Mobile Networks and Applications (2021) 26:842-850
https://doi.org/10.1007/s11036-019-01328-1

A Multi-grained Log Auditing Scheme for Cloud Data Confidentiality

Zhen Yang'+2

Published online: 14 August 2019
© The Author(s) 2019

Abstract

®

Check for
updates

- Wenyu Wang? - Yongfeng Huang'2 - Xing Li'-2

With increasing number of cloud data leakage accidents exposed, outsourced data control becomes a more and more serious
concern of their owner. To relieve the concern of these cloud users, reliable logging schemes are widely used to generate
proof for data confidentiality auditing. However, high frequency operation and fine operation granularity on cloud data both
result in a considerably large volume of operation logs, which burdens communication and computation in log auditing. This
paper proposes a multi-grained log auditing scheme to make logs volume smaller and log auditing more efficient. We design
a logging mechanism to support multi-grained data access with Merkle Hash Tree structure. Based on multi-grained log,
we present a log auditing approach to achieve data confidentiality auditing and leakage investigation by making an Access
List. Experiments results indicate that our scheme obtains about 54% log volume and 60% auditing time of fine-grained log

auditing scheme in our scenario.

Keywords Multi-grained log - Log auditing - Log forensics - Cloud data confidentiality

1 Introduction

Cloud computing is a quite prosperous application area in
recent years. Specifically, cloud storage is widely-appre-
ciated for offering reliable and convenient data outsourcing
services. Nevertheless, data leakage accidents are reported
to increase with the ever-growing popularity of cloud
storage. Although many researches enhanced cloud data
security with encryption schemes [5], serious threats are
still noticeable in cloud storage: 1) Data access control is
transferred to Cloud Storage Provider (CSP) along with
data outsourcing. 2) CSP faces open Internet environment
where malicious attacks and unexpected system failures
exist. These two factors both exacerbate user’s worry about
his outsourcing cloud data.

Users’ worry on cloud data can be relieved by using
cloud data security auditing. An auditor with expertise and
special capability will check the cloud data security status

B4 Zhen Yang
eeyangzhen @gmail.com

Department of Electronic Engineering, Tsinghua University,
Beijing 100084, China

Tsinghua National Laboratory for Information Science
and Technology, Beijing 100084, China

Information Networking Institute, Carnegie Mellon
University, Pittsburgh, PA, 15213, USA

@ Springer

for the user who outsourced the data [15]. For cloud data
integrity and availability, auditor enables public auditing
with data hash checking and fetching [17]. On the other
hand, given the confidentiality of the cloud data is violated,
there must be some unauthorized user who has accessed
the cloud data. With the unauthorized access operation
log, the cloud data confidentiality can be audited [11].
Furthermore, cloud data confidentiality auditing enables
user accountability by investigating the responsible user
who conducts the unauthorized access [10].

Generally, log based data confidentiality auditing can be
divided into two stages: log integrity auditing and log oper-
ation legality auditing [13]. Since log integrity is precondi-
tion of log operation legality auditing, many reliable logging
mechanisms have been proposed to ensure log integrity.
These logging mechanisms universally adopted hash chain
structure to make logs forward-security [9] and append-only
properties [6]. As a result, each entry of log is tamper-
resilient and resists malicious deletion. After log integrity
is assured, log operation legality auditing need to be con-
ducted to investigate data confidentiality status. Log legality
auditing analyzes log content to detect illegal operations,
which has similar process to DDoS attacks detections [3].

In the cloud, data is commonly stored as blocks, and
data access can be multi-grained from file level to block
level to support different operation demands. To reflect fine-
grained cloud data access operations, log is recorded for
every data block in a fine granularity [8]. Thus, massive

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-019-01328-1&domain=pdf
http://orcid.org/0000-0002-9657-0854
mailto: eeyangzhen@gmail.com

Mobile Netw Appl (2021) 26:842-850

843

cloud users make frequent multi-grained access on cloud
data, resulting in massive fine-grained logs. The volume
of the fine-grained logs becomes too large to efficiently
audit. Some methods has been proposed to speed up the log
integrity auditing process, including supporting selective
verification [13] and using Rabin’s fingerprint and bloom
filter for every verification process [1]. However, there
are still no efficiency improving method for log operation
legality auditing.

In this paper, we propose a file-oriented multi-grained
log auditing scheme to solve the problem aforementioned.
We firstly design a multi-grained data operation log based
on Merkle Hash Tree (MHT) structure [7], and use the state-
of-the-art of reliable logging mechanisms to ensure reliable
log auditing. Besides, to support multi-grained auditing on
logs, we propose a refined AccessList structure together
with two auditing algorithms to investigate data leakage
with accuracy. In our scheme, the multi-grained logs and
the multi-grained auditing target coordinate to achieve high
efficiency in log auditing. Particularly, our contribution in
this work can be summarized as the following three aspects:

1. 'We propose a log auditing scheme supporting multiple
data granularity, which can hold data confidentiality
auditing task on single data block, multiple data blocks
and the whole file.

2. We build a data operation log structure which enables
multi-grained data operation and improves information
validity of logs.

3. We improve the auditing scheme efficiency remarkably,
compared with auditing schemes based on the state-of-
the-art fine-grained logging.

The rest of the paper is organized as follows: Section 2
overviews the related work. Then we introduce the system
and problem statement in Section 3, followed by the detailed
description of our scheme in Section 4. Section 5 gives
the performance evaluation. Finally, Section 6 gives the
concluding remark of the whole paper.

2 Related work

Recently, cloud data security has attracted increasing atten-
tion of researchers. Some research works [14, 17] focused
on the threat of cloud data integrity such as data loss, and
put forward and completed cloud data integrity auditing
scheme. These works promoted auditing approaches to be
applied on logs: using logs auditing to monitor data confi-
dentiality status.

As we state before, log auditing can be divided into
two steps: reliable logging which protects and verifies log
integrity, and logs forensics which audits legality of log
operations.

2.1 Reliable logging

To protect log integrity, forward-security property was pro-
posed to prevent attacker from tampering logs generated
before attack happens. The common methods to implement
forward-security include hash chain and digital signature
[9]. While tampering on logs was prevented by forward-
security, malicious deletion attack was still a problem for
logging. In 2009, append-only property was proposed to
protect log entry from any change after its generation [6].
They firstly presented FssAgg authentication technique to
achieve it. Later, PKC-based secure logging called Log-
FAS [19] achieved both forward-security and append-only
properties, and improved log integrity auditing efficiency.
CloudProof system [8] designed a reliable log named attes-
tation with both forward-security and append-only proper-
ties. Recently, a log block structure [4] was proposed to
store logs into blockchain. Thus, the immutability of block-
chain can ensure the logs integrity.

However, logging scheme are still faced with incorrect
log generation attacks of malicious intrusion. Automated
logging mechanism was proposed firstly by leveraging java
JAR file’s programmable capability [11]. Then an extension
work [10] implements JAR to enclose automated logging
mechanism and builds a framework of accountability in case
of data leakage. JAR-based automated logging is further
adapted in CSP and achieves more efficient logging [18].

When cloud service starts, they just offered coarse
granularity operation on the file. With developing cloud
service, cloud data are accessed in fine granularity of data
blocks. Some logging works adopted block oriented log
record [8, 10] to enable fine-grained cloud data operation
recording. A user often reads or writes multiple data blocks
at a time. Such an operation will generate multiple logs
if fine-grained logging is implemented. As a result, log
volume becomes very huge. Because of huge volume of
fine-grained logs, block-based logging approach [13] was
proposed to support selective verification and enable the
forward security and append-only properties with hash-
chain-based structure for each log block. Then, based on the
block-based logging [13], BLS signature and random mask
technique [2] and binary auditing tree [12] were introduced
into log auditing process to ensure privacy-preserving.

On the other hand, Cloud Log Assuring Soundness and
Secrecy (CLASS) [1] was presented to secure logging by
encrypting logs with individual user’s public key. And
Rabin’s fingerprint and Bloom filter was used to generate
proof of past log to speed up the log auditing.

2.2 Log forensics

Digital forensics are important means of information
security and accountability. In 2015, digital forensics in

@ Springer

844

Mobile Netw Appl (2021) 26:842-850

cloud has been analyzed to propose an OCF (Open Cloud
Forensics) Model and reliable forensics process based on
actual civil lawsuit [21]. In an extension work [20], FECloud
(Forensics-friendly Cloud) Framework is presented and
offers underlying supporting for OCF model.

Until present, researches on log operation legality
auditing still depends on CSP’s functional support and user
defined rules. In practical log auditing, users still face
dilemma of complicated log auditing rules and low auditing
efficiency.

3 System architecture & problem statement
3.1 System architecture

In the cloud data confidentiality auditing scenario that we
concern, there are four participants: Data Owner, User, CSP
and auditor. As is shown in Fig. 1, we discuss behaviors and
introduce responsibilities of the four participants.

— Data Owner: he outsources his data to the CSP. Then he
defines a sharing group and informs CSP of the group
name list. If a user is authorized to read the data, he
informs the user his authorization information.

— User: he makes every attempt to read data from CSP, no
matter he is authorized or not. He may access the data
in different granularity, such as one data block or all
blocks of the data.

— CSP: CSP is responsible for keeping data and sharing
data to user who can prove himself authorized. Ideally,
only user in sharing group is allowed to read data from
CSP. Data and sharing group list at CSP can be updated
by Owner. For every operation such as data reading and
writing, CSP makes corresponding logs with reliable
logging mechanism.

User

Fig. 1 Entities and behaviors in cloud data confidentiality auditing

@ Springer

— Auditor: Auditor is an entity who has auditing expert
capabilities. When he gets auditing delegation from the
data owner, he fetches the data operation logs from CSP
to audit the data confidentiality.

3.2 Problem statement

Security threats arise when we review the architecture
above.

As cloud storage environment is open on the Internet,
malicious users may attack to pilfer cloud data. Reliable
logs serve as proof for data confidentiality auditing. With
reliable logging mechanisms [18], CSP makes logs to record
data operation information in detail and these logs can resist
tampering and malicious fabricating.

While reliable logs seems to be a practical solution
for confidentiality auditing, the volume of logs can be
considerably large because of the high frequency of data
operations and many log entries generated in one opertion.
In cloud data confidentiality auditing where a great number
of logs are involved, the auditor should 1) fetch all logs
from CSP, which is a heavy burden on communication;
2) perform auditing approach on these logs, which means
a huge cost on computing. It is obviously a harsh task
for normal auditors whose communication and computing
ability fails to meet such demanding requirements.

4 The proposed scheme

This section presents our data confidentiality auditing
scheme. We start from a file-oriented log which supports
to reflect multiple data operation granularity. Then we
show how to enable multi-grained log auditing for data
confidentiality.

The scheme can be divided into two phases:

Logging Sharing users access cloud data on CSP by either
reading or writing. With reliable logging mechanism, every
conducted data access is recorded into authentic reliable
logs.

Log auditing Auditor is able to fetch logs from CSP by
providing Data Owner’s auditing delegation message. Logs
are then examined by auditor to check the existence of
confidentiality violation.

4.1 File oriented multi-grained log

In order to support multiple granularity in log, we first
design a special data field in our log format. With designed
logging mechanism, multi-grained data access can be
recorded in our format of log.

Mobile Netw Appl (2021) 26:842-850

845

Operation | Data | UserList [User
Type Hash | Version | HashID

Timestamp | ChainHash | Signature

Fig.2 File oriented multi-grained log structure

4.1.1 Log format

The log format in our scheme is shown in Fig. 2. The data
fields in the log format is explained as below.

Here OperationType(OT) field denotes this log
entry’s operation, including READ and WRITE.

DataHash is the operation orienting data’s hash value.
This field can uniquely identifies the accessed data blocks,
no matter the access granularity is. This field is calculated
by building a Merkle Hash Tree structure [7, 16] for each
cloud file and detailed process will be introduced later in
logging.

UserListVersion(ULV) and User HashI D(UH I D)
is used together to identify the access operation user
uniquely. While the data owner generates pseudonym
UserHashl D for users to preserve their privacy for log
auditing, he also uses UserListVersion to publish new
version pseudonyms to enhance privacy.

Timestamp(T S) field records the time of this operation.

ChainHash is defined in next equation:

ChainHash; = hash((OT|DH|ULV|UHID|TS];,
ChainHash;_1) (1)

Here we use current log entry’s information from
OperationType field to Timestamp field and
ChainHash of last log entry to calculate the ChainHash

Fig.3 An example of Merkle
Hash Tree of a file with 7 blocks

H1

of current log entry. With Chain Hash enabling log entries’
chain order, logs are protected from malicious deleting
attacks.

Sig =sign((OT|DH|ULV|UHID|TS|ChainHash];,
Sklog) 2

The Signature(Sig) field is signed by log generator on
current log entry’s information from OperationT ype field
to ChainHash field, which ensures the integrity of this log
entry.

4.1.2 Multi-grained logging for data operations

In Fig. 3, we show a Merkle Hash Tree (MHT) of a file
consisting of 7 blocks. MHT is a classic data structure to
organize data storage, in which every leaf node corresponds
to the hash value of a data block. The leaf nodes from left to
right map one to one with file data blocks from start to end.
Then every two hash values aggregate into the father node’s
hash value as a binary tree structure. With iterations of this
computing, a series of data blocks’ hash can be aggregated
to one root hash. Commonly, we can uniquely identify a file
by building a MHT with block hash.

Here we prove how our multi-grained logging will reduce
the number of log entries by exploiting MHT. Generally
speaking, it is done by aggregating the operation data
blocks. When the log entry records an operation on a single
data block, DataHash is just the data block’s BlockHash.
When the log entry records an operation on the whole file,
DataHash is RootHash of the file’s MHT. In case the log
entry records an operation on multiple data blocks in the

Root

block 1

block 2

block 3 block 4

MHT Leaves arranged corresponding to blocks from the beginning to the end of file

@ Springer

846

Mobile Netw Appl (2021) 26:842-850

Fig.4 Log auditing process

1. Audit Delegation [
-Audit Step [—|
<+—Audit Step [V

IV. Audit Report

Data Owner

file, DataHash is decided by inspecting MHT with the
strategy illustrated in an example below. Given a 7-block
file as Fig. 3 and operation on data block 1,2,5,6,7, we can
aggregate these blocks’ hash upwards the file’s MHT. The
aggregation will finally obtain some end nodes, which are
H1,2 and HS5,7 in Fig. 3. The operation is then recorded
as 2 logs whose DataHash fields are H1,2 and HS, 7,
respectively.

While we use MHT to build tree of file in the cloud, an
access on some data blocks of the file will generate corres-
ponding multi-grained logs. The log generator will first
aggregates the data blocks with the file MHT and gets the
DataHash to uniquely identify the accessed data blocks.
With other fields of log calculated, the access can be logged.

When data is modified in the cloud, the file MHT in CSP
needs updating so that CSP could make logs with new block
hash. MHT updating strategy can make use of common
binary tree mechanism [17].

4.2 Multi-grained efficient log auditing

Log auditing process is shown in Fig. 4.

As Step I shows, the data owner first generates a log
auditing request including delegation for auditor. After
receiving auditing request, the auditor sends a log auditing
challenge to CSP, which is shown as step II. If CSP verifies
alegal challenge, he acts as step III: giving all logs of the file
to the auditor. Then the auditor executes log auditing on the
file logs and generates an auditing report for Data Owner in
step IV.

4.2.1 Log auditing request

The design of request content is shown as Fig. 5 below.

In the request, AuditMode field is LogAudit, which
means this request is to call for audit towards data logs.
FileName field is name of the file to which target data
belongs. AuthorizedU ser List is all versions of authorized
user HashID list for the file. Target DataHashTree is
uniquely identifier of target data, which uses the file

Audit | File
Mode | Name

Authorized | TargetData
UserList | HashTree

Timestamp | Signature

Fig.5 Auditing request content

@ Springer

II. Audit Challenge
-Audit Step 11

«—Audit Step ITI—

f II1. Logs Return
Auditor &

MHT’s subtree from any node downwards to leafnodes.
Timestamp shows this request’s time. Signature field is
given by Data Owner with his secret key through signing on
all the fields before.

Auditing request from Data Owner to auditor has the
same content as the challenge from auditor to CSP. After
CSP receives auditing challenge, he firstly reads File Name
field to locate file and extracts information of Data Owner.
CSP then checks signature to confirm the identity of owner.
If this legality checking passes, CSP will send all logs of the
file to the auditor.

4.2.2 Log integrity checking

Log integrity are protected with ChainHash and
Signature. As file-oriented log is designed to chains all
logs of a file with ChainHash, all logs of the file will be
sent to the auditor to ensure log integrity. Here Chain Hash
and Signature is verified by Egs. 1 and 2 respectively.

4.2.3 Data confidentiality auditing

In data confidentiality auditing, the auditor firstly requires
data access information from authentic, integral, reliable
logs and then compare access information with data
authorization information.

Our auditing scheme supports multi-grained auditing
targets, which means target data can be a data block, a series
of blocks, or the whole file. To eliminate logs which is not
related to our target data in auditing process, we conduct
slicing on logs at first and generate an information refined
AccessList.

AccessList is a link list recording the HashID of users who
have accessed data and the version of HashID. With HashID
and its version, we can accurately identify a unique user
in the cloud environment. In order to improve auditing
efficiency, AccessList need to follow two features: (1) no
items in AccessList are identical; (2) items in AccessList
are ordered as the version of HashID grows. Here we use
AL(len) to represent an AccessList which have /en items,
and the list’s s’ item is expressed as AL(len).pos(s) in
which 0 < s < len. In addition, the item’s HashID version
is AL(len).pos(s).ver. As the second feature of AccessList

Mobile Netw Appl (2021) 26:842-850

847

shows, a newltem’s insertion position of AL(/en) should
meet the Eq. 3:

AL(len).pos(s).ver < newltem.ver
< AL(len).pos(s + 1).ver (3)

After scanning the logs to generate AccessList, we use
AuthorizedUserList together to obtain unauthorized
access information by which Data Owner could trace
malicious user.

Algorithm 1 Access list generation.

Require: TargetDataHashTree, Logs
Ensure: AccessList
while Logs not end do
if CurrentLog.DataHash.M HT subtree N
TargetDataHashTree # & then
Current log entry is summarized to a newlItem
if newltem ¢ AL(len) then
Insert newItem into link list AL (len) ordered
by newltem.ver

len =len + 1
end if
end if
Current log entry moved to next one
end while

return AL(len)

AccessList generation As shown in Algorithm 1, we just
generate AccessList with the logs which are concerned.
We first extract DataHash from current log entry and
compare it with hash of audit target data. In the file’s
MHT, if the node of current DataHash’s subtree and
TargetDataHashTree have a non-empty intersection,
this log entry is added into our audit scope. Then we
extract this log entry’s HashID and version and insert
them into AccessList in ascending order with respect to
UserListVersion.

Algorithm 2 Unauthorized access list generate.

Require: AccessList, AuthorizedUser List
Ensure: UnauthorizedAccessList
while AccessList not end do
s = AccessListcurrentposition
if AL(len).pos(s) € AuthorizedUser List then
Remove AL(len).pos(s) from link list AL(len)
len =len — 1
else
s=s5+1
end if
end while
return AL(len)

Leakage investigation With AccessList built, we use
AuthorizedUser List to remove the authorized accesses in
AccessList and obtain unauthorized access on the target data
we audit. The leakage investigation process is conducted
as Algorithm 2. Return value is Unauthorized AccessList
of the auditing target data. With the data leakage informa-
tion in Unauthorized Access List, the auditor finally gives
audit report to the data owner. If UnauthorizedAccess
List== @, then target data’s confidentiality is intact. Other-
wise, Unauthorized AccessList stores the information of
data leakage.

5 Results and discussion

In this section we briefly elaborates the security of our
scheme and focus mainly on our performance including
space and time efficiency.

5.1 Security analysis

Firstly, logs passed ChainHash and Signature verifica-
tion are proved to be secure with both forward-security and
append-only properties as many reliable logging mecha-
nisms has stated [8, 10, 18].

Secondly, the hash pseudonyms used in our log format
preserve data confidentiality and user privacy in the log
auditing process. With the correctness of data confiden-
tiality auditing algorithm based on AccessList, confiden-
tiality of data or user privacy cannot be leaked.

5.2 Space efficiency performance

Our file-oriented multi-grained logs can reduce log volume
to optimize the space efficiency. Recalling the MHT in
our scheme, we can prove that our multi-grained logging
makes fewer log entries than fine-grained logging if blocks
accessed by user are continuous or at least some of them are
continuous.

In Fig. 6, we evaluate log size for a file composed of
8 blocks as example. While fine-grained logs have equal
entries with accessed data block number, our multi-grained
logs have some different occasions with possibilities. For
instance, if a user access 5 blocks at a time, there may be
2, 3 or 4 resulting logs. The existence of multiple values
for one access size can be explained by the fact that users
randomly choose blocks to access thus blocks may either
be continuous or separated. The black curve shows that the
number of resulting logs is equal to the number of blocks
accessed if we conduct. When we implement multi-grained
logging, the possible number of resulting logs is shown as
individual points on blue line. With our assumption that
blocks are accessed with equal probability, we are able to get

@ Springer

Mobile Netw Appl (2021) 26:842-850

848

9 . . - -

+—+ Fine-grained Logging
8 . i R o B Sy TRmeEe
e—e Multi-grained Logging :

7L : | — : :
%] i
o :
g6 :
5 :
&5l H
o
S :
2af .
- H
E v
g3t :
5 :
]

2L :

1k :

0 i i i i i i i i

0 1 2 3 4 5 6 7 8 9

Single Access Data Granularity/blocks

Fig.6 Logs volume of one access on multi-blocks of 8-block file

the expectation of log entries with respect to the granularity
of data access, as is shown by red curve in Fig. 6. Thus, the
space cost of our multi-grained log is just 54% of that of
the fine-grained log, as is shown in Fig. 6. Moreover, the
improvement on efficiency by multi-grained logging is even
remarkable when a user access more than half of blocks in
a file, because of continuous blocks.

Extending the condition of B-blocks file, the log volume
generated by one access is shown below: maximum log
volume is B in fine-grained logs while its max value is B/2
in our multi-grained logs. In the assumption of uniformly
distributed data access granularity, when B is a big number,
our log generates approximately B /4 entries compared with
B /2 entries of fine-grained log.

5.3 Time efficiency performance

We assume that CSP has great power such that MHT
building and calculation cost in our scheme is only a small
burden for CSP and can be neglected. Then performance
of the auditing work is composed of three stages: 1)
log integrity checking; 2) access list generation; 3) data
confidentiality auditing.

We firstly give a theoretical analysis towards the
complexity of each auditing step in Table 1, showing that
our scheme achieves a preferable overall efficiency than the
classic auditing scheme by entries when auditing certain
blocks of a file.

Suppose the file logs have L entries in total and file size
is B blocks. Among all log entries, a ratio of a are accessed

Table 1 Log auditing time complexity

by different hashIDs or versions. Auditing target data are
supposed to be ¢ continuous blocks. Commonly, ratio of
logs related to target data can be approximately expressed as
t/B. U is the number of all authorized users. Then we give
out the time complexity of each auditing stage. Here “Hash”
is hash calculation, “Sig” is signature calculation, “Ins” is
link list insertion, “Del” is link list deletion, and “Comp” is
comparison. As “Ins” and “Del” are operations of writing,
these two operations consume far more time than “Comp”
operation of reading. As /B and a are both ratios less than
1, our scheme achieves better performance.

In addition to theoretical analysis, we conduct a set of
experiments to simulate log auditing. In our experiment,
auditor is a powerful computer with Intel Core-i5 5257U
CPU and 8.0 GB RAM, and results of time are measured
by repeating test for 5 times. The file has 8 blocks. Log
volume and userlist size are large and access granularity is
uniformly distributed. And we compare our scheme’s multi-
grained auditing time efficiency with the fine-grained log
auditing scheme which is used in the state-of-the-art [18].

5.3.1 Log integrity checking

Because of uniformly distributed granularity, we can get
the expectation of entries number of logs. For instance,
our multi-grained logging generates 19392 log entries for
8000 data accesses, which is 54% of the 36000 entries
generated by fine-grained logging. In our experiment, it
takes 3.58s to conduct integrity checking with Chain Hash
and Signature on these 19392 entries, which means an
acceptable efficiency.

5.3.2 AccessList generation

Following our AccessList Generation algorithm, we con-
duct a set of experiments where data access scale is from
19392 to 96960 log entries. For every data access scale,
our auditing granularity includes 1, 2, 4, 8 blocks. Because
fine-grained log auditing [18] uses all log entries to gener-
ate AccessList, the auditing granularity of 8 blocks for this
8-block file is fine-grained log auditing. The relationship
between the log volume and the corresponding time to make
AccessList is shown in Fig. 7.

The results shows that our AccessList generation costs
60% time compared with fine-grained auditing on logs. For
instance, for 40000 access of uniformly distributed data

Integrity AccessList Generation Investigation
Classic scheme LHash +LSig Llns LUComp +%De]
Our scheme LHash +LSig (0B +20)L + “CE*)Comp+ “LIns @LU Comp +U/Del

@ Springer

Mobile Netw Appl (2021) 26:842-850

849

multi-grained log auditing for 1 block
multi-grained log auditing for 2 blocks
multi-grained log auditing for 4 blocks
Fine-grained log auditing

2250 1

teet

2000 1

= = =
N 1% ~
a =3 o
o S o

—
o
S
=)

AccessList Generation Time/ms

~
a
o

ur
I=3
S

250

19392 38784 58176 77568 96960
Log Volumes

Fig.7 AccessList generation efficiency

granularity, we have 96960 log entries. Then AccessList
generation cost 1.394s for auditing 1 block, and time comes
to 2.335s for auditing all blocks.

5.3.3 Data leakage investigation

We test with 5 different userlist whose sizes lie from 4 x 103
to 2 x 10* with equal spacing. We assume that each userlist
is composed of 90% authorized users and 10% unauthorized
users. Accordingly, our authorized userlists are of length
from 3.6 x 103 to 1.8 x 10*. For each user group, we ask
some sublists of users to access data and then generate a set
of access list with different sizes.

In Fig. 8, auditing time for all 5 test cases show the
linear growth of audit time with the size of access list and
authorized userlist respectively. Experiment results verify
the high efficiency of this process, as it takes only 3.5
seconds to audit an access list of 2 x 10* items against a
1.8 x 10* authorized userlist.

3500
3000
(%]
2500 £
)
2000 €
=
1500 5
-

1000

3.6k

7.2k
Authoy; 10.8k
Orizey USer. Num 14. 4k
ber

18k 4k

Fig.8 Confidentiality audit efficiency

6 Conclusion

In consideration of that existing log auditing schemes are
inefficiency, a multi-grained log auditing scheme is pro-
posed in this paper to monitor cloud data confidentiality
status and investigate data leakage. The scheme introduces
Merkle Hash Tree structure to support multiple data granu-
larity in logs. Based on our multi-grained log, we present a
multi-grained data confidentiality auditing. Through our log
auditing algorithms based on AccessList, we achieve sig-
nificant efficiency amelioration than existing fine-grained
logs based auditing.

Acknowledgments Supported by the National Key Research and
Development Program of China (No.2016YFB0800402); the National
Natural Science Foundation of China (No.U1405254, No.U1536207).

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Ahsan MM, Wahab AWA, Idris MYI, Khan S, Bachura E, Choo
KKR (2018) Class: cloud log assuring soundness and secrecy
scheme for cloud forensics. IEEE Trans Sustain Comput

2. Chen Z, Tian H, Lu J, Nan F, Cai Y, Wang T, Chen Y (2017)
Secure logging and public audit for operation behavior in cloud
storage. In: 2017 IEEE international conference on computational
science and engineering (CSE) and embedded and ubiquitous
computing (EUC), vol 1. IEEE, pp 444-450

3. Cheng R, Xu R, Tang X, Sheng VS, Cai C (2018) An abnormal
network flow feature sequence prediction approach for ddos
attacks detection in big data environment. Comput Mater Continua
55(1):095-119

4. Li C, Hu J, Zhou K, Wang Y, Deng H (2018) Using blockchain
for data auditing in cloud storage. In: International conference on
cloud computing and security. Springer, pp 335-345

5. Liu Y, Peng H, Wang J (2018) Verifiable diversity ranking
search over encrypted outsourced data. Comput Mater Continua
55(1):037-057

6. Ma D, Tsudik G (2009) A new approach to secure logging. ACM
Trans Storage (TOS) 5(1):2

7. Merkle RC (1987) A digital signature based on a conventional
encryption function. In: Proceedings of the conference on
advances in cryptology (CRYPTO’87). Springer, pp 369-378

8. Popa RA, Lorch JR, Molnar D, Wang HJ, Zhuang L (2011)
Enabling security in cloud storage slas with cloudproof. In:
USENIX annual technical conference, vol 242

9. Stathopoulos V, Kotzanikolaou P, Magkos E (2006) A framework
for secure and verifiable logging in public communication
networks. In: International workshop on critical information
infrastructures security. Springer, pp 273-284

10. Sundareswaran S, Squicciarini A, Lin D (2012) Ensuring
distributed accountability for data sharing in the cloud. IEEE Trans
Dependable Secure Comput 9(4):556-568

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

850 Mobile Netw Appl (2021) 26:842-850

11. Sundareswaran S, Squicciarini A, Lin D, Huang S (2011) 17. Wang Q, Wang C, Ren K, Lou W, Li J (2011) Enabling
Promoting distributed accountability in the cloud. In: 2011 IEEE public auditability and data dynamics for storage security in
international conference on cloud computing (CLOUD). IEEE, cloud computing. IEEE Trans Parallel Distrib Syst 22(5):847—
pp 113-120 859

12. Tian H, Chen Z, Chang CC, Huang Y, Wang T, Huang ZA, Cai Y, 18. Yang Z, Wang W, Huang Y (2017) Ensuring reliable logging
Chen Y (2018) Public audit for operation behavior logs with error for data accountability in untrusted cloud storage. In: 2017 IEEE
locating in cloud storage. Soft Comput :1-14 international conference on communications (ICC). IEEE

13. Tian H, Chen Z, Chang CC, Kuribayashi M, Huang Y, Cai Y, 19. Yavuz AA, Ning P, Reiter MK (2012) Efficient, compromise
Chen Y, Wang T (2016) Enabling public auditability for operation resilient and append-only cryptographic schemes for secure audit
behaviors in cloud storage. Soft Comput, pp 1-13 logging. In: International conference on financial cryptography

14. Wang C, Chow S, Wang Q, Ren K, Lou W (2013) Privacy- and data security. Springer, pp 148-163
preserving public auditing for secure cloud storage. IEEE Trans 20. Zawoad S, Hasan R (2016) Trustworthy digital forensics in the
Comput 62(2):362-375 cloud. Computer 49(3):78-81

15. Wang C, Wang Q, Ren K, Lou W (2010) Privacy-preserving public 21. Zawoad S, Hasan R, Skjellum A (2015) Ocf: an open cloud
auditing for data storage security in cloud computing. In: 2010 forensics model for reliable digital forensics. In: 2015 IEEE 8th
proceedings IEEE on Infocom. IEEE, pp 1-9 international conference on cloud computing (CLOUD). IEEE,

16. Wang Q, Wang C, Li J, Ren K, Lou W (2009) Enabling public pp 437-444

verifiability and data dynamics for storage security in cloud
computing. In: Computer security—-ESORICS 2009. Springer,
Berlin, pp 355-370

@ Springer

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A Multi-grained Log Auditing Scheme for Cloud Data Confidentiality
	Abstract
	Introduction
	Related work
	Reliable logging
	Log forensics

	System architecture & problem statement
	System architecture
	Problem statement

	The proposed scheme
	Logging
	Log auditing

	File oriented multi-grained log
	Log format
	Multi-grained logging for data operations

	Multi-grained efficient log auditing
	Log auditing request
	Log integrity checking
	Data confidentiality auditing
	AccessList
	AccessList generation
	Leakage investigation

	Results and discussion
	Security analysis
	Space efficiency performance
	Time efficiency performance
	Log integrity checking
	AccessList generation
	Data leakage investigation

	Conclusion
	Acknowledgments
	Open Access
	References
	Publisher's Note

