Skip to main content

Advertisement

Log in

Molecular basis and current insights of atypical Rho small GTPase in cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  1. Rojas AM, Fuentes G, Rausell A, Valencia A (2012) The ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol 196(2):189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science, New York, N.Y. 294(5545):1299-1304

    Google Scholar 

  3. Freymann DM, Keenan RJ, Stroud RM, Walter P (1999) Functional changes in the structure of the SRP GTPase on binding GDP and Mg2 + GDP. Nat Struct Biol 6(8):793–801

    Article  CAS  PubMed  Google Scholar 

  4. Donovan S, Shannon KM, Bollag G (2002) GTPase activating proteins: critical regulators of intracellular signaling. Biochim Biophys Acta 1602(1):23–45

    CAS  PubMed  Google Scholar 

  5. Seabra MC (1998) Membrane association and targeting of prenylated ras-like GTPases. Cell Signal 10(3):167–172

    Article  CAS  PubMed  Google Scholar 

  6. Takai Y, Kaibuchi K, Kikuchi A, Kawata M (1992) Small GTP-binding proteins. Int Rev Cytol 133:187–230

    Article  CAS  PubMed  Google Scholar 

  7. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9(9):690–701

    Article  CAS  PubMed  Google Scholar 

  8. Mouawad F, Tsui H, Takano T (2013) Role of Rho-GTPases and their regulatory proteins in glomerular podocyte function. Can J Physiol Pharmacol 91(10):773–782

    Article  CAS  PubMed  Google Scholar 

  9. Matsuda J, Asano-Matsuda K, Kitzler TM, Takano T (2021) Rho GTPase regulatory proteins in podocytes. Kidney Int 99(2):336–345

    Article  CAS  PubMed  Google Scholar 

  10. Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2(2):133–142

    Article  PubMed  Google Scholar 

  11. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6(2):167–180

    Article  CAS  PubMed  Google Scholar 

  12. Aspenström P (2020) Fast-cycling Rho GTPases. Small GTPases 11(4):248–255

    Article  PubMed  Google Scholar 

  13. Voena C, Chiarle R (2019) RHO Family GTPases in the Biology of Lymphoma. Cells, 8(7)

  14. Li X et al (2002) The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol 22(4):1158–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Foster R et al (1996) Identification of a novel human rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 16(6):2689–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aspenström P (2022) The role of fast-Cycling atypical RHO GTPases in Cancer. Cancers, 14(8)

  17. Sugawara R, Ueda H, Honda R (2019) Structural and functional characterization of fast-cycling RhoF GTPase. Biochem Biophys Res Commun 513(2):522–527

    Article  CAS  PubMed  Google Scholar 

  18. Aspenström P, Ruusala A, Pacholsky D (2007) Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 313(17):3673–3679

    Article  PubMed  Google Scholar 

  19. Ahmad Mokhtar AMB et al (2021) A complete survey of RhoGDI targets reveals novel interactions with atypical small GTPases. Biochemistry 60(19):1533–1551

    Article  CAS  PubMed  Google Scholar 

  20. Haga RB, Ridley AJ (2016) Rho GTPases: regulation and roles in cancer cell biology. Small GTPases 7(4):207–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blom M et al (2017) The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration. Exp Cell Res 352(2):255–264

    Article  CAS  PubMed  Google Scholar 

  22. Jaiswal M, Fansa EK, Dvorsky R, Ahmadian MR (2013) New insight into the molecular switch mechanism of human Rho family proteins: shifting a paradigm. Biol Chem 394(1):89–95

    Article  CAS  PubMed  Google Scholar 

  23. Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582(14):2093–2101

    Article  CAS  PubMed  Google Scholar 

  24. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    Article  CAS  PubMed  Google Scholar 

  25. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  CAS  PubMed  Google Scholar 

  26. Pedersen E, Brakebusch C (2012) Rho GTPase function in development: how in vivo models change our view. Exp Cell Res 318(14):1779–1787

    Article  CAS  PubMed  Google Scholar 

  27. Paysan L, Piquet L, Saltel F, Moreau V (2016) Rnd3 in Cancer: a review of the evidence for Tumor promoter or suppressor. Mol Cancer Research: MCR 14(11):1033–1044

    Article  CAS  PubMed  Google Scholar 

  28. Michaelson D et al (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 152(1):111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386

    Article  CAS  PubMed  Google Scholar 

  30. Roberts PJ et al (2008) Rho family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 283(37):25150–25163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winter-Vann AM, Casey PJ (2005) Post-prenylation-processing enzymes as new targets in oncogenesis. Nat Rev Cancer 5(5):405–412

    Article  CAS  PubMed  Google Scholar 

  32. Cox AD, Der CJ (1992) Protein prenylation: more than just glue? Curr Opin Cell Biol 4(6):1008–1016

    Article  CAS  PubMed  Google Scholar 

  33. Berzat AC et al (2005) Transforming activity of the rho family GTPase, Wrch-1, a wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J Biol Chem 280(38):33055–33065

    Article  CAS  PubMed  Google Scholar 

  34. Tao W et al (2001) Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 15(14):1796–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saras J, Wollberg P, Aspenström P (2004) Wrch1 is a GTPase-deficient Cdc42-like protein with unusual binding characteristics and cellular effects. Exp Cell Res 299(2):356–369

    Article  CAS  PubMed  Google Scholar 

  36. Shutes A, Berzat AC, Cox AD, Der CJ (2004) Atypical mechanism of regulation of the Wrch-1 Rho family small GTPase, vol 14. CB, Current Biology, pp 2052–2056. 22

    Google Scholar 

  37. Alan JK et al (2010) Regulation of the Rho family small GTPase Wrch-1/RhoU by C-terminal tyrosine phosphorylation requires Src. Mol Cell Biol 30(17):4324–4338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334(6053):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chenette EJ, Abo A, Der CJ (2005) Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase. J Biol Chem 280(14):13784–13792

    Article  CAS  PubMed  Google Scholar 

  40. Chenette EJ, Mitin NY, Der CJ (2006) Multiple sequence elements facilitate chp Rho GTPase subcellular location, membrane association, and transforming activity. Mol Biol Cell 17(7):3108–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pasqualucci L et al (2001) Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell Lymphomas. Nature 412(6844):341–346

    Article  CAS  PubMed  Google Scholar 

  42. Lahousse S et al (2004) Structural features of hematopoiesis-specific RhoH/ARHH gene: high diversity of 5’-UTR in different hematopoietic lineages suggests a complex post-transcriptional regulation. Gene 343(1):55–68

    Article  CAS  PubMed  Google Scholar 

  43. Chae H-D, Lee KE, Williams DA, Gu Y (2008) Cross-talk between RhoH and Rac1 in regulation of actin cytoskeleton and chemotaxis of hematopoietic progenitor cells. Blood 111(5):2597–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Troeger A et al (2013) A unique carboxyl-terminal insert domain in the hematopoietic-specific, GTPase-deficient Rho GTPase RhoH regulates post-translational processing. J Biol Chem 288(51):36451–36462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rivero F, Dislich H, Glöckner G, Noegel AA (2001) The Dictyostelium Discoideum family of Rho-related proteins. Nucleic Acids Res 29(5):1068–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramos S, Khademi F, Somesh BP, Rivero F (2002) Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene 298(2):147–157

    Article  CAS  PubMed  Google Scholar 

  47. Hancock JF, Cadwallader K, Paterson H, Marshall CJ (1991) A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J 10(13):4033–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berthold J, Schenkova K, Rivero F (2008) Rho GTPases of the RhoBTB subfamily and tumorigenesis. Acta Pharmacol Sin 29(3):285–295

    Article  CAS  PubMed  Google Scholar 

  49. Cokol M, Nair R, Rost B (2000) Finding nuclear localization signals. EMBO Rep 1(5):411–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aspenström P, Fransson A, Saras J (2004) Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377(Pt 2):327–337

    Article  PubMed  PubMed Central  Google Scholar 

  51. Long M, Kranjc T, Mysior MM, Simpson JC (2020) RNA interference screening identifies novel roles for RhoBTB1 and RhoBTB3 in membrane trafficking events in mammalian cells. Cells, 9(5)

  52. Espinosa EJ, Calero M, Sridevi K, Pfeffer SR (2009) RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell 137(5):938–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berthold J et al (2008) Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes–evidence for an autoregulatory mechanism. Exp Cell Res 314(19):3453–3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ji W, Rivero F (2016) Atypical Rho GTPases of the RhoBTB Subfamily: roles in vesicle trafficking and Tumorigenesis. Cells, 5(2)

  55. Basbous S, Azzarelli R, Pacary E, Moreau V (2021) Pathophysiological functions of rnd proteins. Small GTPases 12(5–6):336–357

    Article  CAS  PubMed  Google Scholar 

  56. Boureux A, Vignal E, Faure S, Fort P (2007) Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 24(1):203–216

    Article  CAS  PubMed  Google Scholar 

  57. Ishikawa Y, Katoh H, Negishi M (2003) A role of Rnd1 GTPase in dendritic spine formation in hippocampal neurons. J Neuroscience: Official J Soc Neurosci 23(35):11065–11072

    Article  CAS  Google Scholar 

  58. Mouly L et al (2019) The RND1 small GTPase: main functions and emerging role in Oncogenesis. Int J Mol Sci, 20(15)

  59. Oinuma I, Kawada K, Tsukagoshi K, Negishi M (2012) Rnd1 and Rnd3 targeting to lipid raft is required for p190 RhoGAP activation Molecular Biology of the Cell, 23(8): p. 1593–1604

  60. Riento K et al (2003) RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23(12):4219–4229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tanaka H et al (2002) Vps4-A (vacuolar protein sorting 4-A) is a binding partner for a novel Rho family GTPase, Rnd2. Biochem J 365(Pt 2):349–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Madigan JP et al (2009) Regulation of Rnd3 localization and function by protein kinase C alpha-mediated phosphorylation. Biochem J 424(1):153–161

    Article  CAS  PubMed  Google Scholar 

  63. Riou P et al (2013) 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins. Cell 153(3):640–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Blom M, Reis K, Aspenström P (2018) RhoD localization and function is dependent on its GTP/GDP-bound state and unique N-terminal motif. Eur J Cell Biol 97(6):393–401

    Article  CAS  PubMed  Google Scholar 

  65. Blom M et al (2015) RhoD is a golgi component with a role in anterograde protein transport from the ER to the plasma membrane. Exp Cell Res 333(2):208–219

    Article  CAS  PubMed  Google Scholar 

  66. Murphy C et al (1996) Endosome dynamics regulated by a Rho protein. Nature 384(6608):427–432

    Article  CAS  PubMed  Google Scholar 

  67. Reid TS, Terry KL, Casey PJ, Beese LS (2004) Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J Mol Biol 343(2):417–433

    Article  CAS  PubMed  Google Scholar 

  68. Nehru V, Voytyuk O, Lennartsson J, Aspenström P (2013) RhoD binds the Rab5 effector Rabankyrin-5 and has a role in trafficking of the platelet-derived growth factor receptor. Traffic 14(12):1242–1254

    Article  CAS  PubMed  Google Scholar 

  69. Gad AKB, Nehru V, Ruusala A, Aspenström P (2012) RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin golgi membranes and microtubules. Mol Biol Cell 23(24):4807–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kyrkou A et al (2013) RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene 32(14):1831–1842

    Article  CAS  PubMed  Google Scholar 

  71. Weisz Hubsman M et al (2007) Autophosphorylation-dependent degradation of Pak1, triggered by the Rho-family GTPase, Chp. Biochem J 404(3):487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Korobko IV, Shepelev MV (2018) [Mutations in the Effector Domain of RhoV GTPase impair its binding to Pak1 protein kinase]. Mol Biol 52(4):692–698

    Article  CAS  Google Scholar 

  73. Tao W et al (2001) Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1, vol 15. Genes & Development, pp 1796–1807. 14

  74. Hodge RG, Ridley AJ (2020) Regulation and functions of RhoU and RhoV. Small GTPases, 11(1)

  75. Katoh M (2002) Molecular cloning and characterization of WRCH2 on human chromosome 15q15. Int J Oncol 20(5):977–982

    CAS  PubMed  Google Scholar 

  76. Dart AE et al (2015) PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion. J Cell Biol 211(4):863–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Aronheim A et al (1998) Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton, vol 8. CB, Current Biology, pp 1125–1128. 20

    Google Scholar 

  78. Shepelev MV, Korobko IV (2012) Pak6 protein kinase is a novel effector of an atypical Rho family GTPase Chp/RhoV. Biochem Biokhimiia 77(1):26–32

    Article  CAS  Google Scholar 

  79. Aspenstrom P, Fransson A, Saras J (2004) Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377(Pt 2):327–337

    Article  PubMed  PubMed Central  Google Scholar 

  80. Saras J, Wollberg P, Aspenstrom P (2004) Wrch1 is a GTPase-deficient Cdc42-like protein with unusual binding characteristics and cellular effects. Exp Cell Res 299(2):356–369

    Article  CAS  PubMed  Google Scholar 

  81. Dickover M et al (2014) The atypical Rho GTPase, RhoU, regulates cell-adhesion molecules during cardiac morphogenesis. Dev Biol 389(2):182–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brady DC et al (2009) The transforming Rho family GTPase Wrch-1 disrupts epithelial cell tight junctions and epithelial morphogenesis. Mol Cell Biol 29(4):1035–1049

    Article  CAS  PubMed  Google Scholar 

  83. Fort P et al (2011) Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration. Dev Biol 350(2):451–463

    Article  CAS  PubMed  Google Scholar 

  84. Faure S, Fort P (2011) Atypical RhoV and RhoU GTPases control development of the neural crest. Small GTPases 2(6):310–313

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ory S, Brazier H, Blangy A (2007) Identification of a bipartite focal adhesion localization signal in RhoU/Wrch-1, a Rho family GTPase that regulates cell adhesion and migration. Biol Cell 99(12):701–716

    Article  CAS  PubMed  Google Scholar 

  86. Bhavsar PJ, Infante E, Khwaja A, Ridley AJ (2013) Analysis of rho GTPase expression in T-ALL identifies RhoU as a target for notch involved in T-ALL cell migration. Oncogene 32(2):198–208

    Article  CAS  PubMed  Google Scholar 

  87. Slaymi C et al (2019) The atypical RhoU/Wrch1 rho GTPase controls cell proliferation and apoptosis in the gut epithelium. Biol Cell 111(5):121–141

    Article  CAS  PubMed  Google Scholar 

  88. Loebel DAF et al (2011) Rhou maintains the epithelial architecture and facilitates differentiation of the foregut endoderm. Development 138(20):4511–4522

    Article  CAS  PubMed  Google Scholar 

  89. Gubar O et al (2020) The atypical Rho GTPase RhoU interacts with intersectin-2 to regulate endosomal recycling pathways. J Cell Sci

  90. Shepelev MV, Chernoff J, Korobko IV (2011) Rho family GTPase Chp/RhoV induces PC12 apoptotic cell death via JNK activation. Small GTPases 2(1):17–26

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mino A et al (2018) RhoH participates in a multi-protein complex with the zinc finger protein kaiso that regulates both cytoskeletal structures and chemokine-induced T cells. Small GTPases 9(3):260–273

    Article  CAS  PubMed  Google Scholar 

  92. Troeger A et al (2012) RhoH is critical for cell-microenvironment interactions in chronic lymphocytic Leukemia in mice and humans. Blood 119(20):4708–4718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tajadura-Ortega V et al (2018) An RNAi screen of Rho signalling networks identifies RhoH as a regulator of Rac1 in Prostate cancer cell migration. BMC Biol 16(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  94. Peng S et al (2022) Nascent RHOH acts as a molecular brake on actomyosin-mediated effector functions of inflammatory neutrophils. PLoS Biol 20(9):e3001794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dorn T et al (2007) RhoH is important for positive thymocyte selection and T-cell receptor signaling. Blood 109(6):2346–2355

    Article  CAS  PubMed  Google Scholar 

  96. Pan YR et al (2018) STAT3-coordinated migration facilitates the dissemination of diffuse large B-cell Lymphomas. Nat Commun 9(1):3696

    Article  PubMed  PubMed Central  Google Scholar 

  97. Troeger A, Williams DA (2013) Hematopoietic-specific Rho GTPases Rac2 and RhoH and human blood disorders. Exp Cell Res 319(15):2375–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gu Y et al (2006) RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat Immunol 7(11):1182–1190

    Article  CAS  PubMed  Google Scholar 

  99. Ahmad Mokhtar AM et al (2021) The role of RhoH in TCR Signalling and its involvement in Diseases. Cells, 10(4)

  100. Chae H-D et al (2010) RhoH regulates subcellular localization of ZAP-70 and Lck in T cell receptor signaling. PLoS ONE 5(11):e13970

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hiraga J et al (2007) Prognostic analysis of aberrant somatic hypermutation of RhoH gene in diffuse large B cell Lymphoma. Leukemia 21(8):1846–1847

    Article  CAS  PubMed  Google Scholar 

  102. Gündogdu MS et al (2010) The haematopoietic GTPase RhoH modulates IL3 signalling through regulation of STAT activity and IL3 receptor expression. Mol Cancer 9:225

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tamehiro N et al (2019) Ras homolog gene family H (RhoH) deficiency induces psoriasis-like chronic dermatitis by promoting T17 cell polarization. J Allergy Clin Immunol 143(5):1878–1891

    Article  CAS  PubMed  Google Scholar 

  104. Chang FK et al (2006) DBC2 is essential for transporting vesicular stomatitis virus glycoprotein. J Mol Biol 364(3):302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Siripurapu V, Meth J, Kobayashi N, Hamaguchi M (2005) DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways. J Mol Biol 346(1):83–89

    Article  CAS  PubMed  Google Scholar 

  106. Manjarrez JR, Sun L, Prince T, Matts RL (2014) Hsp90-dependent assembly of the DBC2/RhoBTB2-Cullin3 E3-ligase complex. PLoS ONE 9(3):e90054

    Article  PubMed  PubMed Central  Google Scholar 

  107. Pridgeon JW et al (2009) Proteomic analysis reveals hrs ubiquitin-interacting motif-mediated ubiquitin signaling in multiple cellular processes. FEBS J 276(1):118–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Genschik P, Sumara I, Lechner E (2013) The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and Disease implications. EMBO J 32(17):2307–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    Article  CAS  PubMed  Google Scholar 

  110. Wilkins A, Ping Q, Carpenter CL (2004) RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev 18(8):856–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schenková K et al (2012) MUF1/leucine-rich repeat containing 41 (LRRC41), a substrate of RhoBTB-dependent cullin 3 ubiquitin ligase complexes, is a predominantly nuclear dimeric protein. J Mol Biol 422(5):659–673

    Article  PubMed  Google Scholar 

  112. Lu A, Pfeffer SR (2013) Golgi-associated RhoBTB3 targets cyclin E for ubiquitylation and promotes cell cycle progression. J Cell Biol 203(2):233–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nobes CD et al (1998) A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141(1):187–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wennerberg K et al (2003) Rnd proteins function as RhoA antagonists by activating p190 RhoGAP, vol 13. CB, Current Biology, pp 1106–1115. 13

    Google Scholar 

  115. Zanata SM, Hovatta I, Rohm B, Püschel AW (2002) Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in semaphorin 3A-induced cytoskeletal collapse. J Neuroscience: Official J Soc Neurosci 22(2):471–477

    Article  CAS  Google Scholar 

  116. Li Y-H et al (2009) Rnd1 regulates axon extension by enhancing the microtubule destabilizing activity of SCG10. J Biol Chem 284(1):363–371

    Article  CAS  PubMed  Google Scholar 

  117. Oinuma I, Ishikawa Y, Katoh H, Negishi M (2004) The semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras, vol 305. Science, pp 862–865. (New York, N.Y.)5685

  118. de Souza LER et al (2014) STI1 antagonizes cytoskeleton collapse mediated by small GTPase Rnd1 and regulates neurite growth. Exp Cell Res 324(1):84–91

    Article  PubMed  Google Scholar 

  119. Suehiro J-i et al (2014) Genome-wide approaches reveal functional vascular endothelial growth factor (VEGF)-inducible nuclear factor of activated T cells (NFAT) c1 binding to angiogenesis-related genes in the endothelium. J Biol Chem 289(42):29044–29059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bhairavi S # 1, Naiche S-WYLA (2022) # 1, Jing Du 1, Stephanie R Villa 1, Jordan B Metz 2, Huijuan Feng 2, Chaolin Zhang 2, Raphael Kopan 3, Peter A Sims 2, Jan K Kitajewski 4, Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration 12(1)

  121. Decourt B, Bouleau Y, Dulon D, Hafidi A (2005) Expression analysis of neuroleukin, calmodulin, cortactin, and Rho7/Rnd2 in the intact and injured mouse brain. Brain Res Dev Brain Res 159(1):36–54

    Article  CAS  PubMed  Google Scholar 

  122. Nishi M et al (1999) RhoN, a novel small GTP-binding protein expressed predominantly in neurons and hepatic stellate cells. Brain Res Mol Brain Res 67(1):74–81

    Article  CAS  PubMed  Google Scholar 

  123. Heng JI-T et al (2008) Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455(7209):114–118

    Article  CAS  PubMed  Google Scholar 

  124. Gladwyn-Ng IE et al (2015) Bacurd2 is a novel interacting partner to Rnd2 which controls radial migration within the developing mammalian cerebral cortex. Neural Dev 10:9

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pacary E et al (2011) Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron 69(6):1069–1084

    Article  CAS  PubMed  Google Scholar 

  126. Tanaka H, Katoh H, Negishi M (2006) Pragmin, a novel effector of Rnd2 GTPase, stimulates RhoA activity. J Biol Chem 281(15):10355–10364

    Article  CAS  PubMed  Google Scholar 

  127. Riento K et al (2005) RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO J 24(6):1170–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Komander D et al (2008) Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure. EMBO J 27(23):3175–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McColl B et al (2016) Rnd3-induced cell rounding requires interaction with Plexin-B2. J Cell Sci 129(21):4046–4056

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Garg R et al (2020) Rnd3 interacts with TAO kinases and contributes to mitotic cell rounding and spindle positioning. J Cell Sci, 133(6)

  131. Lesiak A et al (2013) A genome-wide screen of CREB occupancy identifies the RhoA inhibitors Par6C and Rnd3 as regulators of BDNF-induced synaptogenesis. PLoS ONE 8(6):e64658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Boswell SA, Ongusaha PP, Nghiem P, Lee SW (2007) The protective role of a small GTPase RhoE against UVB-induced DNA damage in keratinocytes. J Biol Chem 282(7):4850–4858

    Article  CAS  PubMed  Google Scholar 

  133. Zhu Y et al (2014) The Rho GTPase RhoE is a p53-regulated candidate Tumor suppressor in cancer cells. Int J Oncol 44(3):896–904

    Article  CAS  PubMed  Google Scholar 

  134. Dankel SN et al (2019) The Rho GTPase RND3 regulates adipocyte lipolysis. Metab Clin Exp 101:153999

    Article  CAS  PubMed  Google Scholar 

  135. Zhang Y et al (2022) Fibroblast-specific activation of Rnd3 protects against cardiac remodeling in diabetic cardiomyopathy via suppression of Notch and TGF-β signaling. Theranostics 12(17):7250–7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Murphy C et al (2001) Dual function of RhoD in vesicular movement and cell motility. Eur J Cell Biol 80(6):391–398

    Article  CAS  PubMed  Google Scholar 

  137. Randazzo PA (2003) RhoD, src, and hDia2C in endosome motility. Dev Cell 4(3):287–288

    Article  CAS  PubMed  Google Scholar 

  138. Tominaga T et al (2000) Diaphanous-related formins bridge Rho GTPase and src tyrosine kinase signaling. Mol Cell 5(1):13–25

    Article  CAS  PubMed  Google Scholar 

  139. Gasman S, Kalaidzidis Y, Zerial M (2003) RhoD regulates endosome dynamics through diaphanous-related formin and src tyrosine kinase. Nat Cell Biol 5(3):195–204

    Article  CAS  PubMed  Google Scholar 

  140. Tsubakimoto K et al (1999) Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 18(15):2431–2440

    Article  CAS  PubMed  Google Scholar 

  141. Gad AK, Nehru V, Ruusala A, Aspenstrom P (2012) RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin golgi membranes and microtubules. Mol Biol Cell 23(24):4807–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nehru V, Almeida FN, Aspenstrom P (2013) Interaction of RhoD and ZIP kinase modulates actin filament assembly and focal adhesion dynamics. Biochem Biophys Res Commun 433(2):163–169

    Article  CAS  PubMed  Google Scholar 

  143. Durkin CH et al (2017) RhoD inhibits RhoC-ROCK-Dependent cell contraction via PAK6. Dev Cell, 41(3)

  144. Kyrkou A et al (2013) The RhoD to centrosomal duplication. Small GTPases 4(2):116–122

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zanata SM, Hovatta I, Rohm B, Puschel AW (2002) Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in semaphorin 3A-induced cytoskeletal collapse. J Neurosci 22(2):471–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tong Y et al (2007) Binding of Rac1, Rnd1, and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain. J Biol Chem 282(51):37215–37224

    Article  CAS  PubMed  Google Scholar 

  147. Fansa EK et al (2013) Interaction characteristics of Plexin-B1 with Rho family proteins. Biochem Biophys Res Commun 434(4):785–790

    Article  CAS  PubMed  Google Scholar 

  148. Liu Y et al (2021) A putative structural mechanism underlying the antithetic effect of homologous RND1 and RhoD GTPases in mammalian plexin regulation. Elife, 10

  149. Ellis S, Mellor H (2000) The novel Rho-family GTPase rif regulates coordinated actin-based membrane rearrangements. Curr Biol 10(21):1387–1390

    Article  CAS  PubMed  Google Scholar 

  150. Pellegrin S, Mellor H (2005) The Rho family GTPase Rif induces filopodia through mDia2. Curr Biol 15(2):129–133

    Article  CAS  PubMed  Google Scholar 

  151. Goh WI et al (2011) Rif-mDia1 interaction is involved in filopodium formation Independent of Cdc42 and Rac effectors. J Biol Chem 286(15):13681–13694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fan L, Pellegrin S, Scott A, Mellor H (2010) The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells. J Cell Sci 123(Pt 8):1247–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sudhaharan T et al (2016) The Rho GTPase rif signals through IRTKS, Eps8 and WAVE2 to generate dorsal membrane ruffles and filopodia. J Cell Sci 129(14):2829–2840

    CAS  PubMed  Google Scholar 

  154. Fan L et al (2015) The Rif GTPase regulates cytoskeletal signaling from plexinA4 to promote neurite retraction. Neurosci Lett 590:178–183

    Article  CAS  PubMed  Google Scholar 

  155. Tian X et al (2023) Pattern recognition receptor mediated innate immune response requires a Rif-dependent pathway. J Autoimmun 134:102975

    Article  CAS  PubMed  Google Scholar 

  156. Anderson MW, Reynolds SH, You M, Maronpot RM (1992) Role of proto-oncogene activation in carcinogenesis. Environ Health Perspect 98:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Levine AJ (1993) The Tumor suppressor genes. Annu Rev Biochem 62:623–651

    Article  CAS  PubMed  Google Scholar 

  158. Iengar P (2012) An analysis of substitution, deletion and insertion mutations in cancer genes. Nucleic Acids Res 40(14):6401–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer Genome Nature 458(7239):719–724

    CAS  PubMed  Google Scholar 

  160. Dallery E et al (1995) TTF, a gene encoding a novel small G protein, fuses to the lymphoma-associated LAZ3 gene by t(3;4) chromosomal translocation. Oncogene 10(11):2171–2178

    CAS  PubMed  Google Scholar 

  161. Preudhomme C et al (2000) Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-hodgkin’s Lymphoma and Multiple Myeloma. Oncogene 19(16):2023–2032

    Article  CAS  PubMed  Google Scholar 

  162. Bernicot I et al (2006) Rearrangement of the RHOH gene in a case of splenic Lymphoma with villous lymphocytes. Cancer Genet Cytogenet 170(1):78–79

    Article  CAS  PubMed  Google Scholar 

  163. Fueller F, Kubatzky KF (2008) The small GTPase RhoH is an atypical regulator of haematopoietic cells. Cell Communication and Signaling: CCS 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  164. Aamot HV et al (2005) G-banding and molecular cytogenetic analyses of marginal zone Lymphoma. Br J Haematol 130(6):890–901

    Article  CAS  PubMed  Google Scholar 

  165. Küppers R, Klein U, Hansmann ML, Rajewsky K (1999) Cellular origin of human B-cell Lymphomas. N Engl J Med 341(20):1520–1529

    Article  PubMed  Google Scholar 

  166. Rossi D et al (2006) Aberrant somatic hypermutation in transformation of follicular Lymphoma and chronic lymphocytic Leukemia to diffuse large B-cell Lymphoma. Haematologica 91(10):1405–1409

    CAS  PubMed  Google Scholar 

  167. Montesinos-Rongen M et al (2004) Primary diffuse large B-cell Lymphomas of the central nervous system are targeted by aberrant somatic hypermutation. Blood 103(5):1869–1875

    Article  CAS  PubMed  Google Scholar 

  168. Brown MR et al (1999) Allelic loss on chromosome arm 8p: analysis of sporadic epithelial ovarian tumors. Gynecol Oncol, 74(1)

  169. Hamaguchi M et al (2002) DBC2, a candidate for a Tumor suppressor gene involved in Breast cancer. Proc Natl Acad Sci USA 99(21):13647–13652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Knowles MA et al (2005) Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in Bladder cancer. Cancer Lett 225(1):121–130

    Article  CAS  PubMed  Google Scholar 

  171. Cho YG et al (2008) Genetic analysis of the DBC2 gene in gastric cancer. Acta Oncol (Stockholm Sweden) 47(3):366–371

    Article  CAS  Google Scholar 

  172. Canovas Nunes S et al (2018) The small GTPase RhoU lays downstream of JAK/STAT signaling and mediates cell migration in Multiple Myeloma. Blood Cancer Journal 8(2):20

    Article  PubMed  PubMed Central  Google Scholar 

  173. Yu H et al (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14(11):736–746

    Article  CAS  PubMed  Google Scholar 

  174. Schiavone D et al (2009) The RhoU/Wrch1 Rho GTPase gene is a common transcriptional target of both the gp130/STAT3 and Wnt-1 pathways. Biochem J 421(2):283–292

    Article  CAS  PubMed  Google Scholar 

  175. De Piano M et al (2020) Lipogenic Signal Modulates Prostate cancer cell Adhes Migration via Modif Rho GTPases Oncogene 39(18):3666–3679

    Google Scholar 

  176. Monteleone E et al (2019) SP1 and STAT3 functionally synergize to induce the small GTPase and a subclass of non-canonical WNT responsive genes correlating with poor prognosis in Breast Cancer. Cancers, 11(1)

  177. Gugnoni M et al (2022) OVOL2 impairs RHO GTPase signaling to restrain mitosis and aggressiveness of anaplastic thyroid Cancer. J Experimental Clin Cancer Research: CR 41(1):108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yu S et al (2019) Identification of CDK6 and RHOU in Serum Exosome as Biomarkers for the Invasiveness of Non-functioning Pituitary Adenoma Chinese Medical Sciences Journal = Chung-kuo I Hsueh K’o Hsueh Tsa Chih. 34(3):168–176

  179. Zhang D et al (2021) RHOV promotes lung adenocarcinoma cell growth and Metastasis through JNK/c-Jun pathway. Int J Biol Sci 17(10):2622–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Shepelev MV, Korobko IV (2013) The RHOV gene is overexpressed in human non-small cell Lung cancer. Cancer Genet 206(11):393–397

    Article  CAS  PubMed  Google Scholar 

  181. Sanchez-Aguilera A et al (2010) Involvement of RhoH GTPase in the development of B-cell chronic lymphocytic Leukemia. Leukemia, 24(1)

  182. Galiègue-Zouitina S et al (2008) Underexpression of RhoH in hairy cell Leukemia. Cancer Res 68(12):4531–4540

    Article  PubMed  Google Scholar 

  183. Iwasaki T et al (2008) Prognostic implication and biological roles of RhoH in acute myeloid Leukaemia. Eur J Haematol 81(6):454–460

    Article  CAS  PubMed  Google Scholar 

  184. Ohadi M et al (2007) Mutation analysis of the DBC2 gene in sporadic and familial Breast cancer. Acta Oncol (Stockholm Sweden) 46(6):770–772

    Article  CAS  Google Scholar 

  185. Leppek K, Das R, Barna M (2018) Functional 5’ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 19(3):158–174

    Article  CAS  PubMed  Google Scholar 

  186. Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5’- and 3’-UTR-binding factors. Trends Biochem Sci 28(4):182–188

    Article  CAS  PubMed  Google Scholar 

  187. Mayr C (2017) Regulation by 3’-Untranslated regions. Annu Rev Genet 51:171–194

    Article  CAS  PubMed  Google Scholar 

  188. Okada T et al (2015) The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPK signalling. Nat Cell Biol 17(1):81–94

    Article  CAS  PubMed  Google Scholar 

  189. Komatsu H et al (2017) Attenuated RND1 expression confers malignant phenotype and predicts poor prognosis in Hepatocellular Carcinoma. Ann Surg Oncol 24(3):850–859

    Article  PubMed  Google Scholar 

  190. Xiang G, Yi Y, Weiwei H, Weiming W (2016) RND1 is up-regulated in esophageal squamous cell carcinoma and promotes the growth and migration of cancer cells. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 37(1):773–779

    Article  PubMed  Google Scholar 

  191. Xu Y et al (2020) RND2 attenuates apoptosis and autophagy in glioblastoma cells by targeting the p38 MAPK signalling pathway. J Experimental Clin Cancer Research: CR 39(1):174

    Article  CAS  PubMed Central  Google Scholar 

  192. Zhang C et al (2007) Overexpression of RhoE has a prognostic value in non-small cell Lung cancer. Ann Surg Oncol 14(9):2628–2635

    Article  PubMed  Google Scholar 

  193. Bektic J et al (2005) Small G-protein RhoE is underexpressed in Prostate cancer and induces cell cycle arrest and apoptosis. Prostate 64(4):332–340

    Article  CAS  PubMed  Google Scholar 

  194. Kazmi N et al (2022) Rho GTPase gene expression and Breast cancer risk: a mendelian randomization analysis. Sci Rep 12(1):1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Li S et al (2021) Ras Homolog Family Member F, Filopodia Associated promotes Hepatocellular Carcinoma Metastasis by altering the metabolic status of Cancer cells through RAB3D. Hepatology (Baltimore MD) 73(6):2361–2379

    Article  CAS  PubMed  Google Scholar 

  196. Gouw LG et al (2005) Expression of the Rho-family GTPase gene RHOF in lymphocyte subsets and malignant Lymphomas. Br J Haematol 129(4):531–533

    Article  CAS  PubMed  Google Scholar 

  197. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hall A (2009) The cytoskeleton and cancer Cancer Metastasis Reviews, 28(1–2)

  199. Alexandrova AY, Chikina AS, Svitkina TM (2020) Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. Int Rev Cell Mol Biology 356:197–256

    Article  CAS  Google Scholar 

  200. Rubtsova SN, Zhitnyak IY, Gloushankova NA (2021) Phenotypic plasticity of Cancer cells based on remodeling of the actin Cytoskeleton and Adhesive structures. Int J Mol Sci, 22(4)

  201. Chen H et al (2021) Overexpression of RhoV promotes the progression and EGFR-TKI resistance of lung adenocarcinoma. Front Oncol 11:619013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Haga RB et al (2019) RhoBTB1 interacts with ROCKs and inhibits invasion. Biochem J 476(17):2499–2514

    Article  CAS  PubMed  Google Scholar 

  203. Guasch RM, Scambler P, Jones GE, Ridley AJ (2023) RhoE regulates actin Cytoskeleton Organization and Cell Migration. Mol Cell Biol 18(8):4761–4771

    Article  Google Scholar 

  204. Zhou J et al (2011) Transcriptional up-regulation of RhoE by hypoxia-inducible factor (HIF)-1 promotes epithelial to mesenchymal transition of gastric cancer cells during hypoxia. Biochem Biophys Res Commun 415(2):348–354

    Article  CAS  PubMed  Google Scholar 

  205. Gad AKB et al (2012) Rho GTPases link cellular contractile force to the density and distribution of nanoscale adhesions. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 26(6):2374–2382

    Article  CAS  PubMed  Google Scholar 

  206. Intlekofer AM, Finley LWS (2019) Metabolic signatures of cancer cells and stem cells. Nat Metabolism 1(2):177–188

    Article  Google Scholar 

  207. Song R et al (2015) RhoV mediates apoptosis of RAW264.7 macrophages caused by osteoclast differentiation. Mol Med Rep 11(2):1153–1159

    Article  CAS  PubMed  Google Scholar 

  208. Horiguchi H et al (2022) Deletion of murine leads to de-repression of via decreased KAISO levels and accelerates a malignancy phenotype in a murine model of Lymphoma. Small GTPases 13(1):267–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Mao H et al (2011) RhoBTB2 (DBC2) functions as Tumor suppressor via inhibiting proliferation, preventing colony formation and inducing apoptosis in Breast cancer cells. Gene 486(1–2):74–80

    Article  CAS  PubMed  Google Scholar 

  210. Jin Z, Han Y-X, Han X-R (2013) Downregulated RhoBTB2 expression contributes to poor outcome in osteosarcoma patients. Cancer Biother Radiopharm 28(10):709–716

    CAS  PubMed  Google Scholar 

  211. Wang C-J, Yang D, Luo Y-W (2015) RhoBTB2 (DBC2) functions as a multifunctional Tumor suppressor in thyroid cancer cells via mitochondrial apoptotic pathway. Int J Clin Exp Med 8(4):5954–5958

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Freeman SN, Ma Y, Cress WD (2008) RhoBTB2 (DBC2) is a mitotic E2F1 target gene with a novel role in apoptosis. J Biol Chem 283(4):2353–2362

    Article  CAS  PubMed  Google Scholar 

  213. Collado D, Yoshihara T, Hamaguchi M (2007) DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation. Biochem Biophys Res Commun 360(3):600–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chardin P (2006) Function and regulation of rnd proteins. Nat Rev Mol Cell Biol 7(1):54–62

    Article  CAS  PubMed  Google Scholar 

  215. Villalonga P, Guasch RM, Riento K, Ridley AJ (2004) RhoE inhibits cell cycle progression and ras-induced transformation. Mol Cell Biol 24(18):7829–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zheng R, Li F, Li F, Gong A (2021) Targeting Tumor vascularization: promising strategies for vascular normalization. J Cancer Res Clin Oncol 147(9):2489–2505

    Article  PubMed  Google Scholar 

  217. Miller H et al (2020) Impact of angiogenesis- and Hypoxia-Associated polymorphisms on Tumor recurrence in patients with Hepatocellular Carcinoma Undergoing Surgical Resection. Cancers, 12(12)

  218. McKinnon CM et al (2008) The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells. Oncogene 27(54):6856–6865

    Article  CAS  PubMed  Google Scholar 

  219. Shellenberger TD et al (2004) BRAK/CXCL14 is a potent inhibitor of Angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Res 64(22):8262–8270

    Article  CAS  PubMed  Google Scholar 

  220. White E (2015) The role for autophagy in cancer. J Clin Investig 125(1):42–46

    Article  PubMed  PubMed Central  Google Scholar 

  221. Klionsky DJ et al (2021) Autophagy in major human Diseases. EMBO J 40(19):e108863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Li X, He S, Ma B (2020) Autophagy and autophagy-related proteins in cancer. Mol Cancer 19(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Xu Z et al (2021) Helicobacter pylori regulates ILK to influence autophagy through Rac1 and RhoA signaling pathways in gastric epithelial cells. Microb Pathog 158:105054

    Article  CAS  PubMed  Google Scholar 

  224. Feng X et al (2021) Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5. Autophagy 17(3):723–742

    Article  CAS  PubMed  Google Scholar 

  225. Li C et al (2021) GEFT inhibits autophagy and apoptosis in Rhabdomyosarcoma via activation of the Rac1/Cdc42-mTOR signaling pathway. Front Oncol 11:656608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Hua X et al (2022) Induction of RAC1 protein translation and MKK7/JNK-dependent autophagy through dicer/miR-145/SOX2/miR-365a axis contributes to isorhapontigenin (ISO) inhibition of human bladder cancer invasion Cell Death & Disease, 13(8)

  227. Huang H et al (2023) Current and potential roles of RNA modification-mediated autophagy dysregulation in cancer. Arch Biochem Biophys 736:109542

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Hua Huang and Xinhui Liu conceived the idea and wrote the manuscript for this study. Sijia Wang and Jing Ren wrote the abstract and made the tables, respectively. Sijia Wang and Yifei Guan made the figures. Jing Ren and Xinhui Liu critically revised the manuscript and provided supervision.

Corresponding authors

Correspondence to Jing Ren or Xinhui Liu.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, S., Guan, Y. et al. Molecular basis and current insights of atypical Rho small GTPase in cancer. Mol Biol Rep 51, 141 (2024). https://doi.org/10.1007/s11033-023-09140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09140-7

Keywords

Navigation