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Abstract

With the rise of wearable devices, which integrate myriad of health-care and fitness procedures into daily life, a reliable
method for measuring various bio-signals in a daily setup is more desired than ever. Many of these physiological
parameters, such as Heart rate (HR) and Respiratory Rate (RR), are extracted indirectly and using other signals such as
Photoplethysmograph (PPG). Part of the reason is that in some cases, such as RR measurements, the devices which directly
measure them are cumbersome to wear and thus, rather impractical. On the other hand, signals, such as PPG from which the
RR can be extracted, are not very clean. This poses a challenge on reliable extraction of these metrics. The most important
problem is that they are corrupted by motion artifacts. In this paper, we review the state of the art algorithms which are used
to detect and filter motion artifacts in PPG signals and compare them in terms of their performance. The insight provided
by this paper can help the scientists and engineers to obtain a better understanding of the field and be able to use the most

suitable technique for their work, or come up with innovative solutions based on existing ones.
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1 Introduction

The face of health-care systems across the globe is
changing thanks to Wearable Health-care Systems (WHS)
and Internet of Things (IoT), and their benefits such as cost
effectiveness and the extended information they provide
[1-6]. Their applications ranges from daily well-being
purposes to emotion recognition [7, 8], Early Warning Score
(EWS) [4, 9, 10], and detection of epileptic seizures [11].
Moreover, typical medical devices in the health-care domain
that are present in a hospital are expensive and need
trained practitioners to operate them. In contrast, wearable
devices can be operated by general public, cost little, and
can be deployed to perform their job inside and outside
hospitals [4, 6]. This can reduce hospitalization and play an
important role for the aging population. [4, 6, 10, 12].
However, one of the main challenges that WHSs face is
that of accuracy and noise [4, 10, 13]. This is an important
factor since many of these devices have limited number of
sensors and many of the extracted information are indirectly
obtained through those sensors. Thus, their inaccuracy can
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propagate through the system and lead to false diagnoses.
One of these fundamental and widely-used sensors is the
Photoplethysmograph (PPG) because it is easy to use, cheap
and can help in extracting many health-care parameters of
interest. PPG measures the blood pulse wave from which the
heart rate, its variations and even the respiratory rate can be
extracted. Through physiological mechanisms respiration
modulates the blood volume pulse in three different ways:
Amplitude Modulation (AM), Baseline Wanderer (BW)
and Frequency Modulation (FM) [14]. From these features
respiratory rate can be extracted.

The largest problem with the proper extraction of
these health parameters is that the PPG signals are often
measured during various kinds of movement and therefore
are corrupted with motion noise. This noise can appear in
the form of unruly signals of large amplitudes in the PPG
signals. It is also reflected in the frequency domain and
overlaps with the frequency range of breath or heart rate
[15]. Luckily, another fundamental sensor which is often
integrated in wearable devices is an accelerometer which
helps in detection and removal of this noise. With the
accelerometer (or similar reference signals) it is possible to
measure movement and link it to the part of the respiratory
signal which is corrupted with motion artifacts [16, 17].
With a reference signal (such as the acceleration) it is easier
to remove the motion noise. This is particularly important
when the noise lays in the same frequency band as the signal
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of interest [16]. Therefore, traditional filtering methods
may not work well since they cannot distinguish between
the sought after signal and the movement noise.

Nevertheless, there are some possibilities to alleviate this
issue (contamination of the signal due to motion artifacts)
even if no acceleration signal is available. Mainly, thanks to
the fact that if there is no noise, some statistical values are
almost the same over time. Thus, it is possible to calculate
values such as skewness and kurtosis [18], set them as
thresholds and compare them to the upcoming periods and
consequently mark parts of the PPG signal as corrupt. The
disadvantage of these methods is that it only marks the
faulty parts and cuts them out entirely. To overcome this
problem it is possible to generate a syntethic reference
signal out of the corrupted PPG signal [19] with the use of
Empirical Mode Decomposition (EMD).

In this paper, we review the state of the art regarding
all aforementioned methods as well as their advantages and
disadvantages. This should provide designers with a good
insight into design challenges and possible solutions in their
specific applications. The rest of the paper is structured as
follows: The methods for detection or reduction of motion
artifacts which do not use acceleration data are presented
in Section 2. Methods using synthetic reference signals
are reviewed in Section 3 and those which measure the
acceleration signal using a dedicated sensor are presented
in Section 4. Afterwards the result of all different methods
are summarized and compared in the Section 5. Finally,
Section 6 concludes the paper.

2 No acceleration data

If there is no accelerometer or other reference signals
available, the motion artifacts can mainly be marked and cut
out - but not filtered out. In this section, we review three
different methods for this purpose.

2.1 A statistical approach

The simplest approach does not use any extra sensors for
acceleration or try to reproduce it. As proposed in [18],
they use only statistical parameters of the PPG signal to
detect and cut out signal parts contaminated with Movement
Artifacts (MAs). As seen in Fig. 1, the first step of the
algorithm is to filter the corrupted signal using a band-pass
filter with the passing band of 0.5 to 6Hz, which is the main
frequency band of interest for heart rate.

Afterwards it is segmented based on the signal period
and from the segmented signal the standard deviation,
skewness, and kurtosis is calculated using Egs. 1, 2, and 3,
respectively, where x is the mean value. If there is no
movement during the recording, the statistical values such

MA corrupted PPG
signal
v
Band-pass filter
B
Signal segmentation
.

Statistic detection

High-quality
signal

MA detection and

. Threshold update
reduction

A

Smoothing filter

Fig. 1 Flowchart of MA removal algorithm with no acceleration data
(18]

as kurtosis, skewness, and standard deviation for each cycle
are almost equal. These values are then calculated and set as
thresholds for the comparison algorithm.
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If there are movement, the amplitude of the PPG signal
changes greatly and consequently the statistical parameters
rise above the formerly set thresholds and the signal is
marked as corrupt. The corrupted signal is then cut out of
the original signal and only the clean signal is left.

The method was tested with 10 healthy subjects who had
to perform four different tasks: (i) no movement, (ii) finger
movement, (iii) wrist movement, and (iv) elbow movement.
They recorded the PPG signal with a TI's AFE4400-
SPO2EVM sensor, which is a chest strap. According to a set
threshold, a part of the signal is marked as corrupted with
movement and cut out as seen in Fig. 2. They compare their
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Fig. 2 a Original PPG signal, b PPG after pre-processing, ¢ detected
movement, d cut-out algorithm applied [18]

results with an Independent Component Analysis (ICA)-
Least Mean Square (LMS) algorithm. The corrupted PPG
signal had a mean Standard Deviation (STD) error of 7.16
4+ 0.36 Beat Per Minute (BPM) for elbow movement, 6.12
4 0.65 BPM for wrist movement and 11.02 £+ 0.56 BPM
for finger movement. The ICA-LMS method had an error
of 6.394+ 1.46 BPM for elbow movement, 6.41 4+ 1.38 for
wrist movements and 10.6 £ 1.67 for finger movement.
Therefore, the statistical method had a mean error of 6.58 +
1.32 BPM for elbow movement, 6.22 + 0.8 for wrist
movement and 10.77 £ 1.09 for finger movement. Overall,
for all three motions, the proposed algorithm had a mean
error of 7.85 BPM, compared to the original 8.1 BPM of the
corrupted signal.

2.2 Variable frequency complex demodulation

Here we describe another method which does not use
a reference signal but an algorithm based on Variable
Frequency Complex Demodulation (VFCDM) [20]. This
detection method looks at dominant peak amplitudes and
dominant frequency components. Each 30 seconds of the
PPG signal was first band-pass filtered to 0.5Hz - 10Hz
using a 6th order zero-phase Butterworth filter, detrended,
and then normalized by the maximum. On this signal a
peak detection method is used to mark all the peaks of
the PPG signal. If there is a gap between the finger and
the camera (their PPG sensor) this induces motion artifacts.
Such motion artifacts are marked in the 30 second windows
of the PPG signal with the pre-processing filtering and
peak detection. Afterwards, to detect artifacts the VFCDM
method is used to differentiate spectral characteristics of
the noise from the clean PPG signal. The first step involves
obtaining the initial time-frequency spectrum using fixed
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frequency complex demodulation. For the next step, the
complex demodulation is calculated by using the center
frequencies of the previously obtained time-frequency
spectrum. In a clean signal, the dominant frequency for the
heart rate is nearly continuously present and between 0.5 -
3.5 Hz but in a corrupted signal the dominant frequency can
shift due to the noise and thus, lead to a wrong Heart rate
(HR) detection. Out of these differences a threshold system
was developed to mark signals as moderately corrupted and
corrupted. After the signal is marked as corrupted it can be
deleted as in the method before.

For this work 200 subjects took part of the experiments
to test the algorithm and 521 recordings were made, each
one minute long. The used signal was recorded using an
iPhone camera and the PPG signal was extracted based
on the average of 50x50 pixels of the green band. Out of
these signals three features were extracted: root mean square
of successive differences, Shannon entropy and sample
entropy. These features are then used in a linear Support
Vector Machine (SVM) classifier to detect irregular heart
rhythms. The SVM was trained with 82 clean signals and
tested with 898 segments (30 seconds each). Without the
noise detection algorithm out of 449 recordings 156 were
misclassified and with the noise detection only 29 were false
positives.

2.3 Discrete wavelet transform

In the Discrete Wavelet Transform (DWT) method, it is tried
to identify the heart rate out of the PPG signal [21] without
any reference signal, even if it is corrupted with motion
artifacts. This is a method that uses a few measurements of
noise to generate an estimate of unknown states. First, as
seen in Fig. 3, the data is pre-processed. In this step, the DC
components are separated from the AC component and with
a wavelet transformation the PPG signal is first decomposed
and afterwards the components in the bandwidth of 0.39 -
12.5 Hz are reconstructed.

In the next step, the following features are extracted:
standard deviation of peak-to-peak amplitudes as in Eq. 1,
standard deviation of peak-to-peak intervals, the kurtosis as
calculated in Eq. 3, and Mean Absolute Deviation (MAD)
of peak-to-peak amplitudes as in

N
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where A, is the peak-to-peak amplitude and N is the number
of peak-to-peak intervals in the signal.

An SVM is then used to classify the data sets after
training and a 10-fold cross-validation. To remove motion
artifacts Kalman filter is used. The filter observes a series
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Fig.3 The Flowchart of the
DWT algorithm with one path
for training and the other to test

it [21]

Training Data Preprocessing Feature L Feature 10 —Folds Cross
Set Extraction Normalization Validation

Testing Data Preprocessing Feature Feature .
Set Extraction ™ Normalization [ | SYM Classifier

of corrupted signals to generate an estimate of the unknown
state. First the controlled process x, is calculated by

xp = Axg—1 + Bug_1 + wi_1, (5
and a measurement, z, is described by
2k = Hxp + vy, (6)

where wj and vr are random variables that represent
the process and measurement noise. The matrix A is the
state transition matrix and the matrix B is the optional
input model for the control uy. Matrix H relates to the
measurement zj, as shown in Eq. 6.

To test their algorithm, eleven subjects took part in
the measurements and they had to perform two different
motions; (i) keep their hand still for one minute, and (ii)
wave their hand. This was done to identify and remove
motion artifacts from two PPG sensors that were attached
to the left and right index finger. During their analysis, they
found out, that for their tests a window length of seven
seconds had the best results. With their method, they could
reduce the absolute bias from 13.97 BPM to 6.87 BPM.

3 Synthetic reference data
3.1 EMD technique

Another possible solution without an accelerometer signal is
to generate a reference signal from the corrupted PPG signal
using Complex Empirical Mode Decomposition (CEMD)
technique [19]. To generate the reference noise signal the
following steps have to be done. First, all the local minima
and maxima of the originals signal (x(¢t) = d(t) = S(n) +
N(n)) need to be found. The next step is to envelope all
the maxima (umax) and all the minima (umin). After all
the envelope signals are generated, the mean value, m(t), is
calculated:

umax + umin

mt) = —————. (N

The value of the mean is then subtracted from the original
signal: h(t) = x(t) — m(t). The new signal h(t) is
decomposed into Intrinsic Mode Function (IMF) by sifting
process until /(z) meets the IMF conditions. The next step
is to identify the quasi-residue function r(¥) = x(t) — c.

}

Label Generation
for Classification

This loop has to be repeated until r(¢#) has only one
extrema. Afterwards, the spectrum of each IMF based
on the predefined frequency range has to be computed.
The last step to generate the reference noise signal is
identifying the desired signal portion range and eliminating
IMF corresponding to the desired frequency components of
the PPG.

For the “adaptive step-size LMS algorithm” block, seen
in Fig. 4, an estimate of the gradient to search the minimum
error on the surface is used. The error of each step is
reduced by updating the step size parameter. To implement
the adaptive filter the following steps as seen in Eq. 8 to
Eq. 12 are used.

y(n) = w’ (m)u(n) (8)

e(n) = d(n) — y(n) )

wn + 1) = wn) + pe(n)un) (10)

wn+1) = pn) + pen)y myun) (11)
d

y(n) = ) (w(n)) (12)

where u(n) is the generated reference signal, y(n) the filter
output, w(n) the filter coefficients, e(n) the error, d(n) the
PPG signal (which would be the desired output if there is no
noise), u the step size, y ! the gradient vector and p controls
the step size parameter.

Figure 5 is an example of the results of the algorithm
designed in [19]. The test subjects had to perform three
different movements with their finger: (i) horizontal motion,
(ii) vertical motion, and (iii) bending. For the measurement

d(n) ()

Noise Reference Signal u(n) Adaptive y(n)
Generation using CEMD filter
Adaptive
step-size LMS
algorithm

Fig.4 Adaptive filter using CEMD technique to generate the reference
signal out of the PPG signal [19]
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Fig.5 a Original signal, b

N

generated movement signal, ¢
original signal minus the
movement noise [19]
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of the PPG signal a clip-on type PPG sensor with an
Ni-DAQ Pad-6015 data acquisition system was used. To
compare the original corrupted signal with the signal
without noise, the peak to peak values of the PPG signal
are compared. For corrupted PPG signal with horizontal
motion the mean error is 0.426 + 0.087 BPM, with vertical
movement 0.514 £ 0.107, and for bending motion 0.459 +
0.067. In comparison, the proposed algorithm had an error
of 0.379 & 0.036 BPM for horizontal movement, 0.435 +
0.059 for vertical movement, and 0.363 £ 0.131 for bending
motion. Overall, the mean error of the proposed algorithm
is 0.392 BPM compared to 0.466 BPM of the (originally)
corrupted signals.

3.2 Dual PPG sensor

A similar approach that uses synthesized reference signal
was shown in [22]. A second PPG sensor is used to generate
the movement signal. The second PPG sensor is positioned
a few millimeters! away from the skin, as seen in Fig. 6a,
so it only measures when the subject is in motion. In Fig. 6b
one can see typical outputs of both sensors, first few seconds
without motion and afterwards with motion.

This algorithm starts by band-pass filtering both of the
recorded signals between 0.8 to 5 Hz with a Hanning
window of 128 points and a sampling rate of 10 samples per
second. Afterwards, an adaptive filter, as seen in Fig. 7, is
applied. The u(n) input on Fig. 7 measures the movement
and the d(n) is the PPG signal from the sensor which is
fully in touch with skin. The adaptive filter tries to bring
the difference between u(n) and d(n) down to zero. To
do that a Normalized Least Mean Square (NLMS) and
Recursive Least Square (RLS) algorithm are applied and
two parameters, namely the number of taps, K, and the

'We could not find what is the exact number for this gap.
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forgetting factor, X, are optimized. The output is sliced into
windows and fast Fourier transformed.

In [22], only 10 data sets were used to test the algorithm.
For their experiments the subjects had to walk, jump, and
run. Two PPG sensors, as seen in Fig. 6, that were used
were Hamamatsu S9706. They put them on the hip to
measure the PPG signal and the movement as well. Since
they had only 10 data sets a cross-validation was performed
to alleviate this problem. They first selected the n-th data set
for validation and use the rest as a training set. Afterwards,
the parameters were chosen for the training set and on
the chosen validation set the error, E,, was calculated.
These two steps were repeated for all data sets and at the
end the average error was calculated. To find the optimal
parameter values, the authors swept the K values from 5 to
50, and B from 0.01 to 0.9. With the optimal parameters,
the algorithm can reduce root mean square error by 62% for
the walking, 83% for the running, and 79% for the jumping.
That is, a Root Mean Square Error (RMSE) of 6.5 BPM
after reduction and 28.26 BPM RMSE before reduction.

4 Measured acceleration data
4.1 LMS filtering

One of the methods based on acceleration sensors to remove
motion artifacts is presented by [16]. The flow diagram
of the proposed algorithm is shown in Fig. 8. First, the
raw PPG signal is band-pass filtered with a 4th order
Butterworth Infinite Impulse Response (IIR) filter in the
range of 0.3—5 Hz. For the motion data filtering block
a Singular Value Decomposition (SVD) is used which
generates a motion artifact reference for the adaptive filter.
In the third block of the algorithm, the in-band removal
takes place. There, they use a modified LMS adaptive filter,
where the coefficients, h(n), are updated based on the least
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Fig.6 a Application of the two
PPG sensors on the skin, where
the second sensor is a few
millimeter away. b The typical
output of a two PPG setup [22]
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MA sensor

LED

PD

Skin
Skin tissue
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mean error, e(n). An identical filter is placed in the reference
signal path to adjust the weights. This adjustment is called
X-LMS. In Egs. 13-16 the X-LMS calculations are shown,

Ye(n) = wT(n) * u(n) : Output generation (13)
e(n) = d(n) — yc(n) : Error calculation (14)

-1
uc+(n) = Zizoc;k*u(n—i—M—i—l) (15)
whn+1) = wn) + uxuc+(n)e(n) : Weight updates (16)

where u(n), d(n) and e(n) are input, desired output and
error, respectively. w(n) are the weights of the estimated
filter and w the step size. ¢ represents the coefficients
of estimated filter for compensation, and uc=(n) is the
reference signal as one can see in Fig. 9. In the last part,
the peak tracking takes place with some adaptive threshold
levels. This is done with the Slope Sum Method (SSM),
where they use a window size of 2-3 seconds to detect onset
and offset of each peak.

For the experiments in [16], 12 different subjects took
part and they had to do different exercises such as running

Fig.7 Adaptive filtering using a
second PPG sensor, located a
few millimeters afar from the u(n)

1 PD 3300 2700
— wuih) ensor MA
5 MA sensor outplt u(n)
LED 3200 — Nm 2600

—

5 3100 2500 =
z Normal|PPG sensor output d(r) o
2 3000 s AL A {2400 B
= A M = VU =
d(n) £ 2900 BVPs BVPs+tM 2300 =
5 =
= Standing-still |/——=> | Walking——> 2

1 2 3 4 5 6
Time [s]

Normal PPG sensor

(b)

up to 12-15km/h. A dual channel PPG alongside a three-
axis accelerometer sensor was used to record the data from
the wrist with a sampling rate of 125Hz. With the X-LMS
method they had an error of 1.37 BPM.

4.2 RLS filtering

A similar approach is proposed by [17]. Instead of X-LMS
they use a DC Remover and an RLS adaptive filter. The
first step of the algorithm, as shown in Fig. 10, is the DC
removal. This IIR filter removes the offset of the PPG signal
and thus the RLS adaptive filter has a faster convergence
speed compared to an LMS algorithm. The output of the
DC remover is the AC component of the PPG signal. The
following, Egs. 17-19, describe the DC remover.

skin of the subject [22]

w(t) = x(t) +axw( —1) (17)
y(t) = wt) —w(t—1) (18)
Y(zy 1-z7! 19
X2 l—axz! (19)
Z—l Z_1—> Z—l
s NG ©

O
K - tap transversal filter

/ y(n)

d(n)

Adaptive weight control algorithm

e(n) 1,
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Fig.8 Flow diagram of the
algorithm that uses SVD and
LMS adaptive filter to remove
motion artifacts [16]

Fig.9 The flowchart of the
LMS adaptive filter [16]

Fig. 10 Flow chart of a motion
artifact removal algorithm that
uses a 3-axis accelerometer to
remove the movement

artifacts [17]
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Fig. 11 Flow chart of the _ + s'(t) = s(t) - 7i(t)
algorithm which uses an X-LMS Raw PPG s(n) = Sl(t) +n(t) m
adaptive filter [17] signal

Raw X(t) Filter ﬁ(t)

Accelerometer s coefficients
signal "
Update
algorithm

In these equations, w(t) is the value of the operation
process which records the DC drift, and a controls the filter
cut-off frequency. When a becomes closer to 1, the slope of
the filter response becomes sharper and only the frequencies
that disturb the signal are damped, however, when it is 1,
the filter effect will be lost. After the signal is removed of
its DC values the RLS adaptive filter comes into play.

In Fig. 11, one can see that s(¢) is the primary input,
x; is the reference input of the accelerometer sensor, s1(f)
is the noise-free PPG signal and n(¢) is the motion noise.
Equation 20 shows the formula for calculating the estimated
motion noise, where a)IT( represents the coefficients of the
filter, ® is the matrix of these coefficients, ¢ is the matrix of
the accelerometer data, 7(¢) is the estimated motion noise,
and ¢ is the sampling time.

t
At = wgxxg =07 x¢, (20)
k=0

Fig. 12 a Cleaned PPG signal,

To test their algorithm, in [17], the authors used
two different databases. The first one is Multi-parameter
Intelligent Monitoring for Intensive Care (MIMIC) and a
second set of signals that were measured from 10 subjects,
where subjects did small movements such as scratching
themselves or shaking slightly. In Fig. 12, we can see the
spectrum of a PPG signal after the algorithm removed the
motion noise. From the database of the 10 subjects the
results of the Bland Altman plot provides a range limit of
-4.29 to 4.26 for the difference of the heart rate and the
ground truth, with a STD of 3.91 BPM.

4.3 Hankel matrix filtering

The authors of [23] try to overpass previous techniques with
Motion Artifact Removal (MAR) and Adaptive Tracking
(AT). In [23] they use datasets from subjects who were
running. The flow chart of the proposed algorithm can be
seen in Fig. 13.

PPG(RLS)

b raw PPG signal [18]

....................................................................

(b)

............ oo sreccccccpeccccncsocomecsecnazana

PPG and the motion artifact signals.
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In the first step, the pre-processing, the signals are
windowed, filtered and a Hankel data matrix is constructed.
The model for the acceleration data is shown in Eq. 21,
where X, Y, Z are the three axes of the accelerometer signal
and N, and L represent the observations of the three axes
accelerometer. H can be decomposed by the SVD and its
eigenvalues are calculated by

H =[XYZ] € RV:L (21)

The same is done with the PPG signal (g) whose model is
shown in Eq. 22, in which e is the heart rate and m is the
movement artifact.

g=m+e,gecRY (22)

The corresponding Hankel data matrix of Eq. 22 can be
decomposed using SVD. The result of the decomposed
process are two orthonormal subsets. When compared with
the artifact component, it shows that the artifact and the
heart rate signal belong to two orthonormal sub-spaces.

The next step is to find the spectral peaks of the vectors.
This is easily done using the calculation in Eq. 22 since the
cardiac frequency is the dominant frequency in the matrix.
To minimize the error, when motion comes into play, a
rough estimation of the joint probability density function
of the heart rate versus the motion artifact frequency is
performed. This probability function is used to separate the
fundamental harmonics of the heart rate from the motion
artifact.

3-axis

PPG Sensor
accelerometer

I Wind:)wing l

r3

| Filtering ‘

Hankel ’

l l

FFT
Peak
Finder

Peak
Finder

Peak
Finder

‘ Motion Artifact removal
']

‘ Tracker

1 BPM

Fig. 13 Flow chart of a system that uses the Hankel matrix to remove
motion artefacts [23]
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Fig. 14 The proposed algorithm with different starting points (shown
in red lines) and ground truth (the black line) [23]

To validate the algorithm, the authors of [23] tested it
on 25 test subjects where the subjects wore a wrist type
PPG sensors and performed different kind of exercises.” In
Figure 14, one can see that even for different starting points
(red lines) all lines come to the ground truth (black line,
an Electrocardiography (ECG) derived signal). The green
line is the estimation of the proposed algorithm. They tested
their algorithm on subjects that were running and overall
had an average absolute error of 2.26 BPM.

5 Results and discussion

In this section, we review and discuss the results of the
previously presented algorithms. The results are presented
following the same section division as before. In Table 1
we have inserted an overview of the reviewed algorithms
and their results. This table provides information on which
algorithm is only for detection and which also removes the
motion artifact through filtering. The column Acc. shows
which algorithm uses an accelerometer signal and which
one does not. A pointer on the used method, number
of subjects, and a summary of the results are the other
information seen in the table. This information can help
design engineers to choose the most suitable method for
their application, given its constraints and requirements.
For example, if no accelerometer sensor is available
and the mere detection of the motion artifacts suffices,
a statistical threshold algorithm [18] can be used. This
algorithm only uses statistical calculations like kurtosis or
standard deviation. If these values exceed their respective

ZWe could not find exactly what kind of exercises were used.
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thresholds, this means there were motion artifacts in the
signal and it can be marked as such. The marked signal
can be then cut out or if they are used for any health
measurement, the result could be marked as potentially
inaccurate. The Peak to Peak Error (PPE) for this method
is 7.85 BPM compared to the corrupted PPG signal with
8.1 BPM PPE. Another way to detect motion artifacts
without any accelerometer sensor is to look at the frequency
components with VFCDM as seen in Section 2.2. This only
needs some values without movement to set some ground
truth and compare these values to every value to come. If
the signal is corrupted it looks different in the frequency
domain, just as in the time domain. With this approach
out of 449 recordings only 29 were false positive, in other
words, 6.45% miclassification in total.

However, we bear in mind that it is still possible to go
beyond mere detection without an accelerometer too. For
example, despite signal corruption, using Kalman filter and
DWT, it is possible to decompose the signal and reconstruct
the good parts [21]. Thus, the motion artifacts can be
removed and one can extract the heart rate or Respiratory
Rate (RR). The PPE of this method is 6.87 BPM comapred
to 13.97 BPM without any filtering. It is also possible to
generate a reference signal out of a corrupted PPG signal
with EMD [19]. After the reference signal is generated, an
adaptive filter can be used to remove motion artifacts. With
this method the PPE can be reduced to 0.392BPM from
0.466 BPM. In case a second PPG sensor is available, it can
be used to generate a movement signal [22]. The second
PPG is applied a few millimeters away from the skin, such
that if the subject moves, the distance from the sensor to skin
is reduced or increased and therefore the signal changes.
Using the difference of the two PPG signals a movement
signal and the weights of an adaptive filter can be extracted.
The RMSE can be reduced to 6.5 BPM compared to 28.26
BPM before filtering.

With an accelerometer data it is easier to differentiate
between contaminated and motion-artifact-free signal and
remove it. In one approach, out of the accelerometer data
a reference signal is generated with an SVD to adjust the
weights of an adaptive filter [16]. This approach has the
lowest error of all proposed algorithms with only 1.37 BPM.
Compared to the LMS algorithm of [16] a faster algorithm
is the RLS [17]. It starts by removing the DC component
of the signal and applies an RLS adaptive filter to the
signal. Although it gains in speed, it loses in precision.
This approach predicts the heart rate with a confidence of
95% in the interval of [-4.29-4.26] BPM of the ground-
truth value and has a standard deviation of 3.81 BPM. The
most complex algorithm uses MAR and AT [23]. Out of
the filtered signals (PPG and accelerometer) the Hankel
matrix has to be calculated. Out of this matrix, the noise
part has to be calculated and subtracted from the original

motion and bending of the

finger.
Scratches and slight shaking

Walking, running and jump-

Horizontal motion, vertical
ing

ment and elbow movement

Movement
Waving the hand
Different exercises

Finger movement, wrist move-
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iPhone camera
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from DigiO2

Ni-DAQ Pad-6015
Hamamatsu S9706

NA
NA
NA

PPE 8.1 BPM
PPE 13.97 BPM
PPE 0.466 BPM
RMSE 28.26 BPM

Before

NA
NA
A

Mean absolute error

Peak to Peak Error
of 2.26 BPM

(PPE) 7.85 BPM
6.45% false positive
PPE 6.87 BPM

PPE 0.392 BPM
RMSE 6.5 BPM
PPE 1.37 BPM

Outcome
STD 3.81
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12

Ac
No
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R
R
R
R
R
R

Statistical

Evaluation
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DW

CEMD LMS

NLMS and RLS
SVD and X-LMS

DC remover and RLS
MAR and AT

Method

Missing information are shown by “NA”. In the App. (Approach) column “D” stands for detection and “R” for removal of the noise from the signal. In the Acc. (Acceleration data), “Syn.” stands

Table 1 Overview of reviewed algorithms, their method and results
for synthetic reference generation

Raghuram et al. [19]
Tanweer et al. [16]

Bashar et al. [20]
Wu et al. [17]

Hanyu and Xiao-
Lin and Ma [21]

hui [18]
Hara et al. [22]

Baca et al. [23]
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signal. It does not have the lowest error value (their error
rate is 2.26 BPM), however, they claim that they have the
most robust approach of all (which we could not evaluate
independently since they do not provide metrics such as
STD).

6 Conclusion

In this paper, we reviewed eight different algorithms
that either detect motion artifacts or filter them based
on a synthesized or measured reference signal. We
presented their core idea and features, and summarized
their characteristics and results to provide a large picture
of the literature and existing methods. We hope that this
study can be used by engineers to make a better choice in
design regarding what algorithm to use in which situations.
Although we did our best to provide a comparison between
different methods, we keep in mind that to have a fair
and proper comparison, one needs to implement all the
algorithms and test them on the same dataset under the
same conditions and restrictions. We consider this outside
the scope of this paper and as an interesting potential future
work.
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