development space for modern medicine [1–3]. And national
health authorities are focusing on E-health services such as
E-health cards, health portals, health information networks,
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electronic medical records, telemedicine services, and per-
sonal wear and portable communication systems for patient
monitoring and support [4–6]. Among them, independently
managed biomedical/medical stakeholders (such as hospi-
tals, suppliers, and patients) will adopt blockchain technol-
ogy for applications that want to collaborate without ceded
control to centrally managed intermediaries [7–11].

Today, COVID-19 leads to reduced lung function in
patients, leading to death [12]. As an indispensable part
of telemedicine and pulmonary ultrasonography, real time
ultrasound elastography has attracted much attention. It
expands the connotation of ultrasonic diagnosis theory
and the scope of ultrasonic diagnosis, makes up for the
deficiency of traditional ultrasonic imaging, can show
the lesions more vividly, differentiate the nature of the
lesions [13, 14]. It reflects the physical information of
soft tissue through the image, discriminates the elastic size
of pathological tissue, and thus deduces the possibility
of certain pathological changes. Because the traditional
ultrasound imaging method provides only a reflection of
the acoustic impedance of soft tissue [15, 16]. Traditional
ultrasound imaging methods have limited recognition
ability, especially for soft tissue with small acoustic
impedance difference. Moreover, the detection of deep body
tissues is more likely to be interfered by various factors,
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such as shielding, light or shadow, and the patient’s physical
condition. Ultrasound elastography technology can address
this deficiency. Ultrasound elastography has become one of
the research topic of interest in the ultrasonic imagery field
both at home and abroad [17–21], and various improved
ultrasonic imaging methods have emerged, and aroused
much research interest.

For example, Ophir J.’s method [22] can create a slight
deformation of the tissue by applying a little pressure and
collect an ultrasonic signal through an ultrasonic device.
Using a time-domain cross-correlation to compare the
two sets of signals, we can obtain the displacement of
each point in the tissue and calculate the displacement
difference to obtain the tissue strain. The reciprocal of
the strain is used to appropriately represent the physical
attributes of the tissue. The precision of cross-correlation
in time domain is mainly affected by ultrasonic frequency,
sampling rate and signal-to-noise ratio. Therefore, when
the SNR is high, it is more sensitive to the sampling rate
[23, 24]. In O’Donnell M.’s method, the signal envelope
cross-correlation method is used to calculate the tissue
displacement [25]. In this method, a Hilbert transform is
performed on the collected RF to obtain the analytical
signal, and the analytical signal is cross-correlated. we can
obtaine the displacement data of the tissue by analyzing
the phase of the analytical signal cross-correlation function.
Due to the periodic characteristics of the phase, this method
can only be used when the maximum displacement is less
than a 1/4 wavelength. When the displacement is greater
than a 1/4 wavelength, phase cancellation will occur and
produce an incorrect displacement and method failure.

To address this problem, a CAM (Combined Autocorre-
lation Method) [26, 27] is proposed, which expanded the
application scope of the method. But the CAM requires
a large amount of computation and is greatly affected by
noise. The block-matching method is widely used in video
compression and video tracking applications [28]. It divides
the target frame into blocks of the same size. The best
matching position is found in the reference frame (usu-
ally the adjacent frame of the target frame) for each block.
There are many measures of matching degree, including
SAD (Sum of Absolute Differences) [29], MSD (Mean
Square Differences) [30] and NCC (Normalized Cross Cor-
relation) [31]. The best matching location search methods
include FS (Full Search) [32], TSS (Three-Step Search),
NTSS (New Three-Step Search) [33], and 4SS (Four-Step
Search) [34]. To narrow the search scope, the search can
be carried out around the best matching position that has
been calculated for the adjacent blocks. However, because
this search method based on prior knowledge, it can lead
to error accumulation and obtain intolerable error results.
In this paper, the block matching method and zero phase
method are improved and combined. We propose a novel

displacement estimation method for real time tissue ultra-
sound elastography and achieve good experimental results.
The former provides lead information so that the latter can
get good results even in the case of large displacement. That
is, a quality-guided block matching method is adopted to
improve the computing speed and avoid the accumulation
of errors.

Therefore, the organizational structure of this paper are:
Section 1 introduces the research background of ultrasound
elastography in the mobile telemedicine. Section 2 presents
the quality-guided block matching method and the phase-
zero search method and introduces our method framework.
Section 3 introduces two comparative methods including
CAM and time delay estimation (TDE). We make some
comparitive experiments in Section 4. Section 5 concludes
this paper and outlook the future work.

2 Related work

2.1 Quality-guided blockmatching

In the field of digital image processing, the sum of absolute
differences (SAD) is often used to measure the similarity
between image blocks. It first gets every pixel in the
original block. Then calculate the absolute difference with
the corresponding pixel in the block for comparison. Finally,
these differences are added together to create a simple
block similarity measure [35, 36]. At present, the sum of
absolute differences is often used for object recognition,
motion estimation for video compression, generation of
disparity maps for stereo images, and so on [37]. Because
of its simple calculation, convenient operation and fast
calculation speed, and considering the simplest possible
metric of each pixel in the block, it is very effective for a
wide motion search of many different blocks. In addition,
SAD can analyze each pixel individually and is easy to
parallelize processing, so it is easy to implement.

In our method, SAD as a measurement of matching
degree is defined as :

SAD =
m∑

i=1

n∑

j=1

|X(i, j) − Y (i, j)| (1)

where, m × n is the size of the block, X is the block to
be computed in the target frame and Y is the block of the
reference frame.

Corresponding to the reference frames, the best match-
able position in block X(k, s) is:

Y (k + p′, s + q ′) = argmin(
k+m∑
i=k

s+n∑
j=s

|X(i, j)−
Y (i + p, j + q)||p ∈ (−x, x), q ∈ (−y, y))

(2)
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where, (−x, x) is the transverse searching scope and
(−y, y) is the vertical searching scope. Meanwhile, we
take the displacement of the points in block X as a vector
(p′, q ′).

On the basis of the traditional block searchin, which
computes the displacement of every block by either row
order or column order, using the result of the neighboring
block of the current block Xs a reference computes the
displacement of the current block. Due to the effect of noise,
errors can accumulate continuously and even result in a
large error if there is a displacement error in one block
[38, 39].

Block matching is a common method in image denoising
and motion estimation. By matching the query block with
the adjacent image block, K blocks with the closest distance
from the query block are found out from these adjacent
blocks. The quality-guided block matching method [40]
does not calculate the blocks in the target frame in the order
of row and column. it calculates the displacement of its
neighbor block by referring to the block with the highest
matching degree at a given point in time. Using this method
can ensure that the more matchable block gets calculated
first, and the block that has more noise and easily results in
error is computed last, thus avoiding the transmission and
accumulation of errors.

The steps of quality-guided block matching method are
as follows:

step 1. Select the starting block X and put it into the set S
to calculate the displacement and matching degree
of block X;

step 2. Find the most matchable block in set S and take
it as the current block. If there is more than
one candidate, then randomly select from the
candidates;

step 3. Compute the displacement and matching degree of
the current block;

step 4. If there are neighboring blocks of the current
block that have not been computed, go to Step 5;
otherwise, go to Step 7;

step 5. If the neighboring block chosen in the last step
was not in set S, initialize the neighboring block
with the displacement and matching degree of the
current block, put it into set S and return to Step 4.
If it was in set S, go to Step 6;

step 6. If the matching degree of neighboring block is
higher than the current block, return to Step 4;
otherwise, update the displacement and matching
degree of the neighboring block with that of the
current block and return to Step 4;

step 7. Remove the current block from set S;
step 8. If set S is not empty, return to Step 2, otherwise the

steps are finished.

2.2 Phase-zero search

The phase-zero search was first proposed by Cabot in 1981.
The main principle is to calculate the analytic form of the
signal of the two frames before and after press-down, and
calculate the position of the phase crossing zero by using
the analytic signal cross-correlation to get the maximum
position of the cross-correlation function. In other words,
the number of relations between each other will get real
digital signal structure for complex analytical signal, the
analytical signal phase has the following properties: in
relationship to each other for digital signal maximum phase
near zero, corresponding to the precise relationship between
each other several continuous signal of the maximum point,
through the precise the size of the maximum point position
deviation disposal, can get relatively precise time delay
signal [41, 42].

In general, we do not consider the relationship between
hardware devices. We can use the software to calculate
the zero position, its principle is to echo signals structural
analysis, and seeking cross-correlation function of complex
signal in time domain to calculate the cross-correlation
function. When you have the maximum t = 0, for analytical
signal cross-correlation function has a phase of zero.
Finally, by Newton’s method to calculate the time delay.

In fact, the phase-zero search first calculates the ana-
lytical form of the two frames of signals before and after
palpation, and then, It uses the cross-correlation of analytic
signal to calculate the position of zero crossing zero, that
is, the position of maximum value of cross-correlation func-
tion. The bandpass of the two signals x1(t) and x2(t) are
described as:

x̃1 = A(t − τ1)e
−iω0τ1, x̃2 = A(t − τ2)e

−iω0τ2 (3)

The complex cross-correlation functions of the two sig-
nals are described as:

C̃(t) = 1

T

∫ T

0
x̃1(τ )̃x∗

2 (t + τ)dτ (4)

When t is 0, we can obtain the simplified form of the above
expression:

C̃(0) = �AA(τ)e−iω0τ1 (5)

where, �AA(τ) is an autocorrelation function of the signal
envelope.

The time delay of signals x1(t) and x2(t) can be described
with the above phase-zero search:

τBB = φ(0)

ω(0)
=

tan−1(
Im(C̃(0))
Re(C̃(0))

)

ω(0)
(6)

The displacement is:

d = τBB · c (7)

where, c is the propagation speed of ultrasound in the medium.
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However, the disadvantage of this algorithm is that the
displacement accuracy is proportional to the number of
iterations. The higher the displacement accuracy, the more
iterations. That is to say, the method is only applicable to
the case of small wavelength, can not be used for large
displacement.

2.3 Method framework

The method framework for this paper is shown in Fig. 1.
The phase-zero search can obtain equal accuracy with
oversampling by a lower calculation and cause phase
cancellation, resulting in a miscalculation of time delay
when the displacement is more than a half phase.
Combining block-matching with a phase-zero search can
obtain an accurate displacement field after first computing
a rough displacement with block-matching that limits the
error no more than a half phase.

To clearly reflect the physical characteristic of the tissue,
we compute the strain field from the displacement field
with the gradient method. Specifically, we first used RF
signal to get a rough displacement estimation, and then
analytical signal and rough displacement estimation to get
an accurate estimation. Because if accurate displacement
is obtained directly, this result may not be accurate. If
rough displacement estimation is applied again, it will have
a relatively good effect. Secondly, the RF signal before
and after pressure are measured, and analytical signal is
obtained by Hilbert Transform and Block-Matching. Rough
displacement estimation and analytical signal were used to
calculate accurate displacement by the phase-zero search
method. Finally, the least squares method is used to get
distribution of strain.

3 Comparative approach

3.1 Combined autocorrelationmethod

The CAM [26, 27] and the traditional TDE [43] are classical
and popular methods of the current displacement estimation
methods. Therefore, this paper uses these methods as a
comparative experiment. Many elastography methods based
on biological tissues use static tissue compression methods,
which actually measure the strain distribution in the body
caused by tissue compression or relaxation. Mechanical
methods using stepper motors have been used to compress
tissue axially. However, it is very simple and desirable to
operate the ultrasound probe with bare hands. Generally
speaking, we must be robust to the non-axial movement of
the probe on the surface when we compress with our hands.
Moreover, for stable measurement that does not depend on
compression speed and compression, a large dynamic strain
range is also required. In order to satisfy these conditions at
the same time, CAM is proposed [44].

The CAM produces elasticity images with high-speed
processing and high accuracy, and achieves a wide dynami-
crange for strain estimation by combining two-step processing.

step 1. Search for a rough estimate of the maximum enve-
lope correlation. The key feature of this method is to
search only on the grid points of the 1/2 wavelength-
interval in the axial direction and the interval of
scan linesin the lateral direction because the purpose
is to detect azone without phase aliasing in a large
dynamic range. Thus, an improvement in the pro-
cessing speed is attainedby this method. Here,
the 1/2 wavelength interval in the axial direction

Fig. 1 The algorithm framework

2017Mobile Netw Appl  (2021) 26:2014–2023



enables us to optimize computing efficiency with-
out phase aliasing. Moreover, the CAM is robust
tosideslip and suited to freehand compression by
implement-ing a 2-D search in lateral directions.

step 2. The unpacking phase obtained in the first step is
used for better estimation. The time shift, the axial
displacement, and the lateral displacement, at a mea-
surement point are given respectively. Finally, the
axialstrain distribution can be obtained by differen-
tiating theaxial displacement distribution spatially.

To maintain simplicity, we consider only the axial dis-
placement of the tissue (that is, along the direction of the
beam). And from the perspective of envelope correlation,
the first step is similar to the speckle tracing algorithm.
The first and second steps can occur simultaneously through
autocorrelation processing, and the envelope correlation
coefficient is computed only a few times. So the processing
speed is faster than the speckle tracking, and the correlation
coefficient is calculated by changing the time shift many
times. In practice, as shown in Fig. 2, by using multiple
autocorrelation processing units in parallel, it should be pos-
sible to perform real-time processing similar to traditional
Doppler methods.

3.2 Time delay estimation

To calculate the time delay of a reference signal and a
contrast signal in a period of time, time delay estimation
is proposed. TDE has been widely used because of its low
complexity, simple operation, good real-time performance
and high acoustic positioning accuracy. As shown in Fig. 3,
which shows the time shift exists between the reference

signal and the contrast signal. The present TDE method
has good performance under high Signal to Noise Ratio
(SNR). However, with the decrease of signal correlation, the
performance decreases, so the robustness is poor [45, 46].

Because the tissue vibration is small and its orders of
magnitude are usually measured in microns, the sampling
frequency of common ultrasonic equipment cannot meet
the requirement. Therefore, a signal interpolation algorithm
must be used to improve the estimation accuracy of dis-
placement. The interpolation algorithm is an significance
function approximation method [47]. The spline interpo-
lation finds a set of fitting polynomials according to the
existing data points. In the fitting process, it is a common
method to use polynomial to fit the curve of adjacent data
points in signal processing.

In signal processing, the mutual transformation of con-
tinuous and discrete signals is a basic task, and the spline
interpolation is the most suitable method. Schoenberg pro-
posed the theoretical basis of spline interpolation and intro-
duced the B-spline curve. Spline curves are represented by
piecewise polynomials and connected together smoothly.
Connection points are called nodes. For an n-order spline
interpolation, each segment of its polynomial is an n-order,
and each segment of the curve requires n + 1 coefficients.
The curvature of a cubic spline curve is the smallest, so it is
mostly used in practice.

The cubic spline interpolation is typically used in signal
processing because of the balance between computation and
accuracy. With spline interpolation, the discrete signal can
be expressed in a continuous form as a polynomial. Then,
the original signal can be interpolated by increasing the
sampling frequency or by directly applying the polynomial
coefficient to the delay calculation [48].

Fig. 2 Combined
autocorrelation method
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Fig. 3 Reference signal and
delay signal

4 Experiments

A two-dimensional soft tissue model was created using Abaqus
software, and this model contained circular tissue that was
four times harder than the surrounding tissue. Then, a 2%
deformation is generated in the model, and a simulated RF
signal is generated by the consistent displacement generated
by the deformation. In this set of simulation data, the cen-
tral frequency of the signal is 5 MHz, the sampling rate is 20
MHz, and the maximum displacement is greater than twice
the length of the ultrasonic wave. Our displacement esti-
mation method is compared with the CAM and the tra-
ditional TDE. These two methods are often applied to
real time tissue ultrasound elastography, but the accuracy
and time efficiency of the algorithm still needs to be
improved. Therefore, we conducted two experiments: esti-
mation of longitudinal displacement and strain estimation.

4.1 Estimation of longitudinal displacement

Firstly, we estimate the longitudinal displacement. In the
TDE method, RF signals are initially oversampled. When
looking for the peak of the cross-correlation function, the
parabolic interpolation method is adopted. Figure 4a, b
and c show the displacement field calculated by the TDE
method, the CAMmethod and our method, respectively, and
Fig. 4d shows the comparison between the displacement

distribution of the three methods on a longitudinal line and
the real displacement distribution.

Obviously, the approach we proposed is closer to the real
displacement distribution because the method we proposed
takes the displacement of the neighboring points as the prior
information when calculating the displacement of a certain
point, which not only improves the accuracy but also greatly
reduces the search scope, thus reducing the amount of cal-
culation and speeding up the calculation speed. To obtain
the same result as the method in this paper, the TDE needs
to carry out oversampling with a very large amount of com-
putation. There are also many redundant cross-correlation
calculations in the CAM, and the half wavelength limitation
cannot be broken.

To quantitatively analyze the accuracy of the three
methods, the displacement difference of the calculation
results is defined as:

σ =
√∑n

i=1(resulti − truei)2

n
(8)

where, result is the displacement field calculated, and true
is the error of the three methods (TDE, CAM, our method),
n is the number of samples.

After calculating the displacement field error in three
methods, the results were as shown in Table 1 (0.1156,
0.0798, 0.0657 respectively). Obviously, the displacement
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Fig. 4 Displacement calculation comparison of three methods
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Table 1 Displacement field error

Method TDE CAM Ours

Displacement field error 0.1156 0.0798 0.0657

field error of this method is the smallest, which indicates
that the calculation result of this method is more accurate.
Therefore, the method in this paper had the lowest
displacement field error and higher accuracy. Figure 4 also
shows that our proposed method is closer to the actual
displacement distribution and has a better effect.

4.2 Strain estimation

In addition, to clearly indicate the physical characteristic
of the tissue, we compute the tissue strain on the basis of
the gained displacement field with the least square method,
namely, the tissue strain is represented by a gradient.
Figure 5a, b, c separately represent the results of the TDE,
the CAM and the method we proposed. As seen from the
figure, the result obtained by the method in this paper is
smoother, and the diseased tissue is easier to distinguish.
Figure 5d shows the strain distribution at the midline
position.

Fig. 5 Strain comparison of three methods
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Table 2 A comparative transport rate

Method TDE CAM Ours

CNR 7.67 26.08 157.06

A comparative transport rate (CNR) is adopted to
quantitatively analyze the lesion degree resolution of the
tissue of each method, as follows:

CNR = mb − mt√
(σ 2

b + σ 2
t )/2

(9)

where, mb, σb are the mean and standard deviation of the
background, and mt, σt are the mean and standard deviation
of the target. The CNR of there methods (TDE, CAM, our
method) are shown in Table 2.

Through calculating the comparative transport rates of
the three methods, the results are shown in Table 1, which
are respectively 7.67, 26.08 and 157.06. In general, the
greater the comparative transport rate of the method, the
faster and more effective the calculation results of the
method are. Therefore, the comparative transport rate of the
method we proposed is the highest and the method is more
efficient. Figure 5 also shows that our proposed method is
more effective and stable.

5 Conclusion and future work

In this paper, we propose a novel displacement estimation
method for real time tissue ultrasound elastography that
combines the block-matching method and the phase-zero
search method. The experimental results show that the method
we proposed can accurately and efficiently calculate the dis-
placement field and effectively solve the error transmission
problem when using prior information.

In the future, we will continue to optimize and improve
the displacement estimation method. For example, in the
quality-guided block matching method, the determination of
block size can be adaptive. In the phase-zero search method,
the results can be calculated by an iterative method to make
the results more accurate. Moreover, with the development
of computer software and hardware, it can be used to acceler-
ate the method to meet real-time requirements. In addition,
with the widespread application of mobile telemedicine,
large hospitals or specialized medical centers will take
advantage of medical technology and medical equipment to
diagnose, treat and consult patients in remote areas.
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