Skip to main content

Advertisement

Log in

Advanced probiotics: bioengineering and their therapeutic application

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The role of gut bacteria in human health has long been acknowledged and dysbiosis of the gut microbiota has been correlated with a variety of disorders. Synthetic biology has rapidly grown over the past few years offering a variety of biological applications such as harnessing the relationship between bacteria and human health. Lactic acid bacteria (LAB) are thought to be appropriate chassis organisms for genetic modification with potential biomedical applications. A thorough understanding of the molecular mechanisms behind their beneficial qualities is essential to assist the multifunctional medicinal sectors. Effective genome editing will aid in the creation of next-generation designer probiotics with enhanced resilience and specialized capabilities, furthering our knowledge of the molecular mechanisms behind the physiological impacts of probiotics and their interactions with the host and microbiota. The goal of this review is to provide a brief overview of the methods used to create modified probiotics with the scientific rationale behind gene editing technology, the mechanism of action of engineered probiotics along with their application to treat conditions like inflammatory bowel disease, cancer, bacterial infections, and various metabolic diseases. In addition, application concerns and future directions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

Abbreviations

LAB:

Lactic Acid Bacteria

EcN:

E. coli Nissle

CRISPR- Cas9:

Clustered regularly interspaced short palindromic repeats and CRISPR associated protein 9

PAM:

Protospacer adjacent motif

TALEN:

Transcription activator- like effector nucleases

ZFN:

Zinc finger nucleases

SLIC:

Synchronized lysing integrated circuit

IBD:

Inflammatory Bowel Disease

PAL:

Phenylalanine ammonia-lyase

Lc. lactis:

Lactococcus lactis

References

  1. Binda S et al (2020) Criteria to qualify microorganisms as ‘probiotic’ in foods and dietary supplements. Front Microbiol 11:1662. https://doi.org/10.3389/fmicb.2020.01662

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bodke H, Jogdand S (2022) Role of probiotics in human health. Cureus 14(11):e31313. https://doi.org/10.7759/cureus.31313

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kober AKMH, Riaz Rajoka MS, Mehwish HM, Villena J, Kitazawa H (2022) Immunomodulation potential of probiotics: a novel strategy for improving livestock health, immunity, and productivity. Microorganisms 10(2) Art. no. 2. https://doi.org/10.3390/microorganisms10020388

  4. Silva DR, de Sardi COJ, de Pitangui SN, Roque SM, da Silva ACB, Rosalen PL (2020) Probiotics as an alternative antimicrobial therapy: current reality and future directions. J Funct Foods 73:104080. https://doi.org/10.1016/j.jff.2020.104080

  5. Wang Y et al (2021) Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front Bioeng Biotechnol 9:612285. https://doi.org/10.3389/fbioe.2021.612285

    Article  PubMed  PubMed Central  Google Scholar 

  6. Romero-Luna HE, Hernández-Mendoza A, González-Córdova AF, Peredo-Lovillo A (2022) Bioactive peptides produced by engineered probiotics and other food-grade bacteria: a review. Food Chem X 13:100196. https://doi.org/10.1016/j.fochx.2021.100196

    Article  CAS  PubMed  Google Scholar 

  7. Mazhar SF et al (2020) The prospects for the therapeutic implications of genetically engineered probiotics. J Food Qual 2020:9676452. https://doi.org/10.1155/2020/9676452

    Article  CAS  Google Scholar 

  8. Börner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF (2019) Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol Lett 366(1). https://doi.org/10.1093/femsle/fny291

  9. Charbonneau MR, Isabella VM, Li N, Kurtz CB (2020) Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat Commun 11(1) Art. no. 1. https://doi.org/10.1038/s41467-020-15508-1

  10. del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA (2019) Lactic acid bacteria as a live delivery system for the in situ production of nanobodies in the human gastrointestinal tract. Front Microbiol 9:3179. https://doi.org/10.3389/fmicb.2018.03179

    Article  PubMed Central  Google Scholar 

  11. Mathipa MG, Thantsha MS, Bhunia AK (2019) Lactobacillus casei expressing Internalins A and B reduces Listeria monocytogenes interaction with Caco-2 cells in vitro. Microb Biotechnol 12(4):715–729. https://doi.org/10.1111/1751-7915.13407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dou J, Bennett MR (2018) Synthetic biology and the gut microbiome. Biotechnol J 13(5):1700159. https://doi.org/10.1002/biot.201700159

    Article  CAS  Google Scholar 

  13. Shende P, Basarkar V (2019) Recent trends and advances in microbe-based drug delivery systems. DARU J Pharm Sci 27(2):799–809. https://doi.org/10.1007/s40199-019-00291-2

    Article  Google Scholar 

  14. Álvarez B, Fernández LÁ (2017) Sustainable therapies by engineered bacteria. Microb Biotechnol 10(5):1057–1061. https://doi.org/10.1111/1751-7915.12778

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bober JR, Beisel CL, Nair NU (2018) Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications. Annu Rev Biomed Eng 20:277–300. https://doi.org/10.1146/annurev-bioeng-062117-121019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Molly K, Van de Woestyne M, Verstraete W (1993) Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39(2):254–258. https://doi.org/10.1007/BF00228615

    Article  CAS  PubMed  Google Scholar 

  17. Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H (2017) Polysaccharide utilization loci: fueling microbial communities. J Bacteriol 199(15):e00860. https://doi.org/10.1128/JB.00860-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee JW, Chan CTY, Slomovic S, Collins JJ (2018) Next-generation biocontainment systems for engineered organisms. Nat Chem Biol 14(6):530–537. https://doi.org/10.1038/s41589-018-0056-x

    Article  CAS  PubMed  Google Scholar 

  19. Inda ME, Broset E, Lu TK, de la Fuente-Nunez C (2019) Emerging frontiers in microbiome engineering. Trends Immunol 40(10):952–973. https://doi.org/10.1016/j.it.2019.08.007

    Article  CAS  PubMed  Google Scholar 

  20. Xu C, Hu S, Chen X (2016) Artificial cells: from basic science to applications. Mater Today Kidlington Engl 19(9):516–532. https://doi.org/10.1016/j.mattod.2016.02.020

    Article  CAS  Google Scholar 

  21. Martínez-García E, de Lorenzo V (2016) The quest for the minimal bacterial genome. Curr Opin Biotechnol 42:216–224. https://doi.org/10.1016/j.copbio.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  22. Sung BH, Choe D, Kim SC, Cho B-K (2016) Construction of a minimal genome as a chassis for synthetic biology. Essays Biochem 60(4):337–346. https://doi.org/10.1042/EBC20160024

    Article  PubMed  Google Scholar 

  23. Vernyik V et al (2020) Exploring the fitness benefits of genome reduction in Escherichia coli by a selection-driven approach. Sci Rep 10(1):7345. https://doi.org/10.1038/s41598-020-64074-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waller MC, Bober JR, Nair NU, Beisel CL (2017) Toward a genetic tool development pipeline for host-associated bacteria. Curr Opin Microbiol 38:156–164. https://doi.org/10.1016/j.mib.2017.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choe D et al (2019) Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat Commun 10(1) Art. no. 1. https://doi.org/10.1038/s41467-019-08888-6

  26. Leenhouts KJ, Kok J, Venema G (1991) Lactococcal plasmid pWV01 as an integration vector for lactococci. Appl Environ Microbiol 57(9):2562–2567. https://doi.org/10.1128/aem.57.9.2562-2567.1991

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Landete JM (2017) A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 37(3):296–308. https://doi.org/10.3109/07388551.2016.1144044

    Article  CAS  PubMed  Google Scholar 

  28. Welker DL et al (2020) Transformation of Lactiplantibacillus plantarum and Apilactobacillus kunkeei is influenced by recipient cell growth temperature, vector replicon, and DNA methylation. J Microbiol Methods 175:105967. https://doi.org/10.1016/j.mimet.2020.105967

    Article  CAS  PubMed  Google Scholar 

  29. Mimee M, Tucker AC, Voigt CA, Lu TK (2015) Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst 1(1):62–71. https://doi.org/10.1016/j.cels.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaswurm V, Nguyen T-T, Maischberger T, Kulbe KD, Michlmayr H (2013) Evaluation of the food grade expression systems NICE and pSIP for the production of 2,5-diketo-D-gluconic acid reductase from Corynebacterium glutamicum. AMB Express 3(1):7. https://doi.org/10.1186/2191-0855-3-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blanch-Asensio M, Dey S, Tadimarri VS, Sankaran S. Expanding the genetic programmability of Lactiplantibacillus plantarum. Microb Biotechnol n/a(n/a). https://doi.org/10.1111/1751-7915.14335

  32. “Frontiers | A novel tightly regulated gene expression system for the human intestinal symbiont Bacteroides thetaiotaomicron.” Accessed 12 Oct 2023 [Online]. Available: https://www.frontiersin.org/articles/https://doi.org/10.3389/fmicb.2016.01080/full

  33. Bosma EF, Forster J, Nielsen AT (2017) Lactobacilli and pediococci as versatile cell factories – evaluation of strain properties and genetic tools. Biotechnol Adv 35(4):419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  34. Santos-Moreno J, Schaerli Y (2020) CRISPR-based gene expression control for synthetic gene circuits. Biochem Soc Trans 48(5):1979–1993. https://doi.org/10.1042/BST20200020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Danino T et al (2015) Programmable probiotics for detection of cancer in urine. Sci Transl Med 7(289):289ra84. https://doi.org/10.1126/scitranslmed.aaa3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ou B, Yang Y, Tham WL, Chen L, Guo J, Zhu G (2016) Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application. Appl Microbiol Biotechnol 100(20):8693–8699. https://doi.org/10.1007/s00253-016-7829-5

    Article  CAS  PubMed  Google Scholar 

  37. Gentschev I et al (2022) Tumor colonization and therapy by Escherichia coli Nissle 1917 strain in syngeneic tumor-bearing mice is strongly affected by the gut microbiome. Cancers 14(24):6033. https://doi.org/10.3390/cancers14246033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zuo F, Zeng Z, Hammarström L, Marcotte H (2019) Inducible plasmid self-destruction (IPSD) assisted genome engineering in Lactobacilli and Bifidobacteria. ACS Synth Biol 8(8):1723–1729. https://doi.org/10.1021/acssynbio.9b00114

    Article  CAS  PubMed  Google Scholar 

  39. Zhang M, Eshraghian EA, Jammal OA, Zhang Z, Zhu X (2021) CRISPR technology: the engine that drives cancer therapy. Biomed Pharmacother Biomedecine Pharmacother 133:111007. https://doi.org/10.1016/j.biopha.2020.111007

    Article  CAS  Google Scholar 

  40. Yadav R, Kumar V, Baweja M, Shukla P (2018) Gene editing and genetic engineering approaches for advanced probiotics: a review. Crit Rev Food Sci Nutr 58(10):1735–1746. https://doi.org/10.1080/10408398.2016.1274877

    Article  CAS  PubMed  Google Scholar 

  41. Grünewald J et al (2019) CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat Biotechnol 37(9):1041–1048. https://doi.org/10.1038/s41587-019-0236-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoshijima K, Jurynec MJ, Grunwald DJ (2016) Precise genome editing by homologous recombination. Methods Cell Biol 135:121–147. https://doi.org/10.1016/bs.mcb.2016.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arroyo-Olarte RD, Bravo Rodríguez R, Morales-Ríos E (2021) Genome editing in bacteria: CRISPR-Cas and beyond. Microorganisms 9(4):844. https://doi.org/10.3390/microorganisms9040844

  44. Plavec TV, Berlec A (2020) Safety aspects of genetically modified lactic acid bacteria. Microorganisms 8(2):297. https://doi.org/10.3390/microorganisms8020297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang P, Wang J, Qi Q (2015) Prophage recombinases-mediated genome engineering in Lactobacillus plantarum. Microb Cell Factories 14:154. https://doi.org/10.1186/s12934-015-0344-z

    Article  CAS  Google Scholar 

  46. Xin Y, Guo T, Mu Y, Kong J (2017) Identification and functional analysis of potential prophage-derived recombinases for genome editing in Lactobacillus casei. FEMS Microbiol Lett 364(24). https://doi.org/10.1093/femsle/fnx243

  47. Wu J, Xin Y, Kong J, Guo T (2021) Genetic tools for the development of recombinant lactic acid bacteria. Microb Cell Factories 20(1):118. https://doi.org/10.1186/s12934-021-01607-1

    Article  CAS  Google Scholar 

  48. Rothstein SM, Sen S, Mansell TJ (2020) Towards high-throughput genome engineering in lactic acid bacteria. Curr Opin Biotechnol 61:181–188. https://doi.org/10.1016/j.copbio.2019.12.015

    Article  CAS  PubMed  Google Scholar 

  49. Xin Y, Guo T, Mu Y, Kong J (2018) Coupling the recombineering to Cre-lox system enables simplified large-scale genome deletion in Lactobacillus casei. Microb Cell Factories 17(1):21. https://doi.org/10.1186/s12934-018-0872-4

    Article  CAS  Google Scholar 

  50. Sundararaman A, Halami PM (2022) Genome editing of probiotic bacteria: present status and future prospects. Biologia (Bratisl) 77(7):1831–1841. https://doi.org/10.1007/s11756-022-01049-z

    Article  CAS  Google Scholar 

  51. Myrbråten IS et al (2019) CRISPR interference for rapid knockdown of essential cell cycle genes in Lactobacillus plantarum. mSphere 4(2):e00007–e00019. https://doi.org/10.1128/mSphere.00007-19

  52. Hidalgo-Cantabrana C, Goh YJ, Pan M, Sanozky-Dawes R, Barrangou R (2019) Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proc Natl Acad Sci U S A 116(32):15774–15783. https://doi.org/10.1073/pnas.1905421116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song X, Huang H, Xiong Z, Ai L, Yang S (2017) CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei. Appl Environ Microbiol 83(22):e01259–e01317. https://doi.org/10.1128/AEM.01259-17

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berlec A, Škrlec K, Kocjan J, Olenic M, Štrukelj B (2018) Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis. Sci Rep 8(1):1009. https://doi.org/10.1038/s41598-018-19402-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Makarova KS et al (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18(2):67–83. https://doi.org/10.1038/s41579-019-0299-x

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  56. Liu R, Liang L, Freed EF, Gill RT (2021) Directed evolution of CRISPR/Cas systems for precise gene editing. Trends Biotechnol 39(3):262–273. https://doi.org/10.1016/j.tibtech.2020.07.005

    Article  CAS  PubMed  Google Scholar 

  57. Hidalgo-Cantabrana C, O’Flaherty S, Barrangou R (2017) CRISPR-based engineering of next-generation lactic acid bacteria. Curr Opin Microbiol 37:79–87. https://doi.org/10.1016/j.mib.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  58. Mugwanda K et al (2023) Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci Rep 43(1):BSR20211299. https://doi.org/10.1042/BSR20211299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oh J-H, van Pijkeren J-P (2014) CRISPR–Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42(17):e131. https://doi.org/10.1093/nar/gku623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Leenay RT, Vento JM, Shah M, Martino ME, Leulier F, Beisel CL (2019) Genome editing with CRISPR-Cas9 in Lactobacillus plantarum revealed that editing outcomes can vary across strains and between methods. Biotechnol J 14(3):e1700583. https://doi.org/10.1002/biot.201700583

    Article  CAS  PubMed  Google Scholar 

  61. van der Els S, James JK, Kleerebezem M, Bron PA (2018) Versatile Cas9-driven subpopulation selection toolbox for Lactococcus lactis. Appl Environ Microbiol 84(8):e02752. https://doi.org/10.1128/AEM.02752-17

    Article  PubMed  PubMed Central  Google Scholar 

  62. Selle K, Klaenhammer TR, Barrangou R (2015) CRISPR-based screening of genomic island excision events in bacteria. Proc Natl Acad Sci 112(26):8076–8081. https://doi.org/10.1073/pnas.1508525112

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437. https://doi.org/10.1093/nar/gkt520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rousset F, Cui L, Siouve E, Becavin C, Depardieu F, Bikard D (2018) Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLOS Genet. 14(11):e1007749. https://doi.org/10.1371/journal.pgen.1007749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vento JM, Crook N, Beisel CL (2019) Barriers to genome editing with CRISPR in bacteria. J Ind Microbiol Biotechnol 46(9–10):1327–1341. https://doi.org/10.1007/s10295-019-02195-1

    Article  CAS  PubMed  Google Scholar 

  66. Asai T et al (2022) Encouraging tactics with genetically modified probiotics to improve immunity for the prevention of immune-related diseases including cardio-metabolic disorders. Biomolecules 13(1):10. https://doi.org/10.3390/biom13010010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Drolia R et al (2020) Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat Commun 11(1):6344. https://doi.org/10.1038/s41467-020-20200-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mathipa MG, Thantsha MS (2017) Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathog 9:28. https://doi.org/10.1186/s13099-017-0178-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hiramatsu Y et al (2014) Recombinant fusion protein of cholera toxin B subunit with YVAD secreted by Lactobacillus caseiinhibits lipopolysaccharide-induced caspase-1 activation and subsequent IL-1 beta secretion in Caco-2 cells. BMC Biotechnol 14(1):38. https://doi.org/10.1186/1472-6750-14-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Daeffler KN-M et al (2017) Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol Syst Biol 13(4):923. https://doi.org/10.15252/msb.20167416

  71. Fernández Romero JA, Paglini MG, Priano C, Koroch A, Rodríguez Y, Sailer J, Teleshova N (2021) Algal and cyanobacterial lectins and their antimicrobial properties. Mar Drugs 19(12):687. https://doi.org/10.3390/md19120687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Riglar DT et al (2017) Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat Biotechnol 35(7):653–658. https://doi.org/10.1038/nbt.3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McKay R et al (2018) A platform of genetically engineered bacteria as vehicles for localized delivery of therapeutics: toward applications for Crohn’s disease. Bioeng Transl Med 3(3):209–221. https://doi.org/10.1002/btm2.10113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Praveschotinunt P, Duraj-Thatte AM, Gelfat I, Bahl F, Chou DB, Joshi NS (2019) Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat Commun 10(1):5580. https://doi.org/10.1038/s41467-019-13336-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yan X et al (2021) Construction of a sustainable 3-hydroxybutyrate-producing probiotic Escherichia coli for treatment of colitis. Cell Mol Immunol 18(10):2344–2357. https://doi.org/10.1038/s41423-021-00760-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang L et al (2021) An engineered probiotic secreting Sj16 ameliorates colitis via Ruminococcaceae/butyrate/retinoic acid axis. Bioeng Transl Med 6(3):e10219. https://doi.org/10.1002/btm2.10219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cui M et al (2021) Optotheranostic nanosystem with phone visual diagnosis and optogenetic microbial therapy for ulcerative colitis at-home care. ACS Nano 15(4):7040–7052. https://doi.org/10.1021/acsnano.1c00135

    Article  CAS  PubMed  Google Scholar 

  78. Li J et al (2022) Polydopamine nanoparticle-mediated dopaminergic immunoregulation in colitis. Adv Sci Weinh Baden-Wurtt Ger 9(1):e2104006. https://doi.org/10.1002/advs.202104006

    Article  MathSciNet  CAS  Google Scholar 

  79. Scott BM et al (2021) Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat Med 27(7):1212–1222. https://doi.org/10.1038/s41591-021-01390-x

    Article  CAS  PubMed  Google Scholar 

  80. Moghimipour E, Abedishirehjin S, Baghbadorani MA, Handali S (2021) Bacteria and archaea: a new era of cancer therapy. J Control Release Off Soc 338:1–7. https://doi.org/10.1016/j.jconrel.2021.08.019

    Article  CAS  Google Scholar 

  81. He L et al (2019) Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. J Biol Eng 13:58. https://doi.org/10.1186/s13036-019-0189-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Canale FP et al (2021) Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598(7882):662–666. https://doi.org/10.1038/s41586-021-04003-2

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Leventhal DS et al (2020) Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat Commun 11(1):2739. https://doi.org/10.1038/s41467-020-16602-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Renwick MJ, Brogan DM, Mossialos E (2016) A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J Antibiot (Tokyo) 69(2):73–88. https://doi.org/10.1038/ja.2015.98

    Article  CAS  PubMed  Google Scholar 

  85. Saeidi N et al (2011) Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7:521. https://doi.org/10.1038/msb.2011.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gupta S, Bram EE, Weiss R (2013) Genetically programmable pathogen sense and destroy. ACS Synth Biol 2(12):715–723. https://doi.org/10.1021/sb4000417

    Article  CAS  PubMed  Google Scholar 

  87. Hwang IY et al (2017) Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun 8:15028. https://doi.org/10.1038/ncomms15028

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fang K, Jin X, Hong SH (2018) Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci. Rep. 8(1):4939. https://doi.org/10.1038/s41598-018-23180-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Geldart KG et al (2018) Engineered E. coli Nissle 1917 for the reduction of vancomycin-resistant Enterococcus in the intestinal tract. Bioeng Transl Med 3(3):197–208. https://doi.org/10.1002/btm2.10107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen K et al (2020) A probiotic yeast-based immunotherapy against Clostridioides difficile infection. Sci Transl Med 12(567):eaax4905. https://doi.org/10.1126/scitranslmed.aax4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ (2018) Probiotic strains detect and suppress cholera in mice. Sci Transl Med 10(445):eaao2586. https://doi.org/10.1126/scitranslmed.aao2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Elhawary NA et al (2022) Genetic etiology and clinical challenges of phenylketonuria. Hum Genomics 16(1):22. https://doi.org/10.1186/s40246-022-00398-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Isabella VM et al (2018) Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 36(9):857–864. https://doi.org/10.1038/nbt.4222

    Article  CAS  PubMed  Google Scholar 

  94. Kurtz CB et al (2019) An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med 11(475):eaau7975. https://doi.org/10.1126/scitranslmed.aau7975

  95. Hong P-Y et al (2021) Production of trans-cinnamic acid by immobilization of the Bambusa oldhamii BoPAL1 and BoPAL2 phenylalanine ammonia-lyases on electrospun nanofibers. Int J Mol Sci 22(20) Art. no. 20. https://doi.org/10.3390/ijms222011184

  96. Holmes D (2015) Genetically engineered Lactobacilli reprogram intestinal cells to secrete insulin and ameliorate hyperglycaemia. Nat Rev Endocrinol 11(4) Art. no. 4. https://doi.org/10.1038/nrendo.2015.45

  97. Ma J, Li C, Wang J, Gu J (2020) Genetically Engineered Escherichia coli Nissle 1917 secreting GLP-1 analog exhibits potential antiobesity effect in high-fat diet-induced obesity mice. Obes Silver Spring Md 28(2):315–322. https://doi.org/10.1002/oby.22700

    Article  CAS  Google Scholar 

  98. Mousa WK, Chehadeh F, Husband S (2022) Recent advances in understanding the structure and function of the human microbiome. Front Microbiol 13. Accessed 28 Jan 2024. [Online]. Available: https://www.frontiersin.org/articles/https://doi.org/10.3389/fmicb.2022.825338

  99. Arnolds KL et al (2021) Biotechnology for secure biocontainment designs in an emerging bioeconomy. Curr Opin Biotechnol 71:25–31. https://doi.org/10.1016/j.copbio.2021.05.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

TP drafted the manuscript and made the figures. SR critically reviewed and edited the manuscript.

Corresponding author

Correspondence to Tamanna Parvin.

Ethics declarations

Competing interests

There are no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvin, T., Sadras, S.R. Advanced probiotics: bioengineering and their therapeutic application. Mol Biol Rep 51, 361 (2024). https://doi.org/10.1007/s11033-024-09309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09309-8

Keywords

Navigation