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Abstract
In today’s cyber world, assessing security threats before implementing smart grids is essential to identify and mitigate the
risks. Loss Event Frequency (LEF) is a concept provided by the well-known Factor Analysis of Information Risk (FAIR)
framework to assess and categorize the cyber threats into five classes, based on their severity. As the number of threats is
increasing, it is possible that many threats might fall under the same LEF category, but FAIR cannot provide any further
mechanism to rank them. In this paper, we propose a method to incorporate the FAIR’s LEF into Bayesian Network (BN) to
derive the numerical assessments to rank the threat severity. The BN probabilistic relations are inferred from the FAIR look-
up tables to reflect and conserve the FAIR appraisal. Our approach extends FAIR functionality by providing a more detailed
ranking, allowing fuzzy inputs, enabling the illustration of input-output relations, and identifying the most influential element
of a threat to improve the effectiveness of countermeasure investment. Such improvements are demonstrated by applying
the method to assess cyber threats in a smart grid robustness research project (IRENE).

Keywords Cyber threat · Loss event frequency · Threat assessment · Risk management

1 Introduction

Smart grids are recognized as one of the most important ele-
ments for the power industry to sustain energy utilization
[1]. With its advance abilities in sensing, communication,
and actuation, the next decade will see a considerable devel-
opment in power system operations. These developments
will result, among others, in improved real-time information
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gathering and processing, sophisticated demand-response
solutions, and advanced system management solutions [2].

Due to its digitalization, smart grids are facing great
challenges from cyber-attacks. Recent examples have
shown how such attacks can significantly affect power
systems and human life [3]. Risk from cyber threats is
therefore a critical issue to consider when implementing
smart grids.

Proper risk management comprises of risk assessment,
its translation into impact assessment and risk mitigation via
countermeasures. In addition, it is important to note that risk
acceptance is an important component of risk management,
as it acknowledges that not all risk can or should be
mitigated. The identification of cyber threats is a crucial
component of smart grid risk assessment. However, this task
is challenging because of the grid complexity. In addition
to a number of potential vulnerabilities, the introduction of
new functions and components may lead to new cyber attack
vectors [4], hence the risk assessment process must be a
sustained effort.

Recently, a number of studies have focused on smart grid
threat assessment, especially from the lens of information
security. One can usually apply quantitative, qualitative, and
hybrid approaches. The ultimate goal of the quantitative
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approach is to utilize probability theory and statistics to
assign numerical probabilistic values to threat likelihood
[5]. While these methods can provide clear guidance about
the threat, they have high difficulty in implementation and
ambiguity evaluation [6]. On the other hand, the qualitative
techniques provide a systematic expert analysis to give a
qualitative output rather than a numerical result [7]. Their
main advantage is the reliable reasoning; however, in many
cases, the output is not detailed enough to take clear
decisions [8]. Besides, several hybrid models were proposed
that combine the quantitative and qualitative methods and
eliminate their weaknesses.

Factor Analysis of Information Risk (FAIR) framework
[9] is well-known among hybrid approach. Due to its
effective yet simple guidelines for practice, it is applicable
in many risk and threat assessment situations. For instance,
FAIR is also used to analyze smart grid threats by the Bell
Labs Advisory Service [10].

FAIR operates with probabilities and provides a taxon-
omy of factors contributing to risk and how they affect each
other. The risk is defined as “the probable frequency and
probable magnitude of future loss” [9]. By acknowledging
that risk is an uncertain event, FAIR points out that one
should not focus on what is possible, but on how probable a
given event is. Thus, this approach focusses on establishing
accurate probabilities for the frequency and magnitude of
loss events. Even though risk is seen as an uncertain event,
it is not clear how to establish the loss event frequency accu-
rately if an input parameter is described as a distribution. In
addition, a critical issue relates to establishing how uncer-
tainties in the input parameters propagate and whether this
affects the final results. In other words, the final user i.e.
the risk manager, should be aware of the stability of the risk
assessment results. This is crucial for the next step i.e. the
mitigation plan, which is drawn after the identification of
countermeasures for each risk and the assessment of their
implementation costs versus their risk reduction benefits.

In contrast to a pure qualitative analysis, FAIR assesses
threat through the Loss Event Frequency (LEF) concept
with a five-point scale, which is suitable for dealing with
a small number of threats. However, in smart grids, the
number of cyber-threats is often large and will increase
following the discovery of new attacks. As a result, there
might be many threats falling into the same category. For
example, even though the IRENE project [11] has refined
a list of 102 threats (outlined in NIST 800−30 [12]) into a
list of 38 potential smart grid cyber-threats, the analysis of
these threats using FAIR can be difficult as FAIR provides
little guidance on how to handle threats within the same
class. Thus, finding a way to rank threats within a class, with
respect to the input uncertainty, would be desirable. This can
be of particular use when an analyst needs to construct an

argument for providing sufficient security when resources
are limited.

In this paper, we propose a method to incorporate the
FAIR framework into Bayesian Network (BN) to obtain
numerical threat assessments. BN is a strong tool commonly
used in reasoning structural analysis frameworks similar to
FAIR. We infer the BN probabilistic relations from FAIR
tables to reflect and conserve the FAIR appraisal. Our
method provides several following advantages:

– Supports ranking threats in the same group: By
providing a numerical answer to system managers, we
aim to support their perception of threat LEF with
respect to other threats in the group. In this case, the
managers can make better decisions regarding security
countermeasures and mitigation plans;

– Allows to obtain answers even with fuzzy inputs: for
instance, when experts do not fully agree on specific
threat parameters;

– Illustrate input-output relation: Illustrates how changes
in the input data propagate through the network and
contribute to the output;

– Points out the most influential factor that, if lowered,
can decrease the overall LEF quicker than others.

The remainder of this paper is organized as follows. In
Section 2, we describe our model to transform the FAIR
framework to the Bayesian network reasoning. Section 3
presents the experiment results and relevant discussions, and
Section 4 concludes the paper.

2 Proposed solution

2.1 The FAIR framework

The Loss Event Frequency (LEF) component of the risk can
be assessed by adopting the FAIR taxonomy by structurally
reasoning about a number of threats factors. These factors
include:

– Contact (C): the chance that the attackers, who have
access to the asset, will act against it;

– Action (A): the motivation of the attackers when
attacking, in particular the type and severity of the
attack impact to the asset;

– Threat Capability (Tcap): the probability of the
attackers to overcome the protective system; and

– Control Strength (CS): the compensating controls
implemented to prevent the potential attacks.

The reasoning structure between these factors are given in
Fig. 1. A more detailed tutorial for assessing threat by FAIR
is given in [13].
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Fig. 1 The reasoning structure
of the LEF in the FAIR model Loss Event
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FAIR can support encoding each threat factor by means
of a five-point scale (i. e. [Very Low, Low, Moderate, High,
and Very High] or [VL L M H VH]). FAIR provides a
reference for estimating the state of the input factors. A
more detailed way of deriving the input state using the FAIR
reference can be found in [13]. Based on the states of the
causes, FAIR provides the reasoning tables to look up the
state of the effect. The look-up table in Fig. 1 gives an
example of how the LEF factor can be derived from the
Threat Event Frequency (TEF) and the Vulnerability (V)
factors. If values for C, A, CS, and Tcap are provided, the
state of the TEF and V can be derived, and leading to the
state of LEF.

The FAIR approach is closely related to qualitative
definitions of risk listed in [14]. These definitions suggest
that risk can be considered as: an exposure to a proposition
(e.g., the occurrence of a loss) of which one is uncertain; the
occurrences of some specified consequences of the activity
and associated uncertainties; and the effect of uncertainty
on objectives. The latter definition is provided by ISO
and can be seen as a causal relation between uncertainties
and objectives. This highlights the importance of analyzing
uncertainties to better understand risks.

As with any other model, uncertainty propagates within
it to its output. A number of aspects/factors/causes of
uncertainty include: lack of information (or knowledge);
approximation; abundance of information (or knowledge);
conflicting nature of information/data; measurement error;
linguistic ambiguity (e.g., the meaning of word “large”);
and subjectivity of analyst judgement [15]. Analyzing how
such uncertainty propagates within a model is therefore
of interest. FAIR as a model provides a guidance for
this. The impact of input uncertainty can be assessed
if both aleatory and epistemic uncertainties are encoded
as input parameters, propagated through the model, and
studied in relation to each other at the output. This
allows an analyst to understand the relations between
input parameters and ultimately about how to quantify the
degree of belief, and ultimately how well the real context
is represented. Employing well-developed probabilistic
analysis for modelling risks and its elements is therefore an
important research direction.

2.2 Incorporating a structural analysis into Bayesian
network

Bayesian Network (BN) is a strong probabilistic tool
used widely to assess the uncertainty based on observed
evidences. The BN model consists of nodes representing
the variables for reasoning, and edges connecting the nodes
to indicate their relations. The probabilistic reasoning is
embodied into the conditional probability table (CPT) in
each node.

A BN model has the form of a structural analysis with
the cause-effect relations between the nodes. On the other
hand, querying the probability of a BN structural reasoning
can be done once the probabilistic relations (CPT) of every
node are provided. CPTs are normally obtained based on
evidence; however, they can also be estimated via other
methods when the training data is unavailable. In this
section, we summarize the fuzzy comprehensive evaluation
method from [16], which provides a way to construct the
CPTs of a BN model based on the fuzzy evaluation of its
cause-effect relations. This method allows the incorporation
of a structural analysis into a BN, which will be applied later
to transform FAIR to BN.

The method in [16] is as follows. Assume a Bayesian
reasoning structure with n causes that lead to an effect as
can be seen in Fig. 2. The causes and the effect all can
have m states 1, 2, ..., m. The impact of each state of cause
i to effect is represented through the fuzzy judging vector

[ri1ri2...rim], with
m∑

j=1
rij = 1, i = 1, 2, ..., n. Besides, the

correlation between the causes is represented through the

weight vector [a1, a2, ..., an] with
n∑

i=1
ai = 1.

The CPTs are obtained via the following formula:

P(E = j |C1 = j1, C2 = j2, ..., Cn =jn)=
n∑

i=1

airiσ (ji−j,j)

(1)

in which P(E = j |C1 = j1, C2 = j2, ..., Cn = jn) is
the conditional probability of the event in which the effect
E has state j, while its corresponding causes C1, C2, ..., Cn
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Fig. 2 The cause-effect structure
and the causes’ relation weights
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has state of j1, j2, ..., jn respectively; and σ(ji − j, j) is
calculated as:

σ(ji − j, j) =
{

ji − j, ji − j ≥ 0
j, ji − j < 0

Besides, I (Ci), the influence of Ci to the effect, can also
be calculated by formula (2), which is obtained from [16].
In the formula, P(E = m|Ci = k) is the conditional
probability when Effect E has state m (highest) and cause
Ci has state k. Element has the highest I (Ci) value is the
most influential element to the effects.

I (Ci)=

m−1∑

k=1

P(Ci=k)
m−1∑

j=1
P(Ci=j)

P (E=m|P(Ci =k)) −P(E=m|Ci =m)

P (E = m)

(2)

2.3 Incorporating FAIR’s LEF assessment
into Bayesian network

FAIR, as can be seen in Fig. 1, is a structural analysis
framework, which consist of three pairs of cause-effect
relations, including [cause: C, A; effect: TEF], [cause:
Tcap, CS; effect: V], and [cause: TEF, V; effect: LEF]. By
incorporating FAIR into BN, we can derive the numerical
output for the state inputs, hence extend a number of
functions, e.g. to rank the LEF more rapidly, or to assess
using fuzzy inputs. There are no probabilistic data in FAIR
that can be transformed directly to BN. However, when the
experts construct the FAIR framework, they have embedded
such data and their knowledge into the FAIR tables. As a
result, these tables can be used as the evidence to obtain the
probabilistic relations for the BN. Our approach is to obtain
the required parameters from the FAIR tables to create a BN
following the approach presented in Section 2.2. In detail,
we need to acquire the fuzzy judging vector and weight
vector from the FAIR tables.

The FAIR framework is proposed to simplify the com-
plexity of the analysis; hence, many data and knowledge
have been excluded from the FAIR tables. As a result, it is
impossible to provide an exact numerical model reflecting

the framework. Instead, we aim at using the fuzzy evalua-
tion to reflect the FAIR results numerically, therefore giving
more concrete picture of how threats’ LEF can be compared.

As the structures of the three cause-effect pairs of FAIR
are similar, we will present the procedure to incorporate
their general structure. Following this procedure, all the
three FAIR analysis can be incorporated to the BN.

For the general structure, assume that we have effect E

and two causes C1, C2 each can have one of the five states
[VL LMH VH]. The corresponding FAIR look-up table for
E is [eij ∈ {VL, L, M, H, VH}, i = 1...5, j = 1...5], entry
eij is the result of input C1i and C2j. Our method to acquire
the probabilistic relations consists of the steps illustrated in
Fig. 3, details as follow:

Step 1 Calculating the weight vector: Noteworthy, the
FAIR tables are formed with the assumption that the
states of the two causes create direct impacts to the state
of the effect. Therefore, if we transform the state data
to numerical data, there should be a strong correlation
between the cause and effect data in most of the cases.
On the other hand, if the correlation test of a table shows
not significant, that only means that this table was formed
with a different model rather than with FAIR. In the
simplest form, we can assume the relation is linear and
translate the node state into number by defining VL=1;
L=2; M=3; H=4; VH=5. We then have numerical data
for the causes and effect, which we can use to run a
regression to test the linear model between the causes
and effect, E = αC1 + βC2 + δ (α and β are the
coefficients and δ is the error). The coefficients α, β are
then standardized with α′ = |α|/(|α| + |β|) and β ′ =
|β|/(|α| + |β|). We choose w = [α′ β ′] as the weight
vector for the BN model. α′ > β ′ indicates that cause C1

has more significant impact to E than C2, which means
that a change in the C1 value will fluctuate the E output
more than the same change in C2 input.

Step 2 Calculating the fuzzy judging vector: this vector
judges and compares the impact of each state of the cause
on the effect. For the FAIR framework, the low value
of the input state will normally lead to the low value
of the output state and vice versa. As can be seen from
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Fig. 3 Flow chart of generating B-FAIR: incorporating FAIR to Bayesian Network

Fig. 4, the FAIR table provides all the potential outputs
that can be derived from a single state. For example, a
TEF with L value can only lead to a LEF with VL or L

value. These potential outputs can be used for acquiring
the comparison of the impact of each state of the cause.
In order to sharpen the difference between the levels

of the state, we convert further state eij to nij in which
nij = keij , k > 1. So we have n(VL) = k, n(L) =
k2, n(M) = k3, n(H) = k4, and n(VH) = k5. We also
set the weights for the state of the cause (VL, L, M,
H, VH) as (γ1, γ2, γ3, γ4, γ5) to further differentiate the
effect of the state from the other cause (see Fig. 2). The
choice of k and the state weights will not affect to the
correctness of the ranking orders that FAIR can verify.
In detail, we assume that FAIR can always rank effects
that have same input values in one factor. For example,
in the fourth line of Fig. 3, the ranking order of LEF

should be LEF(T EF = L,V = V L) < LEF(T EF =
L,V = L) < ... < LEF(T EF = L,V = V H)

because the input value of factor T EF is always L,
while the input value of V factor is in ascending order.
In such cases, the choices of k and state weights will
not affect to the order as long as n21 < n22 < ... <

n25. The larger the value of k, the deeper the numerical
difference between evaluation output of the threats will
be. For each cause, we derive its fuzzy judging vector
r = [r(VL), r(L), r(M), r(H), r(VH)] by calculating
the individual effect value of each state si as: r(si) =

5∑

j=1
γinij

5∑

i=1

5∑

j=1
γinij

.

LEF
TEF VH M H VH VH VH

H L M H H H
M VL L M M M
L VL VL L L L

VL VL VL VL VL VL
VL L M H VH

Vulnerability (V)

Fig. 4 Justifying the fuzzy judging vector

For each of the relations, after obtaining the weight
vector and the fuzzy judging vector, we can generate the
Bayesian CPT in each of the effect node following the
formula in Section 2.2. Having the three CPTs from the
three FAIR look-up tables is enough to form the overall
Bayesian network for calculating the LEF output given
the input states of the causes.

Step 3 Generating numerical output: The output of the
Bayesian will be a vector of the probability of the state
evaluations for the LEF, for example, [p1, p2, p3, p4,

p5], in which p1 is the probability that LEF has state
VL, p2 is the probability that LEF has state L, and so
on. We use the grade vector [1, 2, 4, 8, 16] to derive the
final numerical result, in detail, the assessment for LEF
is equal to p1 + 2 ∗ p2 + 4 ∗ p3 + 8 ∗ p4 + 16 ∗ p5. This
grade will later be used to compare and rank the threat,
according to their LEF.

Step 4 Adjusting Bayesian model for FAIR consistency:
Sometimes there may have some inconsistencies between
the FAIR and Bayesian model due to the weak correlation
of the values in the FAIR table. For example, with the
same input state, FAIR output gives a “Low” state, but
Bayesian does not give a low numerical output. In such
cases, we provide fixed by adjusting the corresponding
CPT entry of the Bayesian model based on the
upper/lower bound grade according to the FAIR state.
In detail, we group 25 FAIR outputs for LEF into five
categories [VL L M H VH]. In each category, we will
replace the FAIR output by the corresponding Bayesian
grade (with the same input). We then obtain the value
range for each category. If there is no intersection
between the value ranges, the Bayesian model is fully
consistent with the FAIR assessment. In case there are
intersections, we will decrease the upper bound (for
instance, decrease to the same value with the second
highest upper bound in the same category) or increase
the lower bound of the relevant categories accordingly
to eliminate all the intersections. We then update all the
CPT entries that related to the adjustments using the BN
sensitivity analysis to ensure the adjustment does not
affect the overall BN. After this stage, we can ensure the
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consistent assessments with all the 25 inputs that FAIR
can provide.

Figure 5 illustrates the comparison between FAIR and
FAIR incorporated into BN (BN-FAIR) for the structure
with causes [TEF V] and effect LEF. It can be seen
that FAIR only evaluates threats with fixed and concrete
inputs, while the BN-FAIR can estimate threat severity
with flexible and consecutive inputs. Moreover, the BN
calculations adjust the FAIR output in a way that threats
in the same category can be compared together based on
the numerical appraisal, yet still classify threats like FAIR
does. The figure shows how sensitive the outputs are given
changes in the inputs.

In the next section, we demonstrate how our approach
extends FAIR by applying it to assess the potential smart
grid threats for our Improving the Robustness of Urban
Electricity Network (IRENE) research project [11].

3 Experiment results and discussions

3.1 Applying themethod: context

The IRENE project is devoted to the topic of developing
a collaborative framework to deal with the cyber threats
to improve the urban grid resilience. To account for
the threat landscape, the list of 102 information security
threats outlined by NIST 800−30 [4] was refined into 38
potential threats. These threats can directly affect smart city
operation, as described in [11]. In this paper, due to limited
space, we only present how our method assesses the LEF
of 14 threats from this 38-threat list, as can be seen in
the second column in Table 1. The FAIR tables are taken
from [12].

Figure 6 shows how the described BN-FAIR approach
can be applied. The adopted approach named Threat Navi-
gator aims to help stakeholders concentrate on threats with
high LEF in a traceable and repeatable way, thus reducing
the number of threat events that need to be further analysed.
The logic of the approach is closely related to the logic of
the state-of-the-art Intel’s [17]. The approach is described
in detail in [18]. In summary, a number of inputs (num-
bered 1 to 5 in the figure) are pre-processed to construct:
a list of threats to be refined, Actor-to-Asset and Threat-
to-Threat connections; and Threats-to-Mitigations links.
Subsequently, the Threat Navigator employs pre-defined
relations to remove threats less relevant to specific classes
of attackers based on their Focuses and Capabilities. Next,
the method looks for implemented mitigations. Finally,
it employs the method outlined in this paper to calculate
LEF for threats. Figure 6 provides a high-level view of the
method and outputs provided by the BN-FAIR approach.

The procedure to obtain the input state for each of the
factors is complex, so it will not be covered here. Readers
are referred to [19] for more detail of our input state
evaluation method. Let us assume that after the evaluation,
the inputs for the 14 threats are given in the third column
of Table 3. Among the input, threat 9 and 13 have fuzzy
values. This is because for threat 9, the security experts were
not able to assign whether “M” or “H” state for the “Tcap”
factor. The chosen value indicates that we give a 40% belief
for the “M” state and 60% for the “H” state. For threat 13,
the experts were not be able to evaluate the “A” factor at all,
so we choose the equal probability for each state. Although
FAIR does not support assessments in these two cases, our
method enables to benefit from the FAIR approach even
with such input. The details of applying the method to the
LEF element of FAIR taxonomy and propagating the data to
obtain output values are described next.
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Table 1 Numerical results of
the Bayesian-FAIR to compare
with FAIR

ID Name Input state F BF R M

1 Perimeter network scanning [M, H, M, M] H 889.5 7 C

2 Information gathering [VH, H, M, H] H 1016.9 4 C

3 Reconnaissance [M, M, VL, L] L 571.7 10 A

4 Craft phishing attacks [H, H, VH, H] H 1130.3 3 A

5 Spyware/Malware [M, VH, H, VL] VH 1147.1 1 A

6 Sniffers/Scanning [M, H, H, M] H 923.1 6 C

7 Insert subverted individuals [M, H, H, VL] H 939.9 5 CS

8 Exploit physical access [L, M, L, H] VL 342.9 13 A

9 Exploit unauthorized access [H, M, 0.4M-0.6H, VH] n/a 290.33 14 A

10 Exploit split tunneling [L, H, H, M] M 685.1 9 C

11 Exploit mobile systems [VH, H, VH, H] VH 1147.1 1 C

12 Exploit recently vulnerabilities [H, M, H, VH] M 809.7 8 A

13 Physical compromise [VL, E, L, VL] n/a 343 12 A

14 Hardware compromise [M, L, H, M] VL 397.4 11 A

F: FAIR approach; BF: Bayesian FAIR approach; R: Rank; M: Most Influential Factor; E: indicates the equal
probability of 20%VL – 20%L – 20%M – 20%H – 20%VH (input of threat 13)

3.2 Results and discussions

Following the first step in Section 2.3, we obtain the weight
vectors as follows w(C, A) = [0.39 0.61]; w(Tcap,CS) =
[0.5 0.5]; w(TEF, V ) = [0.7 0.3]. Note that the Pearson
correlation tests for these three pairs returned strong
statistical correlations (5% statistical significance), which
confirmed that the linear regression model fitted to the FAIR
table data. Choosing k = 2 and (γ1, γ2, γ3, γ4, γ5) = (1,
2, 3, 4, 5) for Step 2 we have the fuzzy judging vectors
as follows: r(C) = [0.42, 0.34, 0.18, 0.05, 0.01]; r(A) =
[0.49, 0.34, 0.13, 0.03, 0.01]; r(Tcap) = [0.49, 0.3, 0.15,
0.05, 0.01]; r(CS) = [0.01, 0.05, 0.15, 0.3, 0.49]; r(TEF) =
[0.62, 0.25, 0.09, 0.03, 0.01]; r(V ) = [0.37, 0.3, 0.23,
0.08, 0.02]. We classified and adjusted the BN’s CPTs as
described in Step 3 and 4 to construct the final Bayes-FAIR
model.

We then use the constructed Bayesian model to calculate
the evaluation grade for the threats. The detailed results
are given in Table 1. To see how the change in the belief

of fuzzy inputs can change the overall assessment of a
threat, we vary the belief for the input of the “A” state
for threat 13, while the other three factors [C, Tcap, CS]
are fixed to [VL, L, VL]. The changes are represented in
Fig. 7, in which we calculate different evaluation grade
when the input of “A” changes from [100%VL] to [20%VL
20%L 20%M 20%H 20%VH], [40%VL 15% L 15%M
15%H 15%VH], [60%VL 10%L 10%M 10%H 10%VH,,
and [100%VH]. The lower bound, which is the lowest value
of the calculated set, is 264.49, happened when “A” is at
100% “VL”, while the upper bound is 531.3 when “A” is
100% “VH”. The sensitivity of outputs given input changes
can be seen through Fig. 7.

From Table 1, it can be seen that a Bayesian network,
constructed according to the proposed method, generates
assessment consistent with the FAIR framework. This is
because the CPTs are derived from the FAIR look-up tables
and can be adjusted for ensuring consistency. Moreover,
our approach can differentiate further threats in the same
category. For example, threat 6 and 7 are in the same “High”
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Fig. 6 Application of BN-FAIR approach
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Fig. 7 Evaluation of LEF by
Bayesian-FAIR with fuzzy state
input of “Action” factor3.4
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category, according to FAIR, but having the grade of 923.1
and 939.9 respectively according to our approach. From the
table, we can see that 6 and 7 have the same assessments
for the three inputs [C, A, Tcap], the only difference is the
evaluation of factor CS. Threat 7 has VL state compares to
M of threat 6, so LEF of 7 should be higher than LEF of
6. This difference cannot be shown by FAIR as both of the
threats are in the category, but it can be seen clearly from
our Bayesian model.

In addition to providing a repeatable and traceable way
to reach some conclusions, even in case of uncertainties, we
supply a clear mechanism for integrating a threat threshold.
Having the threat grades, we can simply define the cut out
point to reduce the list of threats to consider. For example,
a cut out point of 900 means threat is only considered when
its grade higher or equal to 900, will reduce the list of threats
to 2, 4, 5, 7, 6, 11.

Our model can also show the capability of giving output
even with fuzzy input. For example, in case of threat 9
and 13, we can give the assessment grades of 290.33 and
343 respectively, while the FAIR model cannot provide the
exact state. This capability will be helpful in the cases
where there is a lack of expert opinions on assessing
the threats, or experts have conflicted assessments of the
threats. Another advantage is that our approach can point
out the most influential factor for each of the threats to
assess. These outputs then can be combined to show which
factor should be improved to lower the threat impact. For
example, considering the 14 threats in Table 1, we see
that the “A” factor is the one that affect the most, with
8/14 of the threats. This suggests the system managers to
implement some countermeasures to lower the “Action”, for
example, create some policies, which put higher punishment
on the attackers that initiate such threats, to lower the
motivation of attacking. Such countermeasures will lower
significantly the impacts of eight threats in the list; hence,
effectively improve the security system with the least efforts

considering the 14 threats relevant for a particular smart grid
configuration.

The outlined approach illustrates how to construct a
continuum of LEF values within an individual class (e.g.,
High, Moderate, ...), as well as across several ranks.
Noticeably, by doing so it provides opportunities, but not
requirements, to rank threats across classes. This approach
does not define that there must be a thin line between, for
instance, High and Moderate classes. An analyst, equipped
with the described solution, is expected to consider groups
of threats differently and use the solution for its primary
purpose – to numerically assess ranks within the same LEF
category. Readers are referred to [19] for further details of
a practical application of the Bayesian-FAIR to our IRENE
project.

4 Conclusion

This paper presented a method to incorporate the FAIR
structural analysis into the BN to obtain the LEF numerical
threat assessment. The constructed BN-FAIR reflects and
conserves the FAIR appraisal as all of the probabilistic
relations are inferred from the FAIR tables. The numerical
assessment is essential for the FAIR framework to further
rank when there are too many threats in the same category,
which will be more and more common in the future.
Our method also extends the framework by allowing input
fuzzy values when experts have conflicted evaluations,
observe sensitivity of outputs given input changes, and
identify the most influential factor to improve the mitigation
effectiveness. We showed how the Bayes-FAIR can be
applied in the IRENE research project and demonstrated
its extended functions. We believe that this Bayes-FAIR
can help the risk manager to formulate a more effective
mitigation plan, which includes the most cost-effective
security countermeasures to lower the threats’ impacts. In
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the future, we will focus on extending this method for the
smart grid risk assessment.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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