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Abstract
Background Despite a general decline in mean levels across populations, LDL-cholesterol levels remain a major risk factor 
for acute coronary syndrome (ACS). The APOB, LDL-R, CILP, and SORT-1 genes have been shown to contain variants that 
have significant effects on plasma cholesterol levels.
Methods and results We examined polymorphisms within these genes in 1191 controls and 929 patients with ACS. Only 
rs646776 within SORT-1 was significantly associated with a risk of ACS (P < 0.05, AA vs. + G comparison; OR 1.21; 95% 
CI 1.01–1.45). With regard to genetic risk score (GRS), the presence of at least 7 alleles associated with elevated cholesterol 
levels was connected with increased risk (P < 0.01) of ACS (OR 1.26; 95% CI 1.06–1.52). Neither total mortality nor CVD 
mortality in ACS subjects (follow up—9.84 ± 3.82 years) was associated with the SNPs analysed or cholesterol-associated 
GRS.
Conclusions We conclude that, based on only a few potent SNPs known to affect plasma cholesterol, GRS has the potential 
to predict ACS risk, but not ACS associated mortality.

Keywords Cholesterol · Acute coronary syndrome · Polymorphism · Risk estimation

Introduction

Increased plasma cholesterol (especially within the LDL 
fraction), together with smoking, obesity, diabetes, and 
hypertension, is considered a major contributor to athero-
sclerotic cardiovascular disease (ACVD) and subsequent 
acute coronary syndrome (ACS).

Genetic background is an important factor when deter-
mining the final values of plasma lipids. Rare monogenic 
causes of high plasma cholesterol levels have been docu-
mented [1]. However, in the majority of subjects, a wide list 
of genes and variants that exert relatively small but meas-
urable effects can also influence, in addition to unhealthy 
lifestyles, final plasma lipid concentrations.

The potential association between plasma cholesterol 
concentration and myocardial infarction was first docu-
mented many decades ago [2, 3]. On the one hand, most 
of the studies that have employed univariable Mendelian 
randomisation analysis highlight a causality between LDL-
cholesterol values and cardiovascular disease [4, 5]. On the 
other hand, detailed and extensive studies that have utilised 
the multivariable MR-Egger method have categorically 
failed to confirm such an association [6, 7]. In fact, several 
studies suggest that examination of APOB plasma levels 
is sufficient for risk estimation and, furthermore, that the 
inclusion of cholesterol values does not further improve risk 
prediction [6, 8].

For our study, we selected 4 SNPs with a proven and 
highly significant impact on plasma total cholesterol and 
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LDL-cholesterol in the general Czech population [9]. The 
first, rs693, is located within APOB (apolipoprotein B, 
major protein component of LDL particles, OMIM acc. No. 
107730); the second, rs16996148, is located at the CILP2/
PBX4 loci (cartilage intermediate layer protein 2; OMIM 
acc. No. 612419 and pre-β-cell leukaemia transcription 
factor 4; OMIM acc. No. 608127); the third, rs6511720, is 
located within LDL-R (LDL-receptor, a key protein involved 
in cholesterol catabolism; OMIM acc. No. 606945); and 
the fourth, rs646776, is located within the SORT-1 gene 
(involved in hepatic transport of lipoproteins and arterial 
calcification; OMIM acc. No. 602458).

The respective importance of the above variants in deter-
mining plasma lipid values has been established by inde-
pendent genome-wide association studies (GWAs) [10–13] 
and widely confirmed in different populations. Interestingly, 
these four SNPs represent just a minority of SNPs (4 out of 
26, Hubacek, unpublished results), with confirmed strong 
effect in Czech general population. Given the polygenic 
background of hypercholesterolaemia, a genetic risk score 
(GRS) can be established from these four variants. In dif-
ferent ways, GRSs reflect the simultaneous effect of several 
individual polymorphisms and are, therefore, believed to be 
better predictors of disease risk [14, 15] than determinations 
based on individual genetic variants.

Noteworthy, in observation study protocols, we [16] and 
others (for example [17, 18]) have recently failed to prove, 
that increased levels of plasma cholesterol are undoubtedly 
associated with acute coronary syndrome in different popu-
lation. This could be partially influenced by the fact, that 
plasma lipid values generally improved due to the last dec-
ades [19] as well as by the fact, that plasma cholesterol is 
slightly going down after acute coronary syndrome attack 
[20, 21]. Considering the effect of these variants on plasma 
cholesterol concentrations, we hypothesized that, if plasma 
cholesterol remains major traditional risk factor of ACS, 
individual SNPs and the establishment of a simple choles-
terol-determining GRS would reflect an increased risk of 
ACS in Czech males.

Materials and methods

Subjects

This study included 929 male patients with ACS under the 
age of 65, consecutively enrolled between April 2006 and 
February 2015 according to a protocol used at the Cardi-
ology Unit of the Institute for Clinical and Experimental 
Medicine, Prague (described in detail previously) [22, 23]. 
Data on mortality [24] were obtained from the Institute of 
Health, Informatics and Statistics (Ministry of Health of the 

Czech Republic), where all death certificates are analysed. 
Reached mean follow-up has been 9.84 ± 3.82 years.

For the control group, 1 191 males aged 25–64 years, 
all of whom participated in the Czech branch of the post-
MONICA study [25]), were selected according to the WHO 
protocol [26], representing a 1% general population sample 
from 9 different Czech districts.

To screen for traditional cardiovascular risk factors (cho-
lesterol values, smoking, obesity, hypertension, and diabe-
tes), we used examination procedures described in detail 
previously [22, 23].

All study participants were self-reported Caucasians.

Genetic analyses

DNA has been isolated from whole EDTA blood samples as 
described by Miller et al. [27]. Variants within the APOB, 
CILP2/PBX4, LDL-R and SORT-1 loci were genotyped by 
PCR–RFLP as described in details before [28]. Briefly, DNA 
fragment obtaining APOB rs693 variant has been amplified 
using the 5ʹ aga gga aac caa ggc cac agt tgc and 5ʹ tac att 
cgg tct cgt gta tct tct oligonucleotides and restriction enzyme 
XhoI was used to distinguish allele C (uncut PCR product) 
and T (restriction fragments 110 bp + 26 bp). Oligonucleo-
tides 5ʹ atc cag cta ttt ggg agc agt gtc ctg g and 5ʹ aag gtc tgg 
tct ctg gaa aac aga ag amplified gene part of SORT-1; restric-
tion enzyme Hin1II produced fragments of 107 bp + 32 bp 
(allele G) with uncut product of 139 bp representing the 
allele A. LDL-R has been genotyped by oligonucleotides 
5ʹ acc ggg gat gat gat gat tgc and 5ʹ ttg cct aag act tca tta 
aca ttt g. Alleles G (PCR product of 132 bp) and T (frag-
ments of 106 bp + 26 bp) were distinguished after treatment 
with enzyme DpnI. The last polymorphism (CILP2/PBX4 
loci) has been genotyped with oligonucleotides 5ʹ tgg ctc 
ttg tcc act ggc cac atc ccc and 5ʹ ttc tcc cat gcc tcc agg ccc 
cca ag. Restriction enzyme Hin1II produced fragments of 
82 bp + 54 bp (allele T) and uncut product of 137 bp is char-
acteristic for the A allele.

Statistical analysis

Chi-square tests and odds ratios (95% CI) were calculated 
using the freely available Social Science Statistics statis-
tical software package (https:// www. socsc istat istics. com; 
accessed February 2022); all procedures used are fully 
compatible with SPSS software. Cases with fewer than 5 
subjects in one category were pooled and analysed together 
with heterozygotes. A P-value below 0.05 was considered 
significant.

For calculation of the genetic risk score (GRS), only 
subjects possessing all 4 SNPs of interest were included 
(N = 1095 for controls and N = 886 for patients). An 
unweighted gene score was created for each individual, 

https://www.socscistatistics.com
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where subjects received one point for each cholesterol-
increasing allele based on associations with plasma cho-
lesterol levels in the general population sample. Due to the 
low numbers in groups on the opposite end of the score 
distribution curves, pooling was performed to create GRS 
sub-groups of “4 or fewer risk alleles” and “7 or more 
risk alleles”.

As examined SNPs have not been associated with any 
of the traditional risk factors (prevalence of hypertension, 
diabetes, smoking status or BMI values) no adjustments 
were performed.

Results

General characteristics of subjects

The general characteristics of ACS patients and controls 
are summarized in Table 1. As expected, there were more 
smokers, diabetics, and hypertensive subjects in the ACS 
group.

Effects of individual SNPs

In three out of four of the examined SNPs (within the 
APOB, LDL-R, and CILP/PBX4 loci), overall there was no 
association between ACS and individual genotypes associ-
ated with increased plasma cholesterol values. However, 
we did detect a slight difference in the case of SORT-1 
SNP. AA homozygotes, which have been strongly asso-
ciated with high plasma levels of total and LDL-choles-
terol (P < 0.005) and decreased levels of HDL-cholesterol 
(P < 0.005) (for more details, see [9]), were slightly more 
frequent in ACS subjects (64.5% vs. 60.0%; P = 0.03 for 
AA vs. + G comparison; OR 1.21; 95% CI 1.01–1.45) 
(Table 2).

Genetic risk score and risk of ACS

In contrast, the results in respect of GRS were highly sig-
nificant. As described previously in control subjects [9], 
total cholesterol and LDL cholesterol increase from those 
with the lowest to the highest score (P < 0.001 for lin-
ear trend). Carriers of 4 or fewer cholesterol-increasing 
alleles have a significantly lower (P < 0.005) risk of suffer-
ing from ACS (OR 0.55; 95% CI 0.37–0.82). Carriers of 
at least 7 risk alleles are at greater (P < 0.01) risk of ACS 
(OR 1.26; 95% CI 1.06–1.52) than others (Fig. 1).

Long‑term post‑ACS mortality

The frequencies of individual SNPs were almost identical 
(all P-values above 0.44) between ACS survivors and non-
survivors (Table 3). GRS was not associated with mortal-
ity in CVD subjects (not shown in detail).

Discussion

In our study, Mendelian randomisation (MR) analysis 
revealed a slight association between plasma cholesterol 
and increased risk of ACS. With regard to MR, genetic 
polymorphisms associated with selected biomarkers were 
used as proxies. Here, four genetic variants were strongly 
associated with the most frequently cited risk factor of 
cardiovascular disease (plasma LDL-C levels) and ACS 
prevalence was dependent (in a slight extent) on genetic 
risk score established from the four LDL-C associated 
SNPs.

The importance of individual SNPs in determining 
anthropometric and/or biochemical parameters is long 
acknowledged [29–31]. However, the vast majority of 
parameters are determined polygenously and the effect size 
of individual SNPs is relatively low (albeit functionally sig-
nificant) and thus represents only minor part in determina-
tion of variability of parameters.

For a more nuanced interpretation of the simultaneous 
effect of several independent genetic variants, different 
types of genetic risk scores can be created. The respective 
influences of individual variants at different loci are gen-
erally converted into a single value in two ways [14, 15]: 
an unweighted genetic risk score is the simple sum of risk 
alleles present in each subject, whereas a weighted genetic 
risk score is calculated based on the effect size or OR/HR 
value of each participating SNP, meaning the final value can 
be time-dependent. Accordingly, absolute values will differ 
for identical subjects based on age at the time of examination 
and lifestyle at the time of blood collection.

Table 1  General characteristics of examined subjects

N Controls ACS patients P
1 191 929

Age (years) 49.0 ± 10.8 54.6 ± 8.0 0.01
BMI (kg/m2) 28.2 ± 4.0 28.6 ± 4.3 n.s.
Ever smokers (%) 58.7 84.9 0.00001
Hypertension (%) 40.7 50.6 0.00001
Diabetes (%) 8.9 18.0 0.00001
Total cholesterol (mmol/L) 5.75 ± 1.06 4.83 ± 1.12 0.001
LDL-cholesterol (mmol/L) 3.56 ± 0.99 3.58 ± 2.51 n.s.
Triglycerides (mmol/L) 1.97 ± 1.28 2.05 ± 1.50 n.s.
Follow-up (years) n.a. 9.84 ± 3.82 n.a.
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The importance of GRS is underlined by recent opinions 
stating that GRS reflects lifetime exposure to risk factors (in 
the case of our study, to LDL-C levels) and that cumulative 
load is more precise in risk prediction [32].

Although original GWAs focused on the genetic deter-
mination of plasma lipids [10–13] typically include many 
thousands of subjects, these results are only useful for clini-
cal purposes when replicated in each particular population. 
In fact, the effects of about one quarter of variants associated 

with LDL-cholesterol are not shared between subjects of 
different ancestry [33], while for triglycerides this “between 
population” transferability is even lower.

Thus, it is preferable to optimize GRSs for different popu-
lations, as not all variants exhibit the same effect in every 
population [34, 35]. GRS tailoring is especially necessary 
in cases where it is employed to predict diseases of affluence 
such as cardiovascular conditions, diabetes, and obesity. In 
these instances, a substantial proportion of risk is attribut-
able to unhealthy lifestyle factors. The resulting potential 
inter-population differences can also be associated with 
gene-environment interactions. In such cases, the identical 
genetic variant can exert a variety of effects in different [14], 
or even in identical [36], populations according to environ-
mental conditions.

Our previous analysis [9] clearly confirmed that all four 
GWAs-retrieved SNPs had a significant effect on plasma 
LDL-C levels in the Czech population. The effect size 
was between approximately 5% and 13% for individual 
SNPs. Both LDL-C and TC were higher by ~ 0.5 mmol/L 
for carriers of 8 risk alleles than for carriers of 4 or fewer 
risk alleles, a finding comparable with several previous 
studies. For example, one report found that a GRS estab-
lished based on 23 SNPs was associated with TC levels 

Table 2  Genotype distributions of individual SNPs in ACS patients and controls

Genotypes associated with increased plasma levels of total and LDL-cholesterol are in bold. P* is calculated for  dominant&, co-dominant# and 
 recessive§ models of comparisons

rs693 Controls Patients OR P P*

APOB N % N % Crude

CC 327 28.0 239 26.0 1.00 0.90&

CT 554 47.4 452 49.2 1.11 (0.91–1.37) 0.30 0.58#

TT 287 24.6 228 24.8 1.08 (0.85–1.38) 0.50 0.31§

rs16996148 Controls Patients OR P P*

CILP/PBX4 N % N % Crude

GG 979 82.5 772 84.4 1.00 0.55&

GT 193 16.3 134 14.6 0.88 (0.69–1.12) 0.30 0.49#

TT 15 1.3 9 1.0 0.76 (0.33–1.75) 0.52 0.25§

rs6511720 Controls Patients OR P P*

LDL-R N % N % Crude

GG 982 82.7 747 74.3 1.00 0.11&

GT 194 16.3 136 15.4 0.92 (0.73–1.18) 0.50 0.22#

TT 11 0.9 3 0.3 0.36 (0.10–1.29) 0.10 0.34§

rs646776 Controls Patients OR P P*

SORT-1 N % N % Crude

AA 688 60.0 579 64.5 1.00 0.07&

AG 394 34.4 283 31.5 0.85 (0.71–1.03) 0.10 0.05#

GG 65 5.6 35 3.9 0.63 (0.42–0.98) 0.04 0.04§

0

10

20

30

40

50

60

4 or less 5 + 6 7 or more

controls ACS pa�ents GRS values

%

Fig. 1  Distribution of genetic risk score in ACS patients and controls
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between ~ 5.2 mmol/L (carriers of 11 or fewer cholesterol-
raising alleles) and ~ 6.0 mmol/L for subjects with 18 or 
more alleles [37]. Shahid et al. found atherogenic blood 
lipids to have a significant positive association with GRS 
[38]. Their score, derived from 21 SNPs, revealed TC val-
ues ranging from ~ 4.7 mmol/L in carriers of 14 or fewer 
cholesterol-raising alleles to ~ 5.7 mmol/L in carriers with 21 
or more risk alleles. An analysis of two UK biobank studies 
(WHII and BWHHS) [39] demonstrated differences between 
opposite GRS quintiles ranging from 0.6 to 0.9 mmol/L for 
both LDL-C and TC. Interestingly, the authors used different 
(albeit significantly overlapping) sets of SNPs to determine 
TC (20 SNPs) and LDL-C (22 SNPs). Finally, almost 8 500 
SNPs were used to establish a GRS for White British UK 
Biobank participants, accounting for over 20% of the vari-
ance in LDL-C concentration [40].

As recently underlined GRS are important [41], but not 
all-explanatory [42] tools to predict medical events. Impor-
tantly—we believe, that the analysis of genetic predisposi-
tion to any noncommunicable disease needs to be (to be 
clinically useful) performed in time (at young age, probably 
at 25 years latest) and before the any onset of traditional 
risk factors. This was the secondary reason not to adjust 
our results for potential confounding factors. At this age, 

genetic predisposition could point on subjects under risk. 
Using the tools as intensive lifestyle intervention and more 
intensive and more focused screening programs, diseases 
onset could be, if not fully avoided, at least postponed to 
higher age categories.

Similar to screening for FH-causing mutations, screening 
for several common variants combined with a simultane-
ous/cumulative analysis of their effects can clearly identify 
potential patients at increased risk of hypercholesterolaemia 
and subsequent cardiovascular disease [43]. Nonetheless, 
it should be noted that the abovementioned studies signifi-
cantly differed not only in terms of the number of SNPs but 
also in the method of selection.

There are uncertainties concerning the ideal number of 
variants to include in GRS calculations. A wide list of vari-
ants with only subtle effect sizes can in fact compromise 
the accuracy of results. The numbers of examined subjects 
used to identify risk allele/effect size are time-dependent 
and affected by potential selection bias. The smaller the 
cholesterol-raising effect size detected, the greater the 
chance of false-positive results. The actual effect across an 
entire population may be in fact zero or even negative. The 
“over-inclusion” of these variants in GRS calculations also 
results in a low cost–benefit. For example, Khera et al. [44] 

Table 3  Genotype distributions of individual SNPs in ACS survivors and nonsurvivors

Genotypes associated with increased plasma levels of total and LDL-cholesterol are in bold
*Calculated for major homozygotes vs minor allele carriers

rs693 Survivors Deceased OR P

APOB N % N % Crude

CC 192 26.1 47 25.8 1.00
CT 362 49.1 90 49.5 1.01 (0.69–1.51) 0.94
TT 183 24.8 45 24.7 1.01 (0.63–1.59) 0.98

rs16996148 Survivors Deceased OR P

CILP/PBX4 N % N % Crude

GG 620 84.6 152 83.5 1.00
GT 107 14.6 27 14.8 1.03 (0.65–1.63) 0.90
TT 6 0.8 3 1.6 n.a. 0.72*

rs6511720 Survivors Deceased OR P

LDL-R N % N % Crude

GG 588 83.8 159 85.9 1.00
GT 111 15.8 25 13.5 0.83 (0.52–1.33) 0.44
TT 2 0.3 1 0.6 n.a. 0.49*

rs646776 Survivors Deceased OR P

SORT-1 N % N % Crude

AA 462 64.2 117 66.1 1.00
AG 227 31.5 56 31.6 0.97 (0.68–1.39) 0.89
GG 31 4.3 4 2.3 n.a. 0.63*
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analysed an extreme 6.6 million SNPs to quantify CVD 
risk, where the top 5% of subjects with the highest GRS 
had “only” a 3.7-fold increased risk (nominally 17.5% of 
patients fell within this category compared to 5% within 
the rest of the population) of early onset myocardial infarc-
tion in comparison with other individuals. Shahid et al. [38] 
documented only a slightly lower OR (2.96) using a GRS 
based on a mere 21 SNPs.

Despite focusing on a different lifestyle-associated dis-
ease, namely type 2 diabetes mellitus, one study, which used 
results from the Estonian Biobank cohort, demonstrated that 
a GRS established from a maximum of 1000 SNPs is a better 
predictor of disease than a score established from a higher 
number of SNPs [45].

Two secondary outcomes of our study are noteworthy. 
Firstly, genotypes associated in the general population with 
increased plasma LDL-cholesterol values were more fre-
quent than genotypes associated with lower plasma LDL-
cholesterol values. Thus, it can be assumed that selection 
pressure during the ancient era of human development 
resulted in the “promotion” of these alleles. It is probable 
that one of the benefits of the increase in plasma choles-
terol levels over time was to counteract infection [46]. The 
authors of a Dutch study have documented the advantage 
of higher total cholesterol in a historical context, finding 
that carriers of FH-causing mutations lived significantly 
longer until about the end of the nineteenth century than 
non-carriers [47].

Secondly, genotypes associated with increased plasma 
LDL-C values in the general population were only very 
slightly (and mostly non-significantly) over-represented 
in patients with ACVD compared to controls. Although 
we found a continuous increase in plasma LDL-C values 
in subjects along with a sequentially increasing number of 
risk alleles, only the subgroup comprising individuals with 
at least 7 risk/cholesterol-increasing alleles, i.e. in subjects 
with really high plasma cholesterol levels, were at increased 
risk of ACS. Nonetheless, although there was a trend toward 
higher GRS values in patients, the differences between 
patients and controls were more evident at the opposite end 
of the distribution curve, characterized by low GRS values.

In conclusion, our study indicates that genetic risk score, 
based on only a few individual SNPs, is a significant pre-
dictor of acute coronary syndrome in the Czech population 
even in cases where individual SNPs are associated with 
plasma cholesterol but not with increased risk of ACS per se. 
Importantly predisposition to low plasma cholesterol levels 
seems to be of greater importance than a predisposition to 
increased levels.
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