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Abstract
Network Function Virtualization (NFV) is an emerging technology to consolidate network functions onto high volume storages,
servers and switches located anywhere in the network. Virtual Network Functions (VNFs) are chained together to provide a specific
network service, called Service Function Chains (SFCs). Regarding to Quality of Service (QoS) requirements and network features
and states, SFCs are served through performing two tasks: VNF placement and link embedding on the substrate networks. Reducing
deployment cost is a desired objective for all service providers in cloud/edge environments to increase their profit form demanded
services. However, increasing resource utilization in order to decrease deployment cost may lead to increase the service latency and
consequently increase SLA violation and decrease user satisfaction. To this end, we formulate a multi-objective optimization model
to joint VNF placement and link embedding in order to reduce deployment cost and service latency with respect to a variety of
constraints. We, then solve the optimization problem using two heuristic-based algorithms that perform close to optimum for large
scale cloud/edge environments. Since the optimization model involves conflicting objectives, we also investigate pareto optimal
solution so that it optimizes multiple objectives as much as possible. The efficiency of proposed algorithms is evaluated using both
simulation and emulation. The evaluation results show that the proposed optimization approach succeed in minimizing both cost
and latency while the results are as accurate as optimal solution obtained by Gurobi (5%).

Keywords Cloud/edge computing . Network function virtualization . Optimization . Service chain placement

1 Introduction

NFV is an innovational network architecture to provide net-
work services by decoupling network functions such as fire-
walls, intrusion detection, load balancing and routing from
physical boxes so that they can run as software-based appli-
cations. Therefore, it can improve flexibility and agility of the
network since it is easier to dynamically scale the VNF in-
stances, send the functions across a distributed infrastructure
and upgrade the software without interrupting the service. In

addition, NFV enables VNFs to be placed on cloud/edge
physical machines in the form of virtual machine (VM) or
other containers such as Linux container and Docker [1] in
order for parallel processing of multiple operations, load
balancing between servers, decreasing the traffic congestion
and locating closer to the end users [2]. VNFs are chained
together in a predefined order to make particular network ser-
vices. Service flow traffics should be traversed through the
relevant SFCs while satisfying business requirements and sys-
tem constraints. SFCs are considered as virtual networks in-
cluding VNFs and virtual links between them which can be
mapped on the substrate network. The link mapping and VNF
placement should be performed regarding the demanded re-
sources and can affect cost of services requested by users.

Over the past few years, user traffic and the use of
virtualization technologies have been growing very fast in
communication networks. The excessive needs for developing
new services and deployment of the required network re-
sources as well as maintaining, upgrading and expanding
physical infrastructures emerge a remarkable operational ex-
penditure (OPEX) and capital expenditure (CAPEX) for the
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network service providers. NFV is able to significantly de-
crease the capital and operational cost and outperform re-
source allocation more efficient and flexible. An efficient de-
ployment of SFCs plays a major rule in decreasing monetary
costs of the service providers. However, sometimes, there
would be a tradeoff between different objectives as they may
be contradictory. For example, although increasing the re-
source utilization in order to minimizing the number of active
physical nodes can reduce deployment cost, but at the same
time it may lead to an increase in latency of demanded ser-
vices. It can happen since the aggregation traffic on the phys-
ical nodes and links increases and it degrades the efficiency of
latency objective. On the other side, minimizing network la-
tency can be resulted in an increase in deployment and net-
work cost because of more resources needed for providing
services [3].

Figure 1 illustrates an example of VNF placement and
link embedding on a small substrate network including
10 cloud/edge physical nodes. As we can see in Table 1,
there are 3 SFCs to be placed on the substrate network.
The first service chain includes three VNFs which are
placed on nodes 3, 4 and 9, and the virtual links
connecting the VNFs are mapped on the given physical
path (3–4–7-9). Similarly, the second service chain in-
cluding f4 and f5 is placed on nodes 6 and 8 through
intermediate node 10. For the last service chain, physical
nodes 9, 8, 5 and 2 are selected to host the VNFs with
the selected physical path in the sequence of nodes
9,10,8,5,2.

In this paper, we propose a multi-objective optimization
model to minimize joint deployment cost of service providers
and end-to-end latency of SFCs. We formulate the problem of
SFC placement using Mixed Integer Programming (MIP)
model which takes into account a range of constraints such
as resource capacity, acceptable latency requirements, affinity
and anti-affinity. The proposed model enables service

providers to accept and serve more user requests with strict
latency needs while keeping overall costs low.

As finding an optimum solution for service chain place-
ment is a NP-hard problem, exact solutions needs huge
amount of time and computational resources, so they are
impractical for the real-world networks. Heuristic algo-
rithms have been proposed to improve the scalability of
solution and to handle the large infrastructures. These ap-
proaches have to make a trade-off between optimality of
the solution, complexity and execution time. We propose
two genetic-based and bee colony-based algorithms which
can be used for large networks to place service functions
and routing simultaneously, as it increases the performance
of virtual network embedding mechanism.

Although much research attention is given to VNF
placement, as far as we know, none of the previous
works investigated the optimization problem of joint de-
ployment cost and end-to-end latency of SFCs to find a
pareto optimal solution which can be used to make a
tradeoff between monetary cost and network delay cost
in cloud/edge service providers. In addition, for the sake
of achieving an efficient and accurate solution needed for
real-world networks, we propose comprehensive cost and
latency models taking into consideration different effec-
tive factors as energy consumption, software license,
computation resources and network usage (to define cost
model), as well as queuing delay, processing and
virtualization delay, and propagation delay (to define la-
tency model).

The main contributions of this paper are summarized as
follows:

1. We propose a multi-objective optimization model formu-
lated as MIP, to jointly minimize the deployment cost and
the end-to-end latency regarding a range of constraints
such as routing, capacity, delay, location constraints.

2. We propose a genetic-based algorithm as well as a bee
colony-based algorithm to solve the placement and
routing problem to find a pareto optimal solution consid-
ering heterogenous physical nodes and various SFCs.

3. We evaluate our approach using both simulation and em-
ulation (Mininet), and compare the results with a greedy
algorithm as well as with the optimal solution.

Table 1 SFC mapping on the substrate network

SFC index Virtual path Physical path

1 f1 - f2 - f3 v3−v4− v7−v9
2 f4 - f5 v6−v10− v8
3 f6 - f7 - f8 - f9 v9−v10− v8−v5−v2

Fig. 1 An example to illustrate VNF placement and link embedding in
cloud/edge networks
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The rest of the paper is organized as follows. The related
works are discussed in Section 2. In Section 3, we formulate
the problem of SFC placement in order to jointly minimize the
deployment cost and network latency. In Section 4, we illus-
trate our proposed algorithms to solve the optimization prob-
lem in details. Section 5 provides the performance evaluation
of the proposed algorithms compared with the benchmark
algorithms. Finally, we conclude the paper in section 6.

2 Related works

VNF placement has recently obtained much attention in
the literature. The related works can be categorized re-
garding various aspects such as system models, objec-
tives and proposed solutions. A number of studies have
formulated the placement problem as integer program-
ming problems, and solved them using optimization
solvers; or applied heuristics or greedy approaches to
place VNFs. Bari et al. [4] proposed a Mixed Integer
Linear Programming (MILP) model to optimize utiliza-
tion and to reduce network operational costs, and solved
it using CPLEX. Authors in [5] proposed an ILP formu-
lation to decrease the number of deployed instances. In
[6, 7], the authors proposed a MILP and Mixed Integer
Quadratically Constrained Program (MIQCP) for VNF
placement in data centers, respectively. These approaches
are effective to find the exact or near-optimal solutions,
but only for small size infrastructures and are not suit-
able for the networks including large set of physical
nodes. A polynomial complexity heuristic has been pro-
posed for VNF placement in [8]. The placement problem
is modeled as a Multi-Stage directed graph with associ-
ated costs and then, VNFs are placed leveraging a
Viterbi algorithm [5]. Agrawal et al. [9] introduced .a
.queuing-based .system model along with a heuristic to
minimize the network latency, but they considered only
CPU in their work and neglected other resources. The
authors in [10–12] proposed QoS prediction strategies
for mobile ecommerce environments, edge environments
and IoT services, respectively.

In respect of objective, some other works address the
VNF placement regarding load balancing, service resil-
ience and monitoring overhead [13–16]. Authors in [17]
presented an offloading decision problem as a cost-
minimization problem. In [18], the authors presented an
energy-aware placement for NFV environments using a
game-theory approach. However, they proposed the solu-
tion for small infrastructures including only a few physical
nodes. In [19], the authors proposed a data-intensive ser-
vice edge deployment scheme based on Genetic Algorithm
in order to minimize the response time of the services. In
[20], the authors encoded the state of the service

provisioning system and the resource allocation scheme,
and then modeled the adjustment of allocated resources
for services as Markov Decision Process (MDP) in order
to improve trustworthiness in IoT environments.

One of the main objectives to solve the problem of
VNF placement is reducing the deployment cost [21, 22].
Deployment cost is defined as the cost of the computing
and communication resources which are needed to exe-
cute a service chain. The main issue of the problem is
how to place the VNFs onto physical nodes in a way that
QoS is satisfied and the cost of service provider is re-
duced. Xia et al. [23] study the on-demand VNF place-
ment to minimize the cost by placing the VNFs onto
fewer physical nodes. Cohen et al. [24] address the
VNF placement for the purpose of minimizing the de-
ployment cost. They showed that an optimal placement
can improve network reliability, performance of the net-
work and also operation cost. However, the precedence
constraint for VNFs in the service chains is neglected in
this work. The authors in [25] address the problem of
VNFs mapping and scheduling. They have proposed
three greedy algorithms and a Tabu search algorithm to
minimize the cost and increase the revenue. As a draw-
back of this work, authors consider only VNFs as nodes
without any link between them; they did not consider
service chain placement in their work.

An online application placement for mobile edge com-
puting (MEC) has been proposed by Wang et al. [26]. The
authors modeled the placement problem using Markov
Decision Processes (MDP) and tried to reduce the state
space of the problem. They derived a new MDP model in
which only distance between servers and users define the
states and then, they proposed a greedy algorithm to place
the applications. Authors in [27] introduce an edge server
placement approach to minimize the energy efficiency in
MEC. They have proposed a particle swarm optimization
to find the optimum solution. Another research [28] pro-
posed a service chain placement system to minimize the
queuing delay on nodes and infrastructure resources. Two
techniques are proposed for the placement problem: a
round-robin based heuristic, and a MIP-based optimiza-
tion method. The results have been compared with the
general MIP. However, this work only considers physical
nodes and neglect the impact of routing on service
latency.

The previous works either consider cost and latency as
the separate objectives or consider latency as a constraint
in optimization model. However, we propose a multi-
objective optimization model considering joint cost and
latency for the problem of VNF placement and link em-
bedding in cloud edge systems. The proposed model is
able to provide near-optimal solution for only cost opti-
mization, only latency optimization or a pareto optimal
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solution considering joint cost and latency. Therefore, ser-
vice providers are able to set up a weight factor based on
their needs to make a tradeoff between cost and latency.
In addition, the previous works considered some impor-
tant factors to model the cost and especially latency func-
tions and neglected others which may lead to SLA viola-
tion in real networks. However, we propose a comprehen-
sive model regarding various effective factors which
makes this model more practical for real edge cloud
systems.

3 System model and problem formulation

In this section, the service function chain placement in a
cloud/edge network is formulated as an optimization problem.
The goal of optimization model is mapping the service chains
onto physical nodes so that cost and latency are minimized
satisfying placement constraints. Tables 2 and 3 show the
variables used in this paper.

We consider an edge/cloud network which consists three
tiers: end users, edge servers and a cloud. The substrate net-
work is defined as an undirected physical graph, denoted by
G = (V, E) where V is a set of N heterogeneous edge-cloud
physical nodes denoted by V = {v1, v2,…, vN} and E is a set
of K physical links between nodes denoted by E = {e1, e2,…,
eK}.Each physical node v ∈ V is characterized by three types of
resources as processing, memory and disk, and can host one or
several network functions.

The set of all service chains in the system is indicated as
S. Let s ∈ S denotes a service chain consists of a list of
VNFs with strict precedence connection, and is modeled
as a directed graph denoted by SC = (F, L) where F is the
set of virtual functions and L is the set of virtual links. Each
virtual function f ∈ F is described by its processing,

memory and disk demand, and each virtual link l ∈ L is
characterized by its bandwidth demand. We consider dif-
ferent virtual topologies consist of VNFs and virtual links
in response to any type of requested service chains. Each
VNF f belongs to only one service chain s and can be
placed on only one physical node v ∈ V which meets the
defined constraints. Similarly, each l ∈ L can be mapped to
only one physical path P that satisfies the constraints.
Finally, let binary variable X v

sf indicates whether VNF

f ∈ F from service chains s can be mapped on physical node
v ∈ V (X v

sf = 1) or not (X v
sf = 0).

Considering the above-mentioned issues, we present an
optimization model for VNF placement and link embedding
problem which aims to 1) minimize deployment cost of ser-
vice chains, 2) minimize end-to-end service latency, 3) mini-
mize joint cost and latency. In the latter case, we aim to obtain
a pareto optimality between cost and delay in the mentioned
problem.

3.1 Minimizing the overall cost

Eq. (1) denotes overall monetary cost incurred in the
system for all service chains. Overall cost is formulated
based on three cost components as: cost of basic re-
sources named , cost of physical nodes called

, and communication cost named .Since we
consider physical nodes are heterogeneous in this work,
placement of each VNF on a particular node may incur
a different computational cost. As shown in Eq. (2), the
cost of basic resources for each service chains ϵ S is
formulated as the processing, memory and storage costs
of the physical nodes where the service chain’s func-
tions are mapped on.

ð1Þ

Table 2 Descriptions of Binary variables

Variable Description

X v
sf Equal to 1,if VNF f is mapped to physical node v, otherwise 0

X v
kf Equal to 1,if VNF f of type k is mapped to physical node v, otherwise 0

yesl Equal to 1,if virtual link l is mapped to physical link e, otherwise 0

yeuvlpq Equal to 1,if virtual link l between VNF p and VNF q is mapped to physical link e between physical node u and physical node v, otherwise 0

Equal to 1 if service chain s is mapped to path , otherwise 0

wuv
spq Equal to 1 if service chain s traverses from VNF p on node u to VNF q on node v, otherwise 0

Zpq
s Equal to 1 if VNF q is the successor of VNF p in service chain s

Equal to 1 if VNF f from service chain s is mapped to physical node v from path , otherwise 0

Apq Equal to 1 if there is affinity between VNF p and VNF q, otherwise 0

AApq Equal to 1 if there is anti-affinity between VNF p and VNF q, otherwise 0

zv Binary variable is equal to 1 if physical node v hosts at least one VNF f.
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ð2Þ

Cost of physical nodes for all service chains is formu-
lated in Eq. (3) which encompasses software license cost
per site and per instance, and cost of power consumption.
Software license cost per site [29] denoted by Υ ($/node) is
calculated for all physical nodes hosting at least one VNF f
ϵ F. zv is a binary variable that indicates if a physical node
is active. To be active (zv= 1), a physical node v must host

at least one VNF from any service chain, otherwise zv= 0.
On the other hand, X v

sf is a binary variable that is equal to

1 if a VNF f from service chain s is allocated to the phys-
ical node v, otherwise it equals to 0. Therefore, we can
summarize that if X v

sf =1, then consequently zv=1.
A major challenge in SFC placement is to control the num-

ber of active nodes in the system, since turning on all physical
nodes increases the cost of electricity and has a negative effect
on environment due to an increase in carbon footprint. Idle
servers consume about 60% of peak power in data centers
[30]. Hence, a smaller number of switched-on nodes are de-
sired to minimize the overall cost of the system.

The cost of power consumption is calculated for all active
servers in the system [31]. pmin

v , pmax
v denote minimum and

maximum power consumption of server v ∈ V, respectively.
Capvcpu indicates the available processing capacity in server

v, dvcf is amount of CPU demanded by a VNF f ∈F,and φ is

a constant to convert the power to a monetary term. The last
but not least, software license cost per instance denoted by ,
is a cost incurred to the system due to create a new VNF
instance for different types of VNF .

ð3Þ

The communication cost is the third component of overall
cost defined in Eq. (4). It is formulated as the sum of band-
width costs incurred by physical paths where virtual links are
mapped on. The binary variable yesl is equal to 1 if virtual link
l ∈ L from service chain s is mapped on physical link e ∈ E,
otherwise yesl ¼ 0:

ð4Þ

Combining Eq. (2–4), the overall cost model for all service
chains is shown in Eq. (5).

ð5Þ

Table 3 Descriptions of variables

Symbol Description

V Set of physical nodes

S Set of service chains

F Set of VNFs in a service chain s

L Set of virtual links

E Set of physical links

K Set of VNF types

P Set of physical paths

m Number of VNFs required by service chain s

capvcpu CPU capacity of physical node v

capvmem Memory capacity of physical node v

capvst Storage capacity of physical node v

capebw Bandwidth capacity of physical link e

covcpusf CPU cost of physical node v used by VNF f

covmemsf Memory cost of physical node v used by VNF f

covstsf Storage cost of physical node v used by VNF f

coebwsl Bandwidth cost of physical link e used by virtual link l

ḹk Software license cost of a VNF instance of type k

dvcf CPU demand by VNF f from physical node v

dvmf Memory demand by VNF f from physical node v

dvstf Storage demand by VNF f from physical node v

debwl Bandwidth demand by virtual link l from physical link e

Propagation delay of physical link e

pmin
v Minimum power consumption of physical node v

pmax
v Maximum power consumption of physical node v

Dv
vir Virtualization delay of physical node v

Ds
end End-to-end latency of service chain s

DMax Latency bound for service chain s

Υ Site license cost

φ The price to convert the power to a monetary term

Resources cost, {CPU, memory, storage}

Node cost

Communication cost

Propagation delay

Processing and virtualization delay

Queuing delay

α Weight factor, α∈ [0, 1]
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3.2 Minimizing end-to-end latency

VNFs, in each service chain, need to communicate with
each other and forward packets according to the virtual
links between them. These virtual links are mapped on
the physical paths comprised of one or several physical
links. Depending on the topology in a cloud/edge sys-
tem, these physical connections may have different hops
and different hop distance which can incur various
amount of delay while processing a service chain. In
the other hands, gathering VNFs on a limited number
of nodes can increase traffic congestion in the network
and increase latency of service chains. Based on the
expected QoS and Service Level Agreement (SLA) be-
tween users and service providers, each service chain
may have a deadline to be executed. Moreover,
latency-critical services like remote surgery require
stringent latency requirements in NFV infrastructures.

In this section, we propose a model which aims to
minimize the end-to-end latency of service chains in the
system. As we can see in Eq. (6), the latency model is
formulated as propagation delay , processing and
virtualization delay , and queuing delay
Neglecting each of the delay functions may result in
violation of the end-to-end latency requirements.

ð6Þ

The propagation delay is calculated by dividing the
distance by the propagation speed, which is a fixed
value for each physical link. The propagation delay is
calculated for all physical links allocated to the virtual
links as follows:

ð7Þ

The processing delay refers to the time of executing
VNFs in physical nodes, and can be calculated by di-
viding the total processing demands by the node’s pro-
cessing capacity. The virtualization delay of a service
chain depends on the number and load of VNFs placed
on a physical node. Eq. (8) formulates the processing
and virtualization delay for all physical nodes that are
hosting VNFs of a service chain. We model both pro-
cessing and queuing delays based on M/M/1 queuing
models.

ð8Þ

The queuing delay experienced by a service chain
depends on the link utilization and can be calculated
by dividing the total traffic demand by the link capacity
of all nodes that are hosting VNFs consisting of inter-
mediate nodes.

ð9Þ

Combining Eq. (7–9), the end-to-end latency model for all
service chains is formulated in Eq. (10).

ð10Þ

3.3 Joint cost and latency optimization

Both deployment cost of service chains and end-to-end
latency are important objectives in SFC placement.
However, they are conflicting objectives; that is, mini-
mizing one could increase the other. The reason is that
minimizing the number of active physical nodes in-
creases the network traffic and link congestion and con-
sequently may increase the queuing, processing and
virtualization delay. On the other hand, increasing num-
ber of physical nodes increases overall costs and even
propagation delay (in the case of using an inefficient
placement), however, decreases the queuing, processing
and virtualization delay. Hence, a proper VNF place-
ment and link embedding is necessary to proper deploy-
ment of service chain in edge cloud systems.

Eq. (11) combines cost and latency models using a weight
factor α∈ [0, 1] as follows:

ð11Þ

2196 Mobile Netw Appl (2020) 25:2191–2205



We can adjust α to obtain any needed cost/latency
tradeoff, since service providers may have various types
of desires and requirements. To achieve more optimal
placement according to cost objective, α should be set
to a larger number so that α = 1 only consider cost
optimization and neglect the impact of latency. On the
other hand, the smaller α emphasizes the latency mini-
mization so that α = 0 optimizes the system only based
on latency.

The problem of SFC placement to joint deployment cost
and end-to-end latency minimization is formulated as follows:

minimize

ð12Þ

subject to constraints (13–26).

3.4 Explanation of the optimization problem
constraints

The constraints considered for the optimization problem are
illustrated in following parts.

3.4.1 Resource constraints

The processing, memory and storage demands of VNFs
mapped on the physcial nodes should not exceed the
remained CPU, memory and storage capacity of the rel-
evant nodes to avoid resource overutilization. Therefore,
Eq. (13–15) guarantee the CPU, memory and storage
utilization constraints, repectiverly.

∑
v∈V

∑
f ∈F

dvcf X
v
sf

� �
< Capvcpu;∀s∈S ð13Þ

∑
v∈V

∑
f ∈F

dvmf X
v
sf

� �
< Capvmem;∀s∈S ð14Þ

∑
v∈V

∑
f ∈F

dvstf X
v
sf

� �
< Capvst;∀s∈S ð15Þ

Likewise, for every service chain, the bandwidth allocated to
a virtual link l ∈ L mapped on a physical link e ∈ E should not
exceed the bandwidth capacity of the link for all links in the
physical path. Eq. (16) ensures the link’s bandwidth usage con-
straint.

∑
e∈E

∑
l∈L

debwl:y
e
l

� �
< capebw ð16Þ

3.4.2 Placement constraints

The Eq. (17) enforces that all VNFs of a specific ser-
vice chain must be placed on the available physical
nodes working together based on a pre-defined order.
Nevertheless, each VNF instance of a given service
chain can be placed and instantiated on only one phys-
ical node which is guaranteed by the constraint defined
in Eq. (18).

∑
v∈V

∑
f ∈F

X v
sf ¼ jFj ;∀s∈S ð17Þ

∑
v∈V

X v
sf ¼ 1 ;∀ f ∈F;∀s∈S ð18Þ

Similarly, for every service chain, all the virtual links be-
tween each pair of VNFs must be embedded on physical links,
as shown in Eq. (19).

∑
e∈E

∑
l∈L

yesl ¼ Lj j;∀s∈S ð19Þ

The constraint defined in Eq. (20) ensures that all VNFs of
each service chain should be placed and processed in a pre-
defined order. It is worth to mention that if X u

sp =1 and X
v
sq =1

and Zpq
s =1, then we can summarize wuv

spq =1, otherwise it

equals to 0.
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∑
u;v∈V

wuv
spq ¼ Zpq

s ;∀p; q∈F; s∈S ð20Þ

Another constraint defined in constraint (21) guarantees
that for a service chain which is mapped to a physical path,
all its VNFs must be mapped to the nodes belonging to that
given path.

ð21Þ

In the case that source and destination of a service
demand are the same node, the constraint formulated in
Eq. (22) ensures that no physical link will be assigned.
Given a service chain s, if a virtual link l between
virtual nodes p and q, is allocated on physical link e
between physical nodes u and v, then yesl ¼ 1 and con-
sequently yeuvlpq .

∑
euv∈E

yeuvlpq ≤2−X
v
p−X

v
q;∀p; q∈F;∀u; v∈V ;∀l∈L ð22Þ

The constraint defined in Eq. (23) ensures that if there is
affinity rule between two VNFs, they will be assigned to a
same physical node.

X v
spX

v
sq≥Apq;∀s∈S;∀v∈V ;∀p; q∈F ð23Þ

Unlike the prior constraint, the constraint defined in
Eq. (24) ensures that if there is an anti-affinity rule
between two VNFs, they will not be assigned to a same
physical node.

X v
spX

v
sqAApq ¼ 0;∀s∈S;∀v∈V ;∀p; q∈F ð24Þ

3.4.3 Flow constraint

Eq. (25) enforces flow conservation constraint, which means
the incoming flow must be equal to the outgoing flow for all
nodes.

∑
euv∈E

yeuvlpq− ∑
evu∈E

yevulpq ¼ X v
p−X

v
q;∀p; q∈F;∀u; v∈V ;∀l∈L ð25Þ

3.4.4 Latency constraint

Eq. (26) ensures that the end-to-end latency experienced
by each service chain flow must not exceed the maxi-
mum latency tolerance for the given service chain.
Although one of two objective functions in our

optimization model is minimizing end-to-end latency,
still we need this constraint to guarantee that regardless
of the amount of weight factor α, all service demands
will be served within the expected time considered in
SLA between service providers and users. The end-to-
end latency is already formulated in the prior sections.

Ds
end ≤DMax;∀s∈S ð26Þ

4 Heuristic-based SFC placement algorithm

The best method to find the optimal placement of ser-
vice chains is investigating all the physical nodes and
links available in the substrate network. However, be-
cause this method requires huge amount of time and
computational resources in large-scale networks, we pro-
pose two heuristic-based algorithms to find a near-
optimal solutions for the problem of SFC placement.

4.1 Bee Colony-based heuristic algorithm

Artificial Bee colony mimics the behavior of honey bee
colonies, and is an efficient metaheuristic to solve the
NP-hard combinational problems [32]. We solve our pro-
posed optimization problem using an improved bee col-
ony algorithm (BCHA). The proposed algorithm includes
three types of bees: employed, onlookers and scout bees.
The number of food sources is equal to the number of
employed bees in a hive (population). Each location of
food sources indicates a potential solution for the opti-
mization problem, and the nectar amount represents the
fitness value of each solution. The propose algorithm is
shown in Algorithm 1. BCHA includes the following
phases:

4.1.1 Initialization

As the first phase, BCHA generates the initial popula-
tion. The size of population is equal to the total number
of food sources (solutions) denoted by P which is de-
fined as the half of the colony size denoted by cSize
(P = cSize/2). Every solution consists of N nectars
(places). Using the following equation, the solutions of
the initial population are generated:

xij ¼ lbþ R: ub−lbð Þ ð27Þ
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Where i=1, 2, …, P; j = 1, 2, …, N; xij represents each
nectar in the solution, lb denotes the lower bound (in our work

it equals to zero), R is a random number within interval [0,1]
and ub is the upper bound (in our work it equals to the max-
imum number of physical nodes minus 1).

4.1.2 Send employed bees

In this phase, for each food source we send an employed bee to
probe a new food source which has a better amount of nectar. In
the otherword, each solution in the populationwill be replaced by
a new solution that obtains a better fitness value using Eq. (28).

yij ¼ xij þ R1: xij−xkj
� �þ R2: xij−ed

� � ð28Þ

Where R1 and R2 are two different random numbers over
interval [0,1], and k is a random integer in range [0, P-1] and
different from i, and e refers to the elite solution. Elite is a solu-
tion with highest distance value (dv) [32] and can be calculated
as follows:

dvi ¼ F f iþ1

� �
−F f i−1ð Þ ð29Þ

Where F(fi) refers the fitness value of the solution i. We
prefer a solution with higher dv since it reveals that the solution
is located in a less crowded region. Therefore, it helps the algo-
rithm to explore a wider area and increases the diversity of the
solution. The algorithm defines a counter for each solution to
keep the number of times that a given solution is not optimized
in each stage. In the case that the new solution is not obtain a
better fitness rather than the current solution, the counter will be
incremented. If the counter of each solution exceeds a limit, the
relevant bee is considered as a scout bee. It is worth mentioning
that, unlike the original roulette wheel method that gives more
probability to the selection of solutions with higher fitness
values, the roulette wheel in our proposed methods gives more
probability to those with lower fitness values. This is because, in
line with the minimization nature of our problem statement, we
have deigned our fitness values so that better solutions receive
less fitness values. Fitness values are mapped to a real number in
the range [1, 10], as shown in line 32 in Algorithm 1.

4.1.3 Send onlooker bees

In the previous phase, all employed bees tried to optimize their
food sources. Then, in this phase, employed bees come to hive to
advertise their food sources. Each onlooker bee should decide
and select a food source to be utilized. In other words, BCHA
assigns a probability to every solution in population bywhich the
solutions with lower fitness values get higher selection probabil-
ity since our target is minimizing cost and latency in this work.
For all the places in the population, the algorithm selects a solu-
tion using roulette wheel selection technique and tries to optimize
it using Eq. (28), the same as in the previous phase.

Once again, in the case that the new solution cannot be
further improved, the relevant counter will be incremented

2199Mobile Netw Appl (2020) 25:2191–2205



and if the pre-defined limit is violated, the solution will be
considered as a scout bee.

4.1.4 Send scout bees

In this phase, the scout bees (abounded solutions) are found
and replaced with a new solution which is generated using Eq.
(27). In each iteration only one scout bee will be replaced. The
abandoned solutions should be removed because they have
been trapped in a local optimum. Then, the relevant counter
for new solutions turn to zero again. Then, the algorithm will
be repeated until the convergence condition is reached.

4.2 GA-based heuristic algorithm

As an evolutionary algorithm, genetic algorithm imitates the
natural evolution so that the solution proceeds towards a more
optimal solution after each generation. We propose a modified
GA-based algorithm (GAHA) designed to solve the SFC
placement problem. The proposed algorithm is shown in
Algorithm 2. GAHA includes several phases as follows:

4.2.1 Encoding scheme

In the proposed algorithm, each potential placement solution
is defined as a chromosome (individual). Every individual
consists of a number of genes represented by an integer [1,
N] interval, whereN is the number of physical nodes, and each
gene corresponds to a VNF mapped to a physical node.
Individuals are initiated randomly and must satisfy the con-
straints of the optimization model.

4.2.2 GA operators

Genetic algorithm aims to merge the individuals to cre-
ate offspring using crossover operator and then mutate
them using mutation operator. Each offspring inherits its
genes from two parents selected for crossover. First, all
the individuals in the population are sorted in an in-
creasing order in terms of their fitness values. The fit-
ness function is defined based on the objective function
formulated in Eq. (12), and uses normalized cost and
latency values. Next, a number of individuals from the
top of the list with lowest fitness values are selected as
elites based on the elitism rate, and they will be directly
added to the new population. Given the crossover rate,
the offspring are created from the parents which are
selected using the roulette wheel selection technique.

The proposed algorithm is a self-healing algorithm;
that is, after generating each offspring all the constraints
will be checked and must be satisfied, otherwise for the
same parents, crossover operator will generate another
offspring which satisfies the constraints. To avoid get-
ting stuck in an infinite loop and consequently increas-
ing computational time, we set a condition using a con-
stant (β). It determines maximum number of times that
algorithm tries to generate a chromosome satisfying the
constraint, otherwise, one of the parents will be selected
to add to the new population. Crossover operation will
be repeated until all offspring individuals have been
generated and added to the new population.

Having the new population, mutation as the second
GA operator aims to mutate each individual from top of
the list. This operator picks one gene randomly and
replace it with another gene. New individuals will be
checked for feasibility, otherwise the mutation will be

Table 4 Input values
Servers Num. CPU cores [16–32]

Memory capacity (GB) [4–8]

Storage capacity (GB) [500–1000]

Physical link capacity (Gbps) 10

Min. power consumption (W) 240

Max. power consumption (W) 400

The monetary weight φ 0.1

Link bandwidth cost per Gbps ($) 10

CPU cost per core, memory cost per 1GB, and storage cost per 100 GB ($) [5–10]

Software license cost is fixed to ($) 1000

SFC Delay Threshold (ms) [50–100]

Num. of VNFs in SFCs [4–10]

VNF CPU demand [1–8]

Memory demand (MB) [100–400]

Storage demand [10–50]
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repeated until (β) times. If the individual still is not
valid, the prior individual (before mutation) will be con-
sidered. Now, the fittest individual will be selected as
the solution for that given generation. The GA algo-
rithm continues to generate new populations until con-
verging to the final solution (when the last k genera-
tions obtain the same results).

5 Performance evaluation

In this section, we evaluate the efficiency of our optimization
model solved by the proposed algorithms through both simu-
lation and Mininet [33]. We start by explaining the experi-
mental settings, continue by presenting the simulation results,
and then we demonstrate the measurement results obtained
fromMininet.We, also, compare the performance of our work
with the optimal solution derived fromGurobi solver [34], and
a greedy algorithm named modified first-fit decreasing (FFD).

5.1 Simulation setup

In our work, we used the Geant network topology including
22 nodes and 36 links extracted from SndLib [35]. SndLib’s
topologies are widely used in literature as substrate networks
to simulate the placement algorithms (e.g., see [36, 37]).

In the simulation, each service chain assumes as a virtual
network that includes source-destination pairs of virtual nodes
(VNs) connected with virtual links (VLs). The set of service
chains are taken as input by the optimization program. The
proposed metaheuristic algorithms try to find the optimal
placement for both VNs and VLs at the same stage with re-
spect to the optimization model. First, for each service chain,
they select proper physical nodes to be assigned to VNs, and
then relevant VLs are embedded to the physical paths between
selected pairs of physical nodes using a shortest path algo-
rithm (Dijkstra algorithm), in each iteration of the algorithm.
Each physical node can be potentially selected as a source,
destination or intermediate node of one or several VLs. The
simulation is run on a single machine with an Intel core i5
CPU@1.8 GHz, and 8 GB of RAM.

We run each algorithm 10 times and the best value is
shown in the measurements. Table 4 shows the input values
for the servers, SFCs and VNFs used in the experiments.

5.2 Results and analysis

In this sub-section, in order to evaluate the efficiency of the
proposed optimization model and algorithms, we compare our
works and following approaches and baselines:
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& BCHA: The proposed bee colony-based algorithm aims to
solve the optimization problem in a way that joint cost and
latency are minimized.

& GAHA: The proposed GA-based algorithm considers
both cost and latency minimization as well.

& Optimal: This baseline indicates the exact solution ob-
tained by Gurobi. We aim to compare the accuracy of
our solutions rather than optimal solution. It is worth men-
tioning that the time complexity of optimal solution is
exponential in sizable problem, due to innate complexity
of SFC placement.

& FFD: This algorithm, first, sorts all physical nodes in de-
creasing order regarding their resource capacities, and
then allocates maximum number of VNFs to the nodes
from top of the list with respect to the capacity, affinity
and anti-affinity constraints. We aim to evaluate the effi-
ciency of our optimization solutions compared with a non-
optimized greedy approach.

5.2.1 Cost quality of solution

As the first metric, we evaluate the performance of the pro-
posed algorithms with optimal solution FFD algorithm in

terms of monetary cost. As we can see in Fig. 2, both proposed
algorithms significantly decrease the monetary cost compared
with FFD. This amount is around 20% for BCHA. BCHA
even obtains the lower amount rather than GAHA, however,
the gap between the optimal solution and BCHA is as small as
5%, while execution time is significantly less. It shows that the
proposed heuristic based placement algorithms are quite suc-
cessful in reducing monetary cost.

5.2.2 Latency quality of solution

The latency obtained by the proposed algorithms, optimal
solution and FFD are compared in Fig. 3. As we can see,
BCHA obtains a better result compared to GAHA although
the difference is not remarkable, only about 6%. BCHA
achieves an end-to-end latency which is about only 4% higher
than optimality, but around 57% less than FFD.

Therefore, we can sum up both algorithms improve mone-
tary cost and latency significantly compared with FFD algo-
rithm, and their obtained results are very close to optimal
solution which shows the efficiency of the proposed place-
ment algorithms. BCHA reduces both cost and latency more
than GAHA although the differences are not very remarkable.

5.2.3 Pareto quality of solution

Figure 4 shows the deployment cost for both BCHA and
GAHA for different α values between 0 to 1. As we can see,
in general, both algorithms obtained close results in all values,
but BCHA is still better in all cases not more than 7% hap-
pened in α = 0.1. The amount of cost decreases by increasing
the amount of α. That is because α is a weight factor which
emphasizes on cost optimality rather than latency, so having
the higher values of α, optimization model tries to find better
cost placement solution and we expect to have lower amount
of cost. Therefore, α = 1 obtains the lowest amount of
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monetary cost and α = 1 obtains the worst cost optimality.
From α = 0 to α = 0.5, cost decreases sharply, but it decreases
from α = 0.5 to α = 1 with a gentle slope.

Figure 5 shows the results obtained by BCHA and GAHA
in terms of latency considering different values of α. Unlike
what we said in previous metric, higher values of α will bring
lower amount of latency; that is,α = 0 results in lowest latency
amount while α = 1 achieves the highest end-to-end latency.

Again, we can see the amount of latency obtained by
both algorithms are very close to each other in different
values of α, not more than 5%, although BCHA is still
more successful in reducing latency. Unlike the cost,
from α = 0.5 to α = 1, latency increases sharply, and
from α = 0 to α = 0.5 it increases with a gentle slope;
however, the latency curve is increasing sharper than
decreasing in the cost curve in general.

We can observe the pareto optimal results for both latency
and cost optimization in Fig. 6. We use normalized cost and
latency values, to see BCHA pareto results for different α

values. As we can see, by increasing α we can have more
optimal placement in terms of cost, however less optimal so-
lution in latency. On the other side, by decreasing α we can
outperform latency although the deployment cost increases.
However, based on the results,α = 0.3 provides the best place-
ment in which joint cost and latency are minimized.
Therefore, we can sum up that α = 0.3 achieves a balanced
optimality between both objectives, although α can be select-
ed based on the requirements of services and desires of service
providers.

5.2.4 Accuracy of solution

In this subsection, our goal is to determine whether the results
obtained via simulations can qualitatively match the results
measured in Mininet. In this experiment, we use Dijkstra al-
gorithm to find the shortest path between physical nodes that
host the VNFs for each service chain, as in the simulations.
We developed a Ryu controller in Mininet which is able to
place and proceed the SFCs on physical nodes, then we ob-
tained the end-to-end latency for SFCs based on the placement
solutions determined via simulation. In Fig. 7 we evaluate the
latency results obtained by simulation compared with Mininet
for BCHA.

As it can be observed, for different values of VNFs, the
latency achieved by emulation using Mininet is very close to
the simulation results not more than 6% in all cases. It proves
the validity of simulation results in terms of end-to-end laten-
cy of service chains.

5.2.5 Impact of service chains complexity

In this subsection, we investigate the impact of service chain
complexity on the cost and latency of the system. The com-
plexity of an application is determined by the length of service
chain or the number of VNFs in the service chain. Table 5
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shows the cost and latency results obtained by BCHA ap-
proach for the service chains formed by the fixed number of
VNFs as: 4,5,6 and 7 VNFs. From Table 5, we can find that
both cost and latency of SFCs deployment increase when the
application become complex. The reason is clear because the
more VNFs to be deployed, the more instances, resources,
power and physical nodes should be used, and consequently
the monetary cost will be increased. At the same time, increas-
ing in the number of virtual links connecting VNFs will incre-
ment end-to-end latency as well.

6 Conclusion

In summary, we investigated the problem of SFCs placement
in edge/cloud environments. Service providers tend to mini-
mize the deployment cost of service chains. However, it may
increase the end-to-end latency of services which increases
SLA violation and decreases user satisfaction. In this paper,
we proposed a multi-objective and comprehensive optimiza-
tion model to joint minimizing deployment cost and end-to-
end latency considering a variety of parameters. We, then,
proposed two heuristic-based placement algorithms using ge-
netic algorithm (GAHA) and bee colony algorithm (BCHA).

We evaluated the efficiency of our approach using both
simulation and emulation (Mininet). The proposed algorithms
are compared to optimal solution obtained by Gurobi as well
as the FFD placement algorithm. The results showed that
BCHA outperforms monetary cost rather than GAHA by 4%
and FFD by 20%while its results are close to optimal solution
(5%). In terms of latency, BCHA reduces the end-to-end la-
tency compared to GAHA by 6% and FFD by 57% while is
about only 4% higher than optimality. Therefore, we can sum
up the proposed algorithms are quite efficient in joint cost and
latency optimization. In addition, we proposed the pareto op-
timal solutions for both cost and latency objectives for differ-
ent values of α which can be used to make a balance between
conflicting objectives based on the desired goals. Finally, we
emulated our work using Mininet to validate the latency re-
sults obtained through simulation. We observed that the
Mininet results are only about 6% higher than the result ob-
tained through simulation. As a future work, we plan to take

into account the network traffic as another important objective
in the optimization model along with VNF sharing policy in
the SFCs placement.
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