Skip to main content

Advertisement

Log in

MicroRNA -21 expression as an auxiliary diagnostic biomarker of acute brucellosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

This study aimed to measure the expression levels of peripheral blood miRNAs in brucellosis and their involvement in the different phases of the brucellosis.

Methods

The expression levels of miRNAs including miR-210, miR-155, miR-150, miR-146a, miR-139-3p, miR-125a-5p, miR-29 and miR-21 were quantified in 57 brucellosis patients subgrouped into acute, under treatment & relapse phase and 30 healthy controls (HCs) using real-time polymerase chain reaction (RT-PCR). The receiver operating characteristic (ROC) analysis curve analysis was performed to find a biomarker for discrimination of different phases of brucellosis.

Results

The expression of miR-155, miR-146a, miR-125a-5p, miR-29, and miR-21 was found to be elevated in the acute brucellosis patients compared to HCs. miR-29 changed in under-treatment patients, while miR-139-3p and miR-125a-5p showed alterations in relapse cases. The ROC curve analysis depicted the potential involvement of miR-21 in the pathogenesis of acute brucellosis.

Conclusion

The expression level of miR-21 is significantly augmented in acute brucellosis and has the potential to be a contributing diagnostic factor for acute infection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG (2015) Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. Am J Pathol 185:1505–1517

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV (2006) The new global map of human brucellosis. Lancet Infect Dis 6:91–99

    Article  PubMed  Google Scholar 

  3. Golshani M, Buozari S (2017) A review of brucellosis in Iran: epidemiology, risk factors, diagnosis, control, and prevention. Iran Biomed J 21:349

    PubMed  PubMed Central  Google Scholar 

  4. Abedi A-S, Hashempour-Baltork F, Alizadeh AM et al (2020) The prevalence of Brucella spp. in dairy products in the middle east region: a systematic review and meta-analysis. Acta Trop 202:105241

    Article  CAS  PubMed  Google Scholar 

  5. Hosseini SM, Abbasalipourkabir R, Jalilian FA et al (2019) Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: a pharmacodynamics study on J774A. 1 cell line. Antimicrob Resist Infect Control 8:1–12

    Article  CAS  Google Scholar 

  6. Zowghi E, Ebadi AG, Yarahmadi M (2008) Isolation and identification of Brucella organisms in Iran. Arch Clin Infect Dis 3:185–188

    Google Scholar 

  7. Kazemi S, Mirzaei R, Sholeh M et al (2021) microRNAs in human brucellosis: a promising therapeutic approach and biomarker for diagnosis and treatment. Immun Inflamm Dis 9:1209–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Long H, Wang X, Chen Y, Wang L, Zhao M, Lu Q (2018) Dysregulation of microRNAs in autoimmune diseases: pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett 428:90–103

    Article  CAS  PubMed  Google Scholar 

  9. Drury RE, O’Connor D, Pollard AJ (2017) The clinical application of microRNAs in infectious disease. Front Immunol 8:1182

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang D, Yi Z, Fu Y (2019) Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation. J Cell Biochem 120:5889–5896

    Article  CAS  PubMed  Google Scholar 

  11. Lee DY, Jeyapalan Z, Fang L et al (2010) Expression of versican 3′-untranslated region modulates endogenous microRNA functions. PLoS ONE 5:e13599

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  12. Zabaglia LM, Sallas ML, Santos MPD et al (2018) Expression of miRNA-146a, miRNA-155, IL-2, and TNF-α in inflammatory response to Helicobacter pylori infection associated with cancer progression. Ann Hum Genet 82:135–142

    Article  CAS  PubMed  Google Scholar 

  13. Castañeda-Ramírez A, González-Rodríguez D, Hernández-Pineda JA, Verdugo-Rodríguez A (2015) Blocking the expression of syntaxin 4 interferes with initial phagocytosis of Brucella melitensis in macrophages. Can J Vet Res 79:39–45

    PubMed  PubMed Central  Google Scholar 

  14. Xiao B, Liu Z, Li B-S et al (2009) Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis 200:916–925

    Article  CAS  PubMed  Google Scholar 

  15. Budak F, Bal SH, Tezcan G, Akalın H, Goral G, Oral HB (2016) Altered expressions of miR-1238–3p, miR-494, miR-6069, and miR-139–3p in the formation of chronic brucellosis. J Immunol Res 2016:1–11

    Article  Google Scholar 

  16. Singh J, Dhanoa JK, Choudhary RK et al (2020) MicroRNA expression profiling in PBMCs of Indian water Buffalo (Bubalus bubalis) infected with Brucella and Johne’s disease. ExRNA 2:1–13

    Article  Google Scholar 

  17. Zhang C, Fu Q, Ding M et al (2019) Comprehensive analysis of differentially expressed serum microRNAs in humans responding to Brucella infection. Ann Transl Med 7:301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Condrat CE, Thompson DC, Barbu MG et al (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9:276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rahmanpour M, Keramat F, Jourghasemi S et al (2019) Direct correlation between Th1 and Th17 responses in immunity to Brucella infection. Microbes Infect 21:441–448

    Article  CAS  PubMed  Google Scholar 

  20. Eini P, Keramat F, Hasanzadehhoseinabadi M (2012) Epidemiologic, clinical and laboratory findings of patients with brucellosis in Hamadan, west of Iran. J Res Health Sci 12:105–108

    PubMed  Google Scholar 

  21. Zhou Y, Zhou B, Pache L et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  22. Virga F, Cappellesso F, Stijlemans B et al (2021) Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation. Sci Adv 7:eabf0466

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Bandyopadhyay S, Long ME, Allen L-AH (2014) Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response. PLoS ONE 9:e109525

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  24. Rezaeepoor M, Pourjafar M, Tahamoli-Roudsari A, Basiri Z, Hajilooi M, Solgi G (2020) Altered expression of microRNAs may predict therapeutic response in rheumatoid arthritis patients. Int Immunopharmacol 83:106404

    Article  CAS  PubMed  Google Scholar 

  25. Cui B, Liu W, Wang X et al (2017) Brucella Omp25 upregulates miR-155, miR-21-5p, and miR-23b to inhibit interleukin-12 production via modulation of programmed death-1 signaling in human monocyte/macrophages. Front Immunol 8:708

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cremer T, Ravneberg D, Clay C, Piper-Hunter M, Marsh C (2009) MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS ONE 4:e8508

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  27. Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci 103:12481–12486

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Zheng K, Chen D-S, Wu Y-Q et al (2012) MicroRNA expression profile in RAW264. 7 cells in response to Brucella melitensis infection. Int J Biol Sci 8:1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Monk CE, Hutvagner G, Arthur JSC (2010) Regulation of miRNA transcription in macrophages in response to Candida albicans. PLoS ONE 5:e13669

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  30. Cameron JE, Yin Q, Fewell C et al (2008) Epstein-barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol 82:1946–1958

    Article  CAS  PubMed  Google Scholar 

  31. Li D, Kong C, Tsun A et al (2015) MiR-125a-5p decreases the sensitivity of treg cells toward IL-6-mediated conversion by inhibiting IL-6R and STAT3 expression. Sci Rep 5:14615

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Wang Y, Chen C, Xu X-d et al (2020) Levels of miR-125a-5p are altered in mycobacterium avium-infected macrophages and associate with the triggering of an autophagic response. Microbes Infect Microbes Infect 22:31–39

    Article  CAS  PubMed  Google Scholar 

  33. Potenza N, Papa U, Mosca N, Zerbini F, Nobile V, Russo A (2011) Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Res 39:5157–5163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Banerjee S, Cui H, Xie N et al (2013) miR-125a-5p regulates differential activation of macrophages and inflammation*. J Biol Chem 288:35428–35436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu N, Wang L, Sun C, Yang L, Sun W, Peng Q (2016) MicroRNA-125b-5p suppresses brucella abortus intracellular survival via control of A20 expression. BMC Microbiol 16:171

    Article  PubMed  PubMed Central  Google Scholar 

  36. Steiner David F, Thomas Molly F, Hu Joyce K et al (2011) MicroRNA-29 regulates T-box transcription factors and Interferon-γ production in helper T cells. Immunity 35:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akbulut H, Celik I, Akbulut A (2007) Cytokine levels in patients with brucellosis and their relations with the treatment. Indian J Med Microbiol 25:387

    Article  CAS  PubMed  Google Scholar 

  38. Gross A, Terraza A, Ouahrani-Bettache S, Liautard J-P, Dornand J (2000) In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 68:342–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Y, Sun G, Wang L (2022) MiR-21 participates in LPS-induced myocardial injury by targeting Bcl-2 and CDK6. Inflamm Res 71:205–214

    Article  CAS  PubMed  Google Scholar 

  40. He Y, Reichow S, Ramamoorthy S et al (2006) Brucella melitensis triggers time-dependent modulation of apoptosis and down-regulation of mitochondrion-associated gene expression in mouse macrophages. Infect Immun 74:5035–5046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao Z, Hao J, Li X, Chen Y, Qi X (2019) MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in mycobacterium tuberculosis-infected macrophages. FEBS Lett 593:1326–1335

    Article  CAS  PubMed  Google Scholar 

  42. Sathiyaseelan J, Goenka R, Parent M et al (2006) Treatment of Brucella-susceptible mice with IL-12 increases primary and secondary immunity. Cell Immunol 243:1–9

    Article  CAS  PubMed  Google Scholar 

  43. Li S, Fan Q, He S, Tang T, Liao Y, Xie J (2015) MicroRNA-21 negatively regulates treg cells through a TGF-β1/Smad-independent pathway in patients with coronary heart disease. Cell Physiol Biochem 37:866–878

    Article  CAS  PubMed  Google Scholar 

  44. Rafiei A, Ardestani SK, Kariminia A, Keyhani A, Mohraz M, Amirkhani A (2006) Dominant Th1 cytokine production in early onset of human brucellosis followed by switching towards Th2 along prolongation of disease. J Infect 53:315–324

    Article  PubMed  Google Scholar 

  45. Elfaki MG, Al-Hokail AA (2009) Transforming growth factor β production correlates with depressed lymphocytes function in humans with chronic brucellosis. Microbes Infect 11:1089–1096

    Article  CAS  PubMed  Google Scholar 

  46. Maheshwari A, Kelly DR, Nicola T et al (2011) TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology 140:242–253

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Xu W, Shao Q, Ding Q (2017) miR-21 silencing ameliorates experimental autoimmune encephalomyelitis by promoting the differentiation of IL-10-producing B cells. Oncotarget 8:94069

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xavier MN, Winter MG, Spees AM et al (2013) CD4+ T cell-derived IL-10 promotes Brucella abortus persistence via modulation of macrophage function. PLoS Pathog 9:e1003454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Brandt S, Medeiros A et al (2015) MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation. PLoS ONE 10:e0115855

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yao T, Lin Z (2012) MiR-21 is involved in cervical squamous cell tumorigenesis and regulates CCL20. Biochim Biophys Acta Mol Basis Dis 1822:248–260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from Hamadan University of Medical Science.

Funding

This study was funded by Hamadan University of Medical Sciences (Grant Number: # 9607044220), Hamadan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MR: Investigation, conducting of the experiments, analysis, writing. FK: Brucellosis diagnosis and introducing patients. SJ: Investigation, conducting of the experiments. MR: Investigation, conducting of the experiments. AL: Editing and analysis. MH: Project administration, funding acquisition GS: Supervision, Review, Editing.

Corresponding authors

Correspondence to Mehrdad Hajilooi or Ghasem Solgi.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethical approval

This study was approved by the Ethics Committee of Hamadan University of Medical Sciences (No: IR.UMSHA.REC.1396.441).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2023_9193_MOESM1_ESM.tif

Supplementary file1 (TIF 97 KB)—The network was designed using the STRING11.0 database. Red nodes represent proteins with a negative regulatory role in cytokine production by macrophage. Blue nodes represent related molecules that have roles in the negative regulation of cytokines. Green, yellow, and purple nodes were used for indicating molecules that participate in negative regulation of immune response, immune effector process, and inflammatory responses, respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaeepoor, M., Keramat, F., Jourghasemi, S. et al. MicroRNA -21 expression as an auxiliary diagnostic biomarker of acute brucellosis. Mol Biol Rep 51, 264 (2024). https://doi.org/10.1007/s11033-023-09193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09193-8

Keywords

Navigation