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Abstract
Ischemia–reperfusion injury (IRI) is a critical pathological condition in which cell death plays a major contributory role, 
and negatively impacts post-transplant outcomes. At the cellular level, hypoxia due to ischemia disturbs cellular metabo-
lism and decreases cellular bioenergetics through dysfunction of mitochondrial electron transport chain, causing a switch 
from cellular respiration to anaerobic metabolism, and subsequent cascades of events that lead to increased intracellular 
concentrations of  Na+,  H+ and  Ca2+ and consequently cellular edema. Restoration of blood supply after ischemia provides 
oxygen to the ischemic tissue in excess of its requirement, resulting in over-production of reactive oxygen species (ROS), 
which overwhelms the cells’ antioxidant defence system, and thereby causing oxidative damage in addition to activating 
pro-inflammatory pathways to cause cell death. Moderate ischemia and reperfusion may result in cell dysfunction, which 
may not lead to cell death due to activation of recovery systems to control ROS production and to ensure cell survival. 
However, prolonged and severe ischemia and reperfusion induce cell death by apoptosis, mitoptosis, necrosis, necroptosis, 
autophagy, mitophagy, mitochondrial permeability transition (MPT)-driven necrosis, ferroptosis, pyroptosis, cuproptosis 
and parthanoptosis. This review discusses cellular and molecular mechanisms of these various forms of cell death in the 
context of organ transplantation, and their inhibition, which holds clinical promise in the quest to prevent IRI and improve 
allograft quality and function for a long-term success of organ transplantation.
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Introduction

Ischemia–reperfusion injury (IRI), a critical pathological 
condition and a major inevitable challenge during organ 
transplantation, causes significant cell damage and cell 
death. There are two events of IRI: ischemia, which is the 
first event, refers to hypoperfusion of tissues or organs due 
to blockage within arteries. In the field of organ transplan-
tation, ischemia is as a result of donor organ procurement 
(warm ischemia) and storage in cold preservation solu-
tion (cold ischemia) and during engraftment, which causes 

profound tissue hypoxia, cellular metabolic imbalance and 
microvascular dysfunction. Therefore, preclinical stud-
ies are underway, with the aim of reducing ischemic time 
to preserve donor organ quality and function. The second 
event, reperfusion, refers to resumption of blood and oxy-
gen supply to the ischemic tissue. Unfortunately, reperfusion 
is associated with increased production of reactive oxygen 
species (ROS; a destructive mediator of cell and tissue 
injury), excessive inflammatory responses, cell death pro-
grams and other pathological processes such as impaired 
endothelial and mitochondrial dysfunction, calcium over-
load and autoimmune responses, which altogether, exacer-
bate ischemic injury [1–3]. Reperfusion injury occurs hours 
or days after the initial insult. IRI is a major contributor 
to primary graft dysfunction (PGD), delayed graft function 
(DGF), slow graft function (SGF), chronic graft dysfunc-
tion, graft rejection and other post-transplant complications, 
leading to increased morbidity and mortality of transplant 
recipients [4–6]. Despite the efforts made so far in basic and 
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clinical research, detailed mechanisms of cell damage and 
cell death in IRI have not been fully elucidated. Therefore, 
further investigations to understand the molecular and other 
aspects of IRI and its consequences may lead to development 
of innovative therapeutic strategies as well as improvement 
in organ transplant procedures. In this review, the author 
discusses recent mechanistic insights into the various forms 
of cell death in IRI in organ transplantation, and their inhi-
bition, which holds clinical promise in the quest to prevent 
IRI and improve allograft quality and function for a long-
term success of organ transplantation. The forms of cell 
death discussed are necrosis, mitochondrial permeability 
transition (MPT)–driven necrosis, necroptosis, ferroptosis, 
pyroptosis, parthanoptosis, cuproptosis, apoptosis, mitopto-
sis, autophagy and mitophagy.

Cellular mechanisms of ischemia–
reperfusion injury

At the cellular level, ischemia causes hypoxia, which dis-
turbs cellular metabolism and decreases cellular bioenerget-
ics through dysfunction of mitochondrial electron transport 
chain. As illustrated in Fig. 1, depletion in mitochondrial 
production of adenosine triphosphate (ATP; the source of 
energy for various cellular functions) during ischemia results 
in a switch from cellular respiration to anaerobic metabo-
lism and failure of energy-dependent  Na+/K+-ATPase pump 
on the cell surface as well as detachment of ribosomes. 
Decreased activity of the  Na+/K+-ATPase pump leads to 
increased intracellular  Na+ accumulation, which in turn, 
inhibits the activity of  Na+-H+. Compensation for the dis-
ruption in ionic homeostasis and maintenance of membrane 

potential results in intracellular  Ca2+ overload through 
inhibition of  Na+-Ca2+ exchanger on the cell surface and 
dysfunction of energy-dependent  Ca2+-ATPase pump on 
endoplasmic reticulum, thereby preventing  Ca2+ re-uptake 
[7–10]. Hyperosmolarity occurs due to increased intracel-
lular concentrations of  Na+,  H+ and  Ca2+, and consequently 
leads to water flow into the cytoplasm to maintain osmotic 
balance, thus resulting in cellular edema [11] (Fig. 1). Intra-
cellular  H+ accumulation together with increased lactic acid 
production from anerobic metabolism decreases cellular pH, 
resulting in metabolic acidosis and impaired enzyme activity 
and nuclear chromatin clumping. In addition,  Ca2+ overload 
causes cell damage via overproduction of ROS, activation 
of inflammatory cells and cell damage programs as well as 
increasing cell membrane destruction and mitochondrial 
dysfunction. Furthermore, ribosomal detachment resulting 
from ischemia reduces the rate of cellular protein synthesis. 
The contribution of  Ca2+ in ischemic injury was confirmed 
in a rat model of hepatic IRI when Nauta and colleagues [12] 
observed that intravenous administration of 0.3 mg/kg of 
verapamil (a calcium channel blocker) prior to induction of 
hepatic ischemia significantly inhibited  Ca2+ accumulation 
in hepatocytes, and prevented mitochondrial  Ca2+ overload, 
culminating in preserved mitochondrial respiratory function 
in another study [13].

Re-establishment of blood supply during reperfusion 
after ischemia provides oxygen to the ischemic tissue more 
than its requirement, with rapid increase in metabolism. 
This leads to a series of molecular events that exacerbates 
the ischemic injury. The re-introduction of molecular oxy-
gen in excess of its requirement increases ROS generation, 
which overwhelms the cells’ antioxidant defence system, 
and thereby causing oxidative stress and lipid peroxidation 

Fig. 1  Summary of cellu-
lar events during ischemia: 
Hypoxia due to ischemia 
disturbs cellular metabolism 
and decreases cellular bioener-
getics through dysfunction of 
mitochondrial electron transport 
chain, causing a switch from 
cellular respiration to anaerobic 
metabolism and a cascade of 
events that leads to increased 
intracellular concentrations of 
 Na+,  H+ and  Ca2+ and conse-
quently cellular edema
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in the cell membranes (Fig. 2). This imbalance between ROS 
production and the cells’ antioxidant capacity in favor of the 
former is referred to as oxidative stress. ROS-induced oxida-
tive stress mediates endothelial dysfunction (by destroying 
vascular endothelial cells), DNA damage and local inflam-
matory responses through activation of nuclear factor-kap-
paB (NF-ĸB; an inflammation-related transcription factor) 
in the vasculature and increased release of pro-inflammatory 
cytokines, chemokines, adhesion molecules, platelet activat-
ing factors, eicosanoid products, and consequently damaging 
cellular structures, and ultimately resulting in cell death and 
aggravates the ischemic injury [14].

Cell death in ischemia–reperfusion injury

It is well-established that cell death is an indisputable indi-
cator of IRI. However, the response of cells to ischemia and 
reperfusion depends on severity. Moderate ischemia and 
reperfusion may result in cell dysfunction, which may not 
lead to cell death due to activation of recovery systems to 
control ROS production and to ensure cell survival. How-
ever, prolonged and severe ischemia and reperfusion induce 
cell death, which was previously identified to be via two dis-
tinct processes: unprogrammed (necrosis) and programmed 
(apoptosis) [15]. Table 1 is a summary of the various forms 
of cell death in allograft IRI and emerging protective strate-
gies to mitigate it.

Necrosis as an unprogrammed form of cell death 
in allograft ischemia–reperfusion injury

Necrosis is an irreversible cell injury and eventual cell death 
due to several pathological stimuli including hypoxia due 
to ischemia. Necrosis is the main form of cell death in IRI, 
especially in reperfusion injury. Necrosis is an uncontrolled 
cell death, which is associated with swelling of organelles 

such as mitochondria and endoplasmic reticulum, and 
plasma membrane rupture resulting in the release of intracel-
lular contents into the extracellular space, as well as activa-
tion of inflammasome (cytoplasmic multimeric protein com-
plex) and secretion of pro-inflammatory mediators, leading 
to eventual cell lysis and tissue damage [16–18]. There is 
also release of lactate dehydrogenase enzyme after necrosis 
[19]. Thus, necrosis is associated with loss of membrane 
integrity and inflammation (necroinflammation). In addition, 
disruption of lysosomal membrane occurs, leading to the 
release of proteolytic enzymes into the cell. These enzymes 
include proteases, DNAases, RNAase, and phosphatases, 
which degrade DNA, RNA, and proteins, and thereby caus-
ing cell death [17]. In the context of organ transplanta-
tion, necrotic cell death occurs due to hypoxia during cold 
ischemia when organ grafts are stored in cold preservation 
prior to reperfusion. This implies that a longer cold ischemic 
time increases cell death by necrosis. In fact, every addi-
tional hour of cold ischemic time markedly increases the risk 
of graft failure and mortality of organ transplant recipients 
[20]. The cellular events leading to hypoxia-induced necrosis 
begin with decreased ATP production and subsequent events 
that are presented in the preceding section.

Using a rat model of lung transplantation, for exam-
ple, 6 h of cold preservation of lung allografts at 4 °C 
followed by 2 h of reperfusion resulted in the release of 
pro-inflammatory cytokines and chemokines, with a posi-
tive correlation in endoplasmic reticulum stress protein 
expression and necrotic cell death [21]. As expected, pro-
longed cold preservation for 18 h caused a further increase 
in necrosis, with increased upregulated PKC expression. 
However, treatment with PKC inhibitor (δV1-1) during 
18 h of cold ischemic time significantly attenuated lung 
IRI and improved allograft quality and function by pre-
venting endoplasmic reticulum stress and necrosis when 
compared to control lung allografts without δV1-1 treat-
ment [21]. This observation corroborates that of a previous 

Fig. 2  Summary of the pathway 
leading to cell damage and 
cell death during reperfusion. 
Restoration of blood supply 
to ischemic tissue provides 
oxygen to the ischemic tissue 
in excess of its requirement, 
resulting in over-production of 
reactive oxygen species (ROS), 
which overwhelms the cells’ 
antioxidant defence system, 
and thereby causing oxidative 
stress and lipid peroxidation in 
the cell membranes in addition 
to activating pro-inflammatory 
pathways to cause cell death
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study of another model of rat lung transplantation in which 
cold ischemic time of 6, 12, 18, and 24 h at the same pres-
ervation temperature of 4 °C increased graft cell necro-
sis with increasing cold ischemic time [22]. Microarray 
analysis after 24 h of cold ischemic time followed by 2 h 
of reperfusion also showed upregulation in transcripts of 
transcription factors, adhesion molecules, coagulation 
factors and pro-inflammatory cytokines that contributed 
to PGD in a rat model of lung transplantation [23]. This 
finding was confirmed in a study by Oyaizu and colleagues 
[24] who reported that 60 min of in situ ischemia and 
2 h of reperfusion upregulated the expression of genes 
related to inflammatory response and increased severity 
of acute lung injury via activation of Src protein tyrosine 
kinase (PTK) signaling pathway in a rat model of lung 
IRI. However, administration of PP2 (Src PTK inhibitor) 

significantly downregulated the expression of these genes 
and protected against lung IRI, and thus improved lung 
function [23].

Programmed form of necrosis in allograft ischemia–
reperfusion injury

While necrosis is traditionally viewed as unprogrammed 
form of cell death, new evidence has emerged, show-
ing highly regulated form of necrotic cell death in IRI. 
This includes mitochondrial permeability transition 
(MPT)–driven necrosis, necroptosis, ferroptosis, pyrop-
tosis, parthanoptosis and cuproptosis [25–29] (Table 1). 
The molecular mechanisms underlying all these forms of 
necrotic cell death are discussed in the context of IRI in 
solid organ transplantation in the next six sections of this 

Table 1  Types of cell death in allograft ischemia–reperfusion injury and emerging therapeutic strategies

Cell death Protective strategy References

Necrosis Treatment with δV1-1 (PKC inhibitor)
Treatment with PP2 (Src PTK inhibitor)

[21, 23, 24]

MPT-dependent regulated 
necrosis

CypD−/− allograft transplantation
Treatment with cyclosporin A and sanglifehrin A

[33, 35–39]

Necroptosis Treatment with sirolimus
Treatment with necrostatin-1 (RIPK1 inhibitor)
RIPK3−/− allograft transplantation
CypD−/− allograft transplantation

[35, 36, 45, 46]

Ferroptosis Treatment with lipoxstatin-1
Treatment with ferrostatin-1
Treatment with antioxidants (glutathione, vitamin C & E, alpha-lipoic 

acid)
Treatment with non-toxic iron chelators (e.g. deferoxamine, defera-

sirox, deferiprone and trimetazidine)
Treatment with HO-1/BMMSCs-derived exosomes (HM-exos)
Treatment with bone marrow mesenchymal stem cells
Pharmacological and genetic inhibition of transferrin receptor 1 (TfR1)

[50, 56, 57, 60–72, 77, 78]

Pyroptosis Treatment with Ac-YVAD-CMK (caspase-1 inhibitor)
Treatment with MCC950 (NLRP3 inflammasome inhibitor)
Treatment with disulfiram (gasdermin channel inhibitor)

[89–92]

Parthanoptosis Treatment with DPQ (PARP-1 inhibitor)
Treatment with INO-1001 (PARP-1 inhibitor)
Genetic inhibition of PARP-1
Treatment with necrostatin-1

[48, 102, 103]

Cuproptosis Treatment with dexmedetomidine (ferrodoxin-1 inhibitor)
Removal of redox-active copper

[113–115]

Apoptosis/mitoptosis Mitochondrial transplantation
Administration of siRNA directed at p53
Administration of siRNA directed at caspase-3
Administration of shRNA targeted at caspase-8 and Fas
Treatment with δV1-1 (PKC inhibitor)
Treatment with diannexin
Mesenchymal stem cell infusion

[21, 23, 127, 128, 140–142, 145, 146]

Autophagy Treatment with 3-methyladenine (autophagy inhibitor)
Treatment with oligomycin (ATP synthase inhibitor)
Treatment with baicalein

[154, 156]

Mitophagy Upregulation of PINK1, Parkin and BNIP3 genes [164–166]
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review. However, it is important to note that it is not possible 
to distinguish all these forms of cell death strictly of others, 
and therefore, a combination of the different forms occur as 
discussed in this review.

MPT‑dependent regulated necrosis in allograft ischemia–
reperfusion injury

Mitochondrial permeability transition (MPT) pore is a 
pathological calcium-dependent transmembrane protein 
complex that is formed in the inner mitochondrial mem-
brane, and serves as major player in mitochondrial swelling 
and regulated necrosis [30]. MPT-driven regulated necrosis 
is dependent on cyclophilin D (CypD), a major component 
and regulator of MPT pore, and triggers the opening of the 
MPT pore at the intermembrane space, leading to necrosis. 
Increased mitochondrial matrix levels of ions such as  Ca2+, 
and metabolic intermediates as well as ROS promote assem-
bly of MPT pores and further contribute to MPT-mediated 
regulated necrosis [31, 32]. Using Langendorff technique, 
results from studies of mitochondria isolated from perfused 
rat myocardium showed that MPT pores remained closed 
during 30–40 min of ischemia but opened during 15–60 min 
of reperfusion, and thus contributed to myocardial injury 
[33, 34]. In genetic studies with CypD-deficient mice, CypD 
knockout cardiac allografts showed prolonged recipient 
survival after transplantation compared to wildtype control 
grafts [35, 36]. Besides genetic inhibition, pharmacologi-
cal inhibition of CypD activity with the immunosuppressive 
agents, cyclosporin A and sanglifehrin A, inhibited MPT 
pore opening and consequently protected against myocardial 
IRI and improved cardiac function [33, 37–39]. Considering 
that cyclosporin A is already in clinical use for maintenance 
of immunosuppression after organ transplantation, its abil-
ity to inhibit CypD and MPT pore opening and improve 
graft function is a fascinating finding. Taken together, these 
reports suggest that CypD and MPT pores could be thera-
peutically targeted to prevent MPT-dependent regulated 
necrosis and limit transplantation-induced IRI. -

Necroptosis in allograft ischemia–reperfusion injury

Burgeoning experimental evidence shows a regulated form 
of necrosis termed necroptosis, shares characteristics of 
necrosis and some important processes with apoptosis. It 
occurs due to the activation of receptor-interacting protein 1 
(RIP1; a regulator of cell survival and death), mixed lineage 
kinase domain-like protein (MLKL; a functional substrate 
of RIP3 kinase) and the assembly of RIP1/RIP3-containing 
signaling complex (necrosome) that is regulated by the cas-
pase pathway and ubiquitination. Necroptosis is triggered 
by members of the TNF family including Fas ligand and 
TNF-related apoptosis-inducing ligand. However, TNF-α is 

the most studied trigger of necroptosis [40–42]. Just like 
necrosis, necroptosis also promotes inflammation. Necrop-
tosis-mediated inflammation occurs via several mechanisms 
including release of cytokines and damage-associated molec-
ular patterns (DAMPs), RIP3- and MLKL-independent acti-
vation of inflammasome, and activation of RIP1-mediated 
cytokine release [43]. Following IRI, DAMPs are released 
from necrotic cells and bind to pattern recognition recep-
tors (PRR) such as Toll-like receptors, which are predomi-
nantly expressed on immune cells, and subsequently activate 
inflammasomes, and thereby activating immune cells and 
driving tissue inflammation and further cell death. At the 
initial stage of necroptosis, interaction between cell death 
and inflammation creates an auto-inflammation loop that 
leads to exaggerated cell death and further inflammation. 
This self-amplifying circuit, referred to as necroinflamma-
tion, activates systemic inflammation, which leads to graft 
injury and ultimately graft rejection after transplantation 
[44]. In a mouse model of heart transplantation, implantation 
of RIPK3 null cardiac allografts strongly prevented allograft 
cell infiltrate, inhibited the release of the dangerous DAMP 
molecule, high mobility group box 1 (HMGB1), and attenu-
ated tissue necrosis after transplantation compared to control 
group that received wildtype donor allografts. Also, treat-
ment with sirolimus (an immunosuppressant) significantly 
prolonged RIPK3 null cardiac allograft survival in compari-
son with control recipient mice [45]. This result supports 
their in vitro observation, showing that treatment of murine 
cardiac microvascular endothelial cells with necrostatin-1 
(RIPK1 inhibitor) prevented TNF-α-induced necroptotic cell 
death and release of HMGB1 [45]. Similarly, transplanta-
tion of RIPK3 knockout renal allografts prevented inflam-
matory injury and improved renal function, and thus con-
tributed to prolonged recipient survival. However, in vivo 
delivery of shRNA directed at caspase-8 in donor mouse 
kidneys increased necroptosis, HMGB1 release, reduced 
renal allograft function and accelerated allograft rejection 
[46]. Also, treatment of proximal tubular epithelial cells 
with necrostatin-1 inhibited TNF-α-induced necroptosis 
in vitro [46]. Similar results were reported in vitro using 
human lung epithelial cells, as well as in remote lung injury 
after rat kidney transplantation [47, 48]. These findings show 
that RIPK1/3 contributes to necroptosis of graft cells and 
allograft injury. Necroptosis was also investigated in graft 
failure after human liver transplantation. In a clinical trial 
involving 430 deceased donor liver transplant recipients, 
a TLR4 single-nucleotide polymorphism, which inhibited 
binding with HMGB1, reduced the risk of hepatic graft 
loss after liver transplantation [49]. Mechanistically, phar-
macological and genetic inhibition of cyclophilin D, pre-
vented necroptosis of microvascular endothelial cells and 
inhibited phosphorylation of MLKL downstream [35, 36]. 
Although necroptosis remains an unexplored pathway in 
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IRI in organ transplantation, its inhibition in donor organs 
has proven beneficial in experimental organ transplantation, 
and therefore may provide a similar benefit in clinical organ 
transplantation.

Ferroptosis in allograft ischemia–reperfusion injury

Ferroptosis is a form of regulated necrosis that is iron-
dependent and characterized by fatal accumulation of lipid 
peroxidation, with distinct morphological, biochemical and 
genetic features compared to other forms of regulated cell 
death. This form of cell death was identified in cancer cells 
in 2012 when it was shown that erastin, a small anti-cancer 
molecule, depleted intracellular glutathione (GSH), inac-
tivated glutathione peroxidase 4 (GPX4; inhibitor of lipid 
peroxidation), and triggered iron-dependent cell death in a 
non-apoptotic manner [50–52]. Thus, ferroptosis is based 
on intracellular iron overload, which causes oxidative stress 
by enhancing the formation of lipid peroxides, particularly 
phosphatidylethanolamine-OOH, and increasing ROS pro-
duction, which overwhelm the cell’s antioxidant capacity, 
thereby leading to cell damage and cell death [53–56]. For 
example, it has been reported that iron reacts with hydrogen 
peroxide during ferroptosis to form hydroxyl-like radicals, 
hydroxyl and ferric ions, which promote lipid peroxidation, 
cell injury and cell death, and exacerbate hepatic IRI [57].

Ferroptosis also contributes to inflammation since iron 
stimulates the release of pro-inflammatory cytokines and 
induces iron-dependent lipid peroxidation, leading to ROS-
induced oxidative damage [56]. Besides lipid peroxidation, 
free irons promote ferroptosis via non-enzymatic produc-
tion of ROS. The cytosol and organelles such as lysosomes 
and mitochondria contain a pool of chelatable and redox-
active irons referred to as labile iron pool, which partici-
pates in a variety of metabolic processes as well as serv-
ing as a catalyst to enhance lipid peroxidation of saturated 
fatty acids through Fenton reaction to generate ROS [55, 
58, 59]. Moreover, mitochondrial production of ROS during 
stressful conditions involves the role of irons. It should be 
pointed out that GSH-GPX4 axis is the sole cellular system 
that preserves cell membrane integrity by repairing oxidized 
phospholipids, and therefore, GSH depletion or GPX4 inac-
tivation due to intracellular iron overload, leads to loss of 
cell membrane integrity and ferroptotic cell death. Hence, 
Friedmann and colleagues [60] demonstrated using GPX4 
knockout mice that the absence of GSH-GPX4 axis caused 
lipid-oxidation-induced acute renal failure and associated 
death. In the same study, administration of the ferroptosis 
inhibitor, liproxstatin-1, suppressed ferroptosis in cells, 
in GPX4 knockout mice, as well as in a mouse model of 
hepatic IRI [60], indicating that GSH-GPX4 axis is a key 
antioxidant regulator of ferroptosis. Other inhibitors of fer-
roptosis such as ferrostatin-1 (Fer-1), and antioxidants (e.g. 

GSH, vitamin C and E, alpha-lipoic acid) and non-toxic iron 
chelators (e.g. deferoxamine, deferasirox, deferiprone and 
trimetazidine) downregulated the expression of prostaglan-
din-endoperoxide synthase 2 (PTGS2; a ferroptosis marker), 
which was upregulated in various animal models of IRI, and 
reduced the levels of intracellular iron, lipid peroxidation, 
while increasing GSH level, and ultimately attenuating fer-
roptosis and IRI [50, 56, 57, 61–65].

In a rat model of liver transplantation, a bolus intrave-
nous administration of 50 IU/kg of α-tocopherol emulsion 
(vitamin E) to donor animal prior to donor liver retrieval 
and followed by 5.5 h of cold storage and 1 h of reperfu-
sion prevented transaminitis, preserved phagocytic activ-
ity of Kupffer cells, sinusoidal endothelial cell linings 
and intracellular organelles, with fewer surface membrane 
projections as revealed by electron microscopy compared 
to control group without α-tocopherol treatment [66]. In 
addition, α-tocopherol significantly reduced hepatic ROS 
level, and hepatocyte death by ferroptosis when compared 
to control group [66]. Using a rat model of liver transplan-
tation with a severe steatotic donor liver and a model of 
hypoxia-reoxygenation of steatotic hepatocytes, HO-1/
BMMSCs-derived exosomes (HM-exos) attenuated IRI in 
steatotic grafts and inhibited hepatocyte ferroptosis in vitro 
through increased levels of miR-I24-3p, and downregulated 
expression of six-transmembrane epithelial antigen prostate 
3 (STEAP3; an important enzyme for cellular iron uptake 
and homeostasis) [67]. Not surprisingly, overexpression of 
STEAP3 reversed the hepatoprotective effect of miR-124-3p, 
while HM-exo treatment improved miR-124-3p content in 
hepatic grafts, which corresponded with decreased STEAP3 
expression, and thus reduced ferroptosis. However, HM-exos 
obtained from cell knocked out for miR-124-3p had no sig-
nificant effect on ferroptosis [67]. This finding highlights 
the involvement of ferroptosis in IRI during liver trans-
plantation with severe steatotic donor livers, and suggests 
a promising approach to treat IRI in steatotic liver grafts 
by downregulating STEAP3 expression. The result of this 
study was corroborated by two very recent rat models of 
steatotic liver transplantation, in which exosomes obtained 
from heme oxygenase-1-modified bone marrow mesenchy-
mal stem cells inhibited ferroptotic cell death by downreg-
ulating the expression of cyclooxygenase-2 (a ferroptosis 
marker gene), and protected biliary tracts against IRI, result-
ing in improved steatotic liver function after transplantation 
[68, 69]. In addition, donor livers treated with bone marrow 
mesenchymal stem cells during preservation by normother-
mic machine perfusion showed reduced oxidative damage 
and ferroptosis of hepatocytes, which was characterized by 
markedly reduced levels of intracellular ROS and free irons 
as well as downregulated ferritin expression in a rat model 
of donation-after-cardiac-death liver transplantation. This 
resulted in improved graft structure and function compared 
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to untreated control grafts [70]. In a retrospective clinical 
trial involving 202 pediatric living donor liver transplanta-
tion, Yamada et al. [56] also reported high levels of serum 
ferritin in the donors, which is an indication of iron over-
load and an independent risk factor for hepatic IRI after 
liver transplantation. This observation could also implicate 
ferroptosis in IRI of the liver grafts. In clinical liver trans-
plantation, high expression of E3 ubiquitin-protein ligase 
HUWE1 in the liver donors was associated with less IRI and 
improved hepatic allograft function after liver transplanta-
tion [71]. This observation was supported by findings from 
a mouse model of liver IRI in which HUWE1 knockout mice 
showed exacerbated hepatic IRI with increased ferroptosis 
[71]. Using an in vitro model, inhibition of HUWE1 in pri-
mary hepatocytes significantly increased cellular sensitiv-
ity to ferroptosis compared to control hepatocytes. In their 
mechanistic study, the same authors observed that INO- pre-
vented ferroptotic cell death in HUWE1 knockout mice, and 
thus mitigated hepatic IRI [71]. This implies that the anti-
ferroptotic action of HUWE1 involves targeting TfR1 for 
ubiquitination and proteasomal degradation, thereby regu-
lating iron metabolism. Therefore, inhibition of TfR1 could 
provide a platform for the development of novel therapeutic 
strategies for mitigating IRI following organ transplantation.

Besides the liver, ferroptosis has also been reported in 
transplantation of other solid organs. In a mouse model of 
heterotopic heart transplantation, for example, intravenous 
administration of 10 mg/kg of ferrostatin-1 (Fer-1; ferrop-
tosis inhibitor) to recipient mice 1 h prior to reperfusion 
significantly ameliorated cardiac allograft IRI by reducing 
the levels of pro-ferroptotic hydroperoxy-arachidonoyl-
phosphatidylethanolamine (a lipid peroxide), preventing 
the increase in cardiomyocyte cell death and suppressing 
neutrophil accumulation in the cardiac allograft via inhibi-
tion of TLR4/Trif-dependent signaling pathway in coro-
nary vascular endothelial cells after heart transplantation 
when compared to control group without Fer-1 adminis-
tration [72]. In a separate experiment by the same authors 
involving coronary artery ligation-induced myocardial IRI, 
Fer-1 prevented ferroptotic cell death, markedly reduced 
myocardial infarct size, improved left ventricular systolic 
function, and decreased left ventricular remodeling via 
TLR4/Trif inhibition relative to control mice without 
Fer-1 treatment [72]. Thus, TLR4/Trif-dependent signal-
ing pathway provides additional insight into the ferroptotic 
pathway, and could represent a new therapeutic target in 
mitigating IRI after organ transplantation. Most recently, 
Zhang and associates [73] conducted a clinical investi-
gation involving 20 patients who suffered chronic renal 
allograft dysfunction. Following biopsy and nephrectomy 
of the transplanted kidneys, immunohistochemical stain-
ing revealed accumulation of lipid peroxidation, which 
was evidenced by increased renal expression of 4-HNE 

(a product of lipid peroxidation) compared to normal kid-
ney tissues. This observation indicates ferroptosis, since 
this form of cell death is characterized by accumulation of 
lipid peroxidation products. Ultrastructurally, ferroptosis 
manifested as mitochondrial atrophy, high mitochondrial 
membrane density, and reduced mitochondrial ridges in 
renal tubular epithelial cells of kidneys from the chronic 
allograft dysfunction group [73]. The authors extended 
their clinical observation to a mouse model of kidney 
transplantation and in vitro study using renal tubular epi-
thelial cells. In both experimental models, treatment with 
TNF-α induced ferroptotic cell death by upregulating the 
expression of interferon regulatory factor (an inflamma-
tion-related transcription factor) in renal tubular epithe-
lial cells, leading to inhibition of GPX4 transcription 
[73]. This finding was supported by later clinical studies 
in which analysis of RNA-sequencing data from kidney 
transplant biopsies showed that ferroptosis-associated 
genes mediate allograft rejection after kidney transplan-
tation [74–76] as well as in mice [76]. Similarly, cold stor-
age and reperfusion of human lungs activated ferropto-
sis-related signaling pathway by increasing the contents 
of iron, lipid peroxidation and cyclooxygenase-2 in the 
lung tissues, and downregulating the expression of lung 
GPX4 and other antioxidant proteins, and thereby altering 
mitochondrial morphology [77]. The finding supports the 
in vitro observation by the same authors involving human 
bronchial epithelial cells [77]. Using a mouse model of 
lung transplantation in which lung allografts were treated 
with liproxstatin-1 (Lip-1; ferroptosis inhibitor) during 
24 h of cold storage followed by 2 h of reperfusion, inhibi-
tion of ferroptosis markedly attenuated lung IRI, preserved 
lung allograft architecture and improved pulmonary func-
tion after transplantation in comparison with control lungs 
without Lip-1 treatment [77]. Thus, Lip-1 could be consid-
ered in the future as a new anti-ferroptotic and cytoprotec-
tive agent for improved organ preservation against IRI. In 
an in vitro study involving human pancreatic islets, Bruni 
and colleagues [78] also demonstrated the effect of ferrop-
tosis on islet viability and function, and possibility of safe 
human islet transplantation in the future. In their study, 
treatment of human islets with the ferroptosis-inducing 
agents, erastin and RSL3, resulted in significant death and 
reduction in islet function as revealed by lactate dehydro-
genase release and stimulation index (a marker of islet 
function) respectively [78]. However, these effects were 
prevented following pretreatment with Fer-1 and the iron 
chelator, desferrioxamine [78]. Taken together, although 
ferroptosis was recently identified as a form of regulated 
necrosis, with limited literature, preclinical and clinical 
studies so far implicate ferroptosis as a significant con-
tributor to cell damage and cell death in IRI during organ 
transplantation. Therefore, targeting ferroptotic pathways 
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with inhibitors or non-toxic iron chelators in organ trans-
plantation could serve as a potential and novel approach 
to limit IRI, and improve allograft quality and function 
after transplantation.

Pyroptosis in allograft ischemia–reperfusion injury

Pyroptosis has been recently identified as a new form of reg-
ulated necrosis that is inherently inflammatory and induced 
by various pathological stimuli, including ischemia and rep-
erfusion. The term “pyroptosis” originates from the Greek 
word “pyro”, which means “fire” (referring to the prop-
erties of inflammation), and “ptosis” which means “fall-
ing” (referring to other forms of programmed cell death). 
Pyroptosis is characterized by loss of plasma membrane 
integrity and triggered by activation of various inflammas-
omes that activate caspases, resulting in formation of plasma 
membrane pores, osmotic swelling and rupture of plasma 
membrane and consequent release of cytoplasmic contents 
[79–84]. It was previously thought that pyroptotic cell death 
involves canonical (caspase-1-dependent) and non-canoni-
cal (caspases-4-, 5- and 11-dependent) pathways. However, 
extensive studies on this form of regulated necrosis have 
revealed other pathways that are mediated by other caspases 
such as caspase-3 and 8, as well as granzyme [81–85]. In 
the canonical pathway of pyroptosis, caspase-1 in inflam-
masomes is activated and cleaves gasdermin D (GSDMD; 
a pore-forming protein and executioner of pyroptosis), 
which forms non-selective pores on plasma membranes. 
These pores are referred to as “gasdermin channels”, and 
their formation leads to release of interleukin-1β (IL-1β), 
IL-18, water and eventually cell lysis [81, 86, 87]. Unlike 
the canonical pathway, cleavage of GSDMD in the non-
canonical pathway is mediated by stress-induced activation 
of caspase-4, 5 and 11 to form gasdermin channels and exac-
erbate inflammatory response [82]. In caspase-3/8-mediated 
pathway of pyroptosis, stressful stimuli such as TNF-α or 
chemotherapy drugs activate caspase-3 and 8 to specifically 
cleave GSDMD and gasdermin E (GSDME), which promote 
inflammasome formation in addition to forming gasdermin 
channels [83, 84]. Granzyme-mediated pyroptosis occurs 
when GSDMB and GSDME respectively cleaved by gran-
zymes A and B (cytotoxic caspase-like proteases) [85, 88].

A few studies have reported the contribution of pyroptosis 
in IRI in experimental and clinical organ transplantation. 
In a rat model of orthotopic lung transplantation, treatment 
of lung allografts with leukocyte-depleting filter and highly 
selective caspase-1 inhibitor (Ac-YVAD-CMK) during 4 h 
of ex vivo perfusion before 1 h of cold storage at 4 °C pro-
duced a substantial improvement in lung allograft structure 
and function including microvasculature, with less inflam-
mation as seen in markedly reduced levels of perfusate pro-
inflammatory cytokines such as IL-6 and lung mRNA for 

IL-6, IL-1β and TNF-α compared to control lung allografts 
without treatment [89]. In addition, flow cytometric analysis 
revealed 26% of trapped pyroptotic monocytes in the per-
fusates, which migrated from the lungs of the treated group 
[89]. In a clinical study of donation-after-cardiac death lung 
transplantation by the same authors, trapped pyroptotic cells 
were also observed in the lung perfusates following the same 
treatment during ex vivo lung perfusion prior to transplanta-
tion, with significantly reduced caspase-1-positive cells in 
the lung allografts [89]. Using a rat model of orthotopic allo-
geneic and isogeneic liver transplantation, daily intraperi-
toneal administration of Ac-YVAD-CMK to recipients of 
allogeneic liver transplantation significantly reduced rejec-
tion activity index to a level comparable to that of isografts, 
which positively correlated with markedly reduced levels of 
lung and serum IL-1β and IFN-γ mRNA compared to allo-
grafts without Ac-YVAD-CMK treatment [90]. Similarly, 
intravenous administration of MCC950 (a selective inhibi-
tor of NLRP3 inflammasome) to recipient pigs of alloge-
neic livers transplantation followed by intravenous infusion 
of MCC950 in the same recipient pigs on post-transplant 
days 2 and 3 after 2 h of cold preservation (4-6 °C) of liver 
grafts by hypothermic machine perfusion resulted in sig-
nificantly lower levels of serum IL-1β and TNF-α, reduced 
hypertransaminasemia, improved liver allograft structure 
and function, and ultimately contributed to prolonged trans-
plant recipient survival compared to untreated control group 
[91]. Mechanistically, the graft-protecting effect of MCC950 
was associated with inhibition of NLRP3/caspase-1/IL-1β, a 
typical pyroptotic pathway. Considering the significant role 
of GSDMD in pyroptotic cell death, disulfiram, a medication 
commonly known for the treatment of chronic alcoholism, 
has recently been identified as an inhibitor of gasdermin 
channels following its anti-pyroptotic action, which involved 
prevention of pro-inflammatory cytokine release in a mouse 
model of lipopolysaccharide-induced septic death [92]. This 
promising laboratory finding suggests that disulfiram could 
be a potential pharmacological tool to provide more insights 
in the context of pyroptosis and its role in organ transplanta-
tion. Although pyroptosis has not been extensively studied 
in the context of organ transplantation, a growing body of 
experimental evidence implicates its involvement in vari-
ous IRI models of transplantable solid organs [93–97]. Col-
lectively, the preclinical and clinical findings suggest that 
inhibition of pyroptotic pathway could provide effective 
and innovative therapeutic approach to attenuate IRI and its 
associated complications after organ transplantation. How-
ever, given that the few studies that investigated the role of 
pyroptosis in organ transplantation have focused on canoni-
cal (caspase-1) pathway of pyroptosis, further studies are 
needed to investigate the other pathways of pyroptotic cell 
death in IRI in organ transplantation.
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Parthanoptosis in allograft ischemia–reperfusion injury

The term “parthanoptosis” was derived from “Thanatos” 
in ancient Greek religion and mythology, which personifies 
death. This form of regulated necrosis is characterized by 
hyperactivation of the DNA repair enzyme poly(adenosine 
diphosphate-ribose) polymerase-1 (PARP-1; the first mem-
ber of the PARP superfamily) by a variety of pathological 
stimuli such as ROS, alkylating agents, calpain, increased 
 Ca2+ concentration, increased mitochondrial permeability 
and DNA damage [98, 99]. Under physiological conditions, 
PARP-1 activation contributes to cellular homeostasis by 
mediating DNA repair, genomic stability and transcription. 
However, under pathological conditions that cause genomic 
stress such as ischemia and reperfusion, PARP-1 is hyperac-
tivated and depletes cellular content of nicotinamide adenine 
dinucleotide  (NAD+; a critical coenzyme in cellular energy 
production), and thus impairs cellular metabolism, and 
consequently ATP production. This causes nuclear release 
of mitochondria-toxic PAR polymer, and thereby induc-
ing nuclear translocation of active, truncated death effector 
apoptosis-inducing factor from the mitochondria, leading 
to chromatin condensation and large-scale DNA fragmenta-
tion. Such mitochondrio-nuclear translocation results in par-
thanoptosis in a caspase-independent and ATP-independent 
pathway [100, 101].

Studies of parthanoptosis mainly focused on the central 
nervous system in the context of neuronal damage and neu-
rodegeneration. However, one study reported the contribu-
tion of parthanoptosis in experimental organ transplantation. 
In a rat model of kidney transplantation, storage of renal 
allografts in preservation solution at 4 °C for 24 h followed 
transplantation, resulted in remote lung injury, which was 
characterized by upregulated expression of PARP-1 (par-
thanoptosis) and RIP1 and 3 (necroptosis) in the lung tis-
sue [48]. However, daily intraperitoneal administration of 
the necroptosis inhibitor, necrostatin-1, to recipient animals 
reduced parthanoptosis and necroptosis death by down-
regulating these markers of cell death [48]. This interesting 
experimental result could provide the molecular basis for 
combination therapy that targets parthanoptosis and other 
forms of cell death in IRI to prevent post-transplant com-
plications. Apart from necrostatin-1, genetic inhibition of 
PARP-1 and PARP-1 inhibitors such as DPQ, have also been 
reported to reduce parthanoptosis. Using PARP-1 knockout 
mice, cold storage of kidneys in preservation solution at 4 °C 
for 48 h followed by reperfusion prevented parthanoptosis of 
renal tubular epithelial cells and reduced renal damage com-
pared to wildtype mice [102]. In addition, treatment of donor 
kidneys with DPQ during 48 h of cold preservation signifi-
cantly downregulated PARP-1 nuclear expression in tubular 
epithelial cells of kidneys from wildtype mice, resulting in 
reduced parthanoptosis, attenuated IRI and improved renal 

function in comparison with wildtype control mice without 
DPQ treatment [102]. In a randomized, placebo-controlled, 
single-blind clinical trial involving 40 patients with ST ele-
vation myocardial infarction undergoing primary percutane-
ous coronary intervention, bolus intravenous administration 
of the PARP-1 inhibitor, INO-1001, reduced in vitro PARP-1 
activity in the plasma of these patients, with a corresponding 
decrease in the levels of plasma C-reactive protein and IL-6 
[103]. The promising result from these experimental stud-
ies and clinical trials could serve as the platform for a novel 
therapy for IRI in organ transplantation and other clinical 
conditions of IRI by targeting parthanoptosis.

Cuproptosis in allograft ischemia–reperfusion injury

Another form of regulated necrosis that has been identified 
and currently under investigation in the context of organ 
IRI is cuproptosis. It is a copper-triggered mode of mito-
chondrial cell death, in which excess intracellular copper 
binds to lipoylated enzymes in the mitochondrial tricarbo-
xylic acid cycle, leading to aggregation of fatty acylated 
proteins (mediated by intracellular ferredoxin-1), reducing 
iron-sulfur cluster protein levels, mitochondrial dysfunction 
and proteotoxic stress, and ultimately cell death [104–106]. 
Thus, cuproptosis is characterized by copper dependence 
and regulation of mitochondrial respiration. Copper is a 
trace element, which is essential in hemoglobin synthesis, 
bone formation and other processes, including develop-
ment of internal organs as well as in the functions of central 
nervous system and immune system [107–110]. However, 
increased intracellular concentration of copper damages vas-
cular endothelial cells by triggering ROS production and 
accumulation, which disrupts cellular function [111, 112]. 
Emerging experimental evidence shows that cuproptosis 
plays a crucial role in the development and progression of 
many diseases, including organ IRI, which could be applied 
in the context of organ transplantation. In two rat models of 
IRI in which isolated rat hearts were subjected to 20 min of 
warm ischemia followed by 30 min of reperfusion, removal 
of redox-active copper prior to ischemia prevented post-
ischemic cardiac oxidative injury and enhanced recovery 
of myocardial function, with significantly reduced levels of 
hydroxyl radicals and efflux of lactic dehydrogenase com-
pared to control hearts that were loaded with copper [113, 
114]. Recently, Guo and colleagues [115] also reported 
that pharmacological inhibition of cuproptosis with dex-
medetomidine targeted at ferredoxin-1 markedly reduced 
copper levels, preserved mitochondrial function, increased 
antioxidant status and reduced cuproptosis-related proteins 
in in vitro and in vivo models of cerebral IRI. Although 
research on the mediatory role of cuproptosis in organ IRI 
is in its infantile stage, its inhibition is expected to become a 
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potential therapeutic approach for clinical conditions involv-
ing IRI, including organ transplantation.

Programmed form of non‑necrotic cell death 
in allograft ischemia–reperfusion injury

Apoptosis and mitoptosis in allograft ischemia–reperfusion 
injury

Apoptosis is a tightly-regulated ATP-dependent process of 
programmed cell death that is activated by hypoxia due to 
ischemia and during ROS generation in reperfusion. Apopto-
sis is characterized by cell shrinkage, formation of apoptotic 
bodies, cell membrane blebbing [116, 117]. Ultrastructur-
ally, there is DNA fragmentation, nuclear and cytoplasmic 
condensation, chromatin rearrangements, myofibril loss and 
disarray, contour irregularities and amorphous dense bod-
ies, as well as damaged cell–cell-contacts, most of which 
are due to activation of a  Ca2+-dependent endonuclease and 
other enzymes [118, 119]. The initiation and execution of 
apoptosis are dependent on caspases, a family of proteolytic 
enzymes. There are two major apoptotic pathways that are 
mediated by caspases: the extrinsic and intrinsic pathways, 
which interact with each other to exert their influence. The 
extrinsic pathway, also known as death receptor pathway, 
depends on extracellular molecules (death ligands) such as 
tumor necrosis factor-alpha (TNF-α), Fas ligand, and TNF-
related apoptosis inducing ligand (TRAIL), which bind to 
death receptors (e.g. TNFR1, Fas) in the cell membrane 
and undergo a conformational change in the death-inducing 
signaling complex (DISC) to initiate cytotoxic signals by 
converting procaspases to caspases. Caspase-8, a crucial ini-
tiator caspase in the extrinsic pathway, directly cleaves and 
activates effector (executioner) caspases such as caspase-2, 
3, 7 and 9, which induce apoptosis of damaged cells via pro-
teolysis [120–122]. The intrinsic pathway, also called mito-
chondrial pathway, is activated under stressful conditions 
such as hypoxia during ischemia, and negatively impacts 
mitochondrial integrity, resulting in release of pro-apop-
totic factors (e.g. cytochrome c, endonuclease G, apoptosis-
inducing factor) from the mitochondria into the cytoplasm 
to induce apoptosis in a caspase-dependent and independent 
pathway [120–122].

In IRI, for example, there is increased mitochondrial 
translocation of cytoplasmic pro-apoptotic proteins such 
as BAD, BAX, BID, and BAK, which induce mitochon-
drial release of cytochrome c, endonuclease G, apopto-
sis-inducing factor, and other pro-apoptotic factors into 
the cytoplasm. The release of these pro-apoptotic factors 
from the mitochondria promotes their additional release. 
The mitochondria then become disintegrated due to loss of 
membrane potential resulting from these pro-apoptotic fac-
tors and disruption of the mitochondrial electron transport 

chain, thereby contributing to apoptosis in a process of pro-
grammed destruction termed mitoptosis [120–122]. Nuclear 
translocation of endonuclease G and apoptosis-inducing 
factor causes DNA fragmentation and caspase-independent 
apoptosis while cytochrome c binds to apoptotic protease-
activating factor 1 to activate caspase cascade via forma-
tion of apoptosome and subsequent activation of caspase 9 
[123, 124]. Following ROS-induced DNA damage during 
reperfusion, increased expression of p53 (a tumor suppres-
sor protein) induces the formation of PIDDosome (a pro-
tein complex) to execute apoptosis via caspase-2 activation 
[125–127]. Therefore, inhibition of caspase-2 with small-
interfering (si)RNA reduced ROS production, prevented 
mitoptosis and apoptosis of cardiomyocytes, and thus attenu-
ated myocardial IRI [126].

Considering the role of mitochondria in apoptosis in IRI, 
mitochondrial transplantation, also known as mitochondrial 
transfer, is emerging as a novel approach to protect and pre-
serve mitochondrial integrity against IRI and other disease 
conditions involving mitochondrial dysfunction. Mitochon-
drial transplantation is a process where exogenous isolated 
functional mitochondria are taken up by damaged cells to 
recover dysfunctional mitochondria. In an in vitro model 
of renal tubular injury, for example, treatment of damaged 
human proximal tubular cells with mitochondria enhanced 
proliferative capacity and significantly increased ATP pro-
duction, along with preserved physiological polarization, 
and markedly reduced toxicity and ROS production com-
pared to control cells that were treated with placebo [128]. 
The authors conducted a separate experiment using a non-
survival ex vivo model of donation-after-cardiac death kid-
ney transplantation, in which donor kidneys were treated 
with mitochondria prior to perfusion at room temperature 
for 24 h. Compared to placebo-treated control kidneys, 
Raman spectroscopy of perfusate samples revealed fewer 
molecular species in mitochondria-treated kidneys, which 
indicates stability. Additionally, mitochondrial transplanta-
tion resulted in less kidney damage while analysis of RNA 
sequencing showed increased mitochondrial bioenergetics 
and downregulated expression of pro-inflammatory genes 
[128]. Also, supplementation of organ preservation solution 
with mitochondria-targeted AP39 and sodium thiosulfate at 
21ºC and 4ºC for 4 and 24 h respectively and reperfused for 
4 h prevented apoptosis, protected against IRI and improved 
renal graft function in ex vivo porcine and rat models of 
kidney transplantation [129, 130]. These experimental find-
ings suggest that targeting the mitochondria by mitochon-
drial transplantation or by pharmacological approach could 
offer an innovative strategy against IRI in organ transplanta-
tion as well as in other aspects of mitochondrial medicine. 
Although these empirical findings are promising, mito-
chondrial transplantation therapy is a controversial topic, as 
there are several unsolved issues including mitochondrial 
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immunogenicity, methodology for using preserved mito-
chondria, mitochondrial long-term storage, mitochondrial 
yield and purity, maintenance of mitochondrial integrity dur-
ing transplantation, and transplant rejection [131]. For exam-
ple, immune responses in mitochondrial transplantation have 
become a subject of debate. While no immune response was 
observed following syngeneic and allogeneic mitochondrial 
transplantation in murine, lagomorph and porcine models 
[132–134], several other studies have reported significant 
immune response following mitochondrial transplantation, 
which was characterized by activated vascular endothelial 
cells, markedly elevated plasma levels of pro-inflammatory 
cytokines, chemokines, mitochondria-derived DAMPs, 
which correlated with early allograft dysfunction and 
increased graft rejection [135, 136]. This controversy under-
scores the fact that mitochondrial transplantation therapy is 
still far from being fully effective, and that there is the need 
for further understanding of the mechanisms underlying an 
immune response and other challenges associated with mito-
chondrial transplantation.

Using a rat model of syngeneic kidney transplantation, 
intravenous administration of siRNA directed at p53 (siP53) 
after 40 min of warm ischemia and 5 h of cold storage (cold 
ischemia) and prior to reperfusion resulted in significantly 
less apoptosis of proximal tubular epithelial cells and cast 
formation compared to control group that received saline 
[127]. In addition, siP53 preserved renal function, which 
was evidenced by significantly reduced serum creatinine 
level and increased renal blood flow relative to control rats 
[127]. Similarly, intravenous injection of siP53 following 4 h 
of ischemia in rats markedly reduced the upregulated p53 
mRNA and protein expression and attenuated p53-mediated 
apoptosis in a dose- and time-dependent manner [137]. This 
observation corresponded with significantly less injury score 
in the cortical and medullary compartments of the kidney 
when compared to control group. The authors observed the 
same renal protection by siP53 in a rat model of cisplatin-
induced acute kidney injury [137]. It is worth noting that 
proximal tubular epithelial cells are the first to undergo 
apoptosis, as they are the most sensitive to hypoxia and are 
also the primary site for siRNA uptake in the kidney. There-
fore, p53 could be a therapeutic target in attenuating IRI in 
organ transplantation and other diseases. In a porcine model 
of kidney autotransplantation, Yang and colleagues [138] 
also showed that local and systemic administration of siRNA 
targeted at caspase-3 during 24 h of cold ischemia followed 
by reperfusion of renal autografts substantially downregu-
lated caspase-3 mRNA and protein expression, reduced 
apoptosis and inflammation, and tubulointerstitial damage 
and improved renal function in comparison with two control 
groups that received either negative siRNA or no siRNA. In 
a rat model of lung transplantation, increased cold ischemic 
time positively correlated with apoptosis of graft cells after 

graft reperfusion via mitochondrial permeability transition 
pore opening along with protein kinase C (PKC) activation 
[21, 22]. Unsurprisingly, treatment with the PKC inhibitor, 
δV1-1, during prolonged cold ischemic time inhibited mito-
chondrial translocation of PKC and p53, and thus prevented 
apoptosis, while siRNA reduced cytokine production and 
further inhibited apoptosis [21]. These reports were later 
confirmed in human lung epithelial and endothelial cells in a 
simulated lung transplant setting [139] as well as in rat mod-
els of liver and lung transplantation in which diannexin (a 
recombinant human annexin V homodimer) was used [140, 
141]. Following these promising experimental results, treat-
ment with diannexin proved protective in a phase II clini-
cal trial (NCT00615966) in kidney transplant recipients by 
reducing the incidence of DGF and days on dialysis com-
pared to placebo-treated control group [142]. This has paved 
the way for testing of more apoptosis-based therapeutic 
agents in clinical organ transplantation. Along the same line 
of clinical investigation, plasma levels of the apoptotic mark-
ers, M30 and M65, were elevated at post-transplant days 
1 and 2 in lung transplant recipients who developed grade 
3 of PGD at 72 h, which were associated with increased 
duration of mechanical ventilation, longer hospital stay and 
higher mortality [143, 144]. Thus, these apoptotic markers 
may represent excellent diagnostic markers of PGD3 and a 
therapeutic target in organ transplantation.

Also, silencing of caspase-8 and Fas by inferior vena 
cava delivery of short hairpin RNA (shRNA) resulted in 
renal protection against IRI in a uninephrectomized mouse 
model in which renal artery was clamped for 60 min at 
32 °C. Renal protection was characterized by reduced renal 
tubular injury score, and reduced levels of serum creatinine 
and blood urea nitrogen [145]. The deleterious role of cas-
pase-3 and other pro-apoptotic factors was also observed 
in mouse model of DCD liver transplantation in which the 
authors observed severe liver allograft injury, which was 
hallmarked by increased Kupffer cell apoptosis, chemokine 
expression, and influx of inflammatory cells in liver allo-
grafts, high mortality of transplant recipient mice. This was 
associated with activation of TLR4-ERK1/2-Fas/FasL-cas-
pase-3 signaling pathway in liver allografts [146]. However, 
infusion of mesenchymal stem cells significantly inhibited 
this pathway, reduced Kupffer cell apoptosis and inflam-
mation, which ultimately culminated in prolonged recipi-
ent survival [146]. Using an in vitro model of hepatic IRI, 
primed human amnion-derived mesenchymal stromal/stem 
cells significantly inhibited the activation of caspase 3/7, 
and thus prevented apoptosis during early reperfusion period 
[147], which was later found to be enhanced by PPARβ/δ 
(peroxisome-proliferator-activated receptor) in myocardial 
IRI [148]. Another study also showed high expression of 
caspase-3-positive cells in liver allografts after reperfusion, 
which positively correlated with hypertransaminasemia, 
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increased TNF-α level and mitochondrial ROS produc-
tion, and contributed to allograft dysfunction [149], while 
IRI-induced apoptosis was also reported in acinar cells in 
experimental pancreas transplantation [150]. Collectively, 
these pieces of preclinical and clinical evidence suggest that 
targeting pro-apoptotic proteins in the apoptotic signaling 
pathways is a potential approach to attenuating or preventing 
IRI and complications in organ transplantation.

Autophagy in allograft ischemia–reperfusion injury

Autophagy is a regulated cellular process of self-degra-
dation during which damaged cytoplasmic organelles or 
denatured proteins and other non-functional intracellular 
macromolecules are degraded by lysosomes through forma-
tion of double-membrane vesicles called autophagosomes 
or autophagic vacuoles, to which lysosomal enzymes are 
delivered. The products of lysosomal degradative action 
are reused for biosynthetic processes and energy produc-
tion. Thus, autophagy is a homeostatic process which is 
mainly mediated by hormones and regulated by autophagy-
related proteins, and could be considered as an inducible 
adaptive response to cellular stress such as hypoxia due to 
ischemia and oxidative stress during reperfusion after organ 
transplantation.

Autophagy plays an important role in protecting against 
IRI and functions to ensure cell survival during periods of 
starvation. However, dysregulation or excessive activation 
of autophagy, such as during prolonged cold preservation of 
organ grafts, triggers autophagic cell death without caspase 
involvement [151, 152]. In a rat model of orthotopic lung 
transplantation, preservation of lung allografts under cold 
ischemic condition for 1, 3, 6, 9, and 12 h led to increased 
ROS production, enhanced autophagy and aggravated lung 
IRI in a time-dependent manner via mammalian target of 
rapamycin (mTOR) signaling pathway [153]. However, 
addition of 3-methyladenine (3-MA; autophagy inhibitor) 
or oligomycin (ATP synthase inhibitor) to the lung pres-
ervation solution during cold ischemia decreased ROS 
production, autophagy and ameliorated lung IRI [154]. In 
the same study, supplementation of the lung preservation 
solution with rapamycin (autophagy activator) worsened 
lung IRI [154]. Reports from a mouse model of hepatic IRI 
demonstrated that short-term starvation induced expression 
of hepatocellular autophagy both in vivo and in vitro and 
ameliorated hepatic IRI via activation of Sirt1-autophagy 
signaling pathway. In accord, inhibition of Sirt1-autophagy 
pathway with sirtinol aggravated hepatic IRI [155]. In a 
rat model of hepatic IRI, intraperitoneal administration of 
baicalein (another autophagy activator) 1 h prior to warm 
ischemia improved liver function and preserved liver ultra-
structure, with increased expression of the autophagic 
marker, LC3B-II, as well hepatic heme oxygenase (HO)-1 

expression. Remarkably, inhibition of the baicalein-induced 
autophagy with 3-MA attenuated this protection [156]. 
Using primary rat hepatocytes, the same authors observed 
hepatocyte protection by baicalein-induced autophagy 
against hypoxia-reoxygenation injury, which was attenu-
ated by 3-MA or siRNA targeted at Atg7 (autophagy effec-
tor enzyme). In addition, inhibition of HO-1 activity with 
tin protoporphyrin IX or HO-1 siRNA abolished baicalein-
mediated autophagy and worsened hepatocellular injury 
[156]. It is important to note that at the ischemic phase of 
IRI when nutrient is depleted, autophagy degrades non-
functional cytoplasmic proteins and other cellular structures, 
thereby promoting nutrient mobilization for biosynthesis and 
energy production (e.g. amino acids, nucleotides, lipids and 
carbohydrates) to support critical life activities of cells, and 
thus preventing apoptotic and necrotic cell death via activa-
tion of phosphoinositide 3-kinase/Akt/mTOR pathway [157, 
158]. However, excessive activation of autophagy during 
reperfusion is unable to rescue cells when mitochondria 
generate ATP and  Ca2+ accumulate in the mitochondria and 
autophagy is unable to completely neutralize reperfusion 
pressure, leading to cell damage and cell death [155].

Mitophagy in allograft ischemia–reperfusion injury

Considering the critical role of mitochondria in the regula-
tion of cellular energy homeostasis and cell death as dis-
cussed in previous sections, damaged or dysfunctional mito-
chondria contribute significantly to oxidative stress and cell 
death through increased ROS production and release of pro-
apoptotic proteins. Therefore, selective clearance of these 
organelles in a timely manner before they activate cell death 
is an essential process for cell survival and homeostasis. This 
selective removal of damaged or dysfunctional mitochon-
dria is via autophagic mechanism termed mitophagy, and 
it serves as a mechanism to maintain mitochondrial quality 
and quantity control. Thus, mitophagy is a cytoprotective 
response that favors adaptation to stress such as ischemia and 
reperfusion. However, over-production of ROS and apop-
totic proteases can inactivate mitophagy and cause cell death 
[159, 160]. Mitophagy is regulated by a signaling pathway 
known as PTEN-induced putative kinase 1 (PINK1)/Parkin 
pathway. PINK1 is a mitochondria-targeted kinase that pro-
tects cells from stress-induced mitochondrial dysfunction 
while Parkin is a cytosolic ubiquitin E3 ligase in the ubiq-
uitin–proteasome system, tagging damaged and unwanted 
proteins with ubiquitin [161]. When mitochondria are dam-
aged or become dysfunctional, mitochondrial transloca-
tion of PINK1 is limited to the mitochondrial outer mem-
brane, where PINK1 recruits Parkin to mediate mitophagy 
via activation of its ubiquitin ligase activity, including 
recruitment of mitophagy receptors to link mitochondria 
to autophagosomes through interaction with LC3 protein 
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for autophagic engulfment of the damaged or dysfunctional 
mitochondria and then degradation [161–163]. Several ani-
mal models of renal IRI and corresponding in vitro studies 
have shown the protective effects of PINK1 and Parkin and 
other inducers of mitophagy such as BNIP3. In these stud-
ies, knockout of PINK1, Parkin or BNIP3 genes abrogated 
mitophagy in renal proximal tubular epithelial cells and 
worsened renal IRI as evidenced by enhanced accumula-
tion of damaged mitochondrial, ROS production, increased 
cell death and inflammatory response after IRI [164–166]. 
However, overexpression of these genes induced mitophagy, 
improved mitochondrial function, enhanced cell survival, 
and ultimately protected against renal IRI [164–166]. The 
upregulation of mitophagy by these genes and their protec-
tive effects were also observed in mouse models of cardiac 
and hepatic IRI [161, 167], human liver endothelial cells 
[167] and after ischemic preconditioning, where a brief 
period of non-lethal ischemia–reperfusion protected against 
subsequent prolonged period of IRI [168]. These laboratory 
findings suggest that mitophagy plays an important role in 
preserving mitochondrial quality control, cell survival and 
organ function during IRI, and therefore could represent an 
important protective mechanism against IRI and could be 
extended to organ transplantation setting by pharmacologi-
cal interventions prior to or during ischemia and reperfusion 
of organ grafts.

Graft Immunogenicity and immune 
response in organ transplantation

Cell death and IRI due to transplant procedure involving 
donor organ procurement, cold storage, and engraftment 
activate the innate immune system in which various com-
ponents contribute to further cell death, graft inflammation, 
graft rejection, and ultimately negatively impacting both 
short- and long-term post-transplant outcomes. While apop-
tosis is non-inflammatory or protolerogenic and results in 
timely phagocytosis of dying cells without immune system 
activation [169], necrosis involves activation of the immune 
system in which damaged and dying cells release potent pro-
inflammatory contents into the extracellular space before 
death [16–18]. In the transplanted graft, graft-infiltrating 
monocytes associated with the transplant procedure detect 
various stimuli that lead to a series of inflammatory events 
induced by danger molecules derived from dead allogeneic 
donor cells. As part of the mechanism of immunological 
defense, the innate immune system recognizes these dan-
ger molecules as pathogen-associated molecular patterns 
(PAMPs). The inflammatory response is also triggered by 
damage-associated molecular patterns (DAMPs) from the 
donor organ parenchyma after sterile inflammatory stimuli, 
which occurs during anastomosis in the organ transplant 

procedure [170, 171]. It has become evident that follow-
ing the release of these danger molecules including ATP 
into the extracellular compartment, they induce immuno-
metabolic changes in activated immune cells, causing these 
cells to redirect their metabolic flux since they have dif-
ferent bioenergetics and biosynthesis compared to resting 
cells [172–174]. As mentioned in the section on necroptosis, 
donor DAMPs (and PAMPs) are recognized by pattern rec-
ognition receptors (PRRs) such as Toll-like receptors (TLRs; 
e.g. TLR2 and TLR4) and complement receptors (another 
component of innate immunity) on the surface and cyto-
plasm of myeloid cells such as monocytes and macrophages, 
resulting in graft inflammation, development of acute and 
chronic graft rejection and early and long-term graft dys-
function [175–180]. Following recognition of PAMPs and 
DAMPs by PRRs, PRRs activate downstream signaling 
pathways, which in turn, activate innate immune responses 
and consequently initiate antigen-specific adaptive immune 
responses. This occurs due to the action of PRRs, producing 
pro-inflammatory cytokines and chemokines along with acti-
vation of costimulatory molecule expression and amplifica-
tion of antigen-processing and antigen presentation by cells 
of the innate immune system [181–184]. Considering that 
activation of TLRs facilitate leukocyte migration and infil-
tration, as well as production of pro-inflammatory cytokines 
and chemokines and other pathological processes that result 
in graft rejection and dysfunction, research into the develop-
ment of inhibitors that target TLR signaling pathway is gain-
ing interest in the field of organ transplantation, and when 
successful, could open novel avenues to prevent or reduce 
post-transplant complications such as graft rejection, and 
improve both short- and long-term post-transplant outcomes.

Conclusion

IRI is a critical pathological condition in which cell death 
plays a major contributory role, and negatively impacts 
post-transplant outcomes. As there are no therapeutic strat-
egies currently available to prevent the development of IRI-
induced allograft damage, inhibition of the various forms of 
cell death as discussed above, holds a great clinical promise 
in the quest to preventing IRI and improving allograft qual-
ity and function that would lead to a long-term success of 
organ transplantation. Also, some of the components in the 
mechanisms of cell death in IRI could represent non-inva-
sive diagnostic markers for IRI-induced allograft complica-
tions such as delayed graft function, graft rejection, chronic 
graft rejection, primary graft dysfunction and chronic graft 
dysfunction.
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