Skip to main content

Advertisement

Log in

Stomatin-like protein 2 promotes cell proliferation and survival under 5-Fluorouracil stress in hepatocellular carcinoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The crucial role of STOML2 in tumor progression has been documented recently in various cancers. Previous studies have shown that STOML2 promoted cancer cell proliferation, but the underlying mechanism is not fully illustrated.

Methods and results

The expression and clinical relevance of STOML2 in pan-cancer was analyzed by TIMER2 web platform in pan-cancer. The prognostic significance of STOML2 in HCC was evaluated utilizing KM curve and a nomogram model. Signaling pathways associated with STOML2 expression were discovered by GSEA. CCK-8 assay was performed to evaluate the proliferative capacity of HCC cells after manipulating STOML2 expression. Flow cytometry was utilized to analyze cell cycle progression. Results indicated that increased STOML2 expression in HCC linked to unfavorable clinical outcomes. Cell cycle and cell division related terms were enriched under conditions of elevated STOML2 expression via GSEA analysis. A notable decrease in cell proliferation was observed in MHCC97H with STOML2 knocked-down, accompanied by G1-phase arrest, up-regulation of p21, down-regulation of CyclinD1 and its regulatory factor MYC, while STOML2 overexpression in Huh7 showed the opposite results. These results indicated that STOML2 was responsible for HCC proliferation by regulating the expression level of MYC/cyclin D1 and p21. Furthermore, an inverse correlation was found between STOML2 expression and 5-FU sensitivity.

Conclusions

STOML2 promotes cell cycle progression in HCC which is associated with activation of MYC/CyclinD1/p21 pathway, and modulates the response of HCC to 5-FU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data accessed in this study are available on multiple publicly available databases as included within the article.

Abbreviations

HCC:

Hepatocellular carcinoma

STOML2:

Stomatin-like protein 2

TCGA:

The Cancer Genome Atlas

TIMER2:

Tumor immune estimation resource, version 2

DEGs:

Differentially expressed genes

OS:

Overall survival

GO:

Gene Ontology

BP:

Biological process

CC:

Cellular component

MF:

Molecular function

KEGG:

Kyoto Encyclopedia of Genes and Genomes

FDR:

False discovery rate

NSE:

Normalized enrichment score

qRT-PCR:

Quantitative Real-Time Polymerase Chain Reaction

NC:

Negative control

SD:

Standard deviation

5-FU:

5-Fluorouracil

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. McGlynn KA, Petrick JL, El-Serag HB (2021) Epidemiology of hepatocellular carcinoma. Hepatology 73(Suppl 1):4–13. https://doi.org/10.1002/hep.31288

    Article  PubMed  CAS  Google Scholar 

  3. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS (2021) Hepatocellular carcinoma. Nat Rev Dis Primers. 7(1):6. https://doi.org/10.1038/s41572-020-00240-3

    Article  PubMed  Google Scholar 

  4. Dutta R, Mahato RI (2017) Recent advances in hepatocellular carcinoma therapy. Pharmacol Ther 173:106–117. https://doi.org/10.1016/j.pharmthera.2017.02.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166. https://doi.org/10.1038/nrc2602

    Article  PubMed  CAS  Google Scholar 

  6. Aleem E, Kiyokawa H, Kaldis P (2005) Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 7(8):831–836. https://doi.org/10.1038/ncb1284

    Article  PubMed  CAS  Google Scholar 

  7. Baker SJ, Reddy EP (2012) CDK4: A key player in the cell cycle, development, and cancer. Genes Cancer 3(11–12):658–669. https://doi.org/10.1177/1947601913478972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. De Boer L, Oakes V, Beamish H, Giles N, Stevens F, Somodevilla-Torres M, Desouza C, Gabrielli B (2008) Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events. Oncogene 27(31):4261–4268. https://doi.org/10.1038/onc.2008.74

    Article  PubMed  CAS  Google Scholar 

  9. Radhakrishnan SK, Feliciano CS, Najmabadi F, Haegebarth A, Kandel ES, Tyner AL, Gartel AL (2004) Constitutive expression of E2F–1 leads to p21-dependent cell cycle arrest in S phase of the cell cycle. Oncogene 23(23):4173–4176. https://doi.org/10.1038/sj.onc.1207571

    Article  PubMed  CAS  Google Scholar 

  10. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Sci 282(5393):1497–1501. https://doi.org/10.1126/science.282.5393.1497

    Article  CAS  Google Scholar 

  11. Toettcher JE, Loewer A, Ostheimer GJ, Yaffe MB, Tidor B, Lahav G (2009) Distinct mechanisms act in concert to mediate cell cycle arrest. Proc Natl Acad Sci U S A 106(3):785–790. https://doi.org/10.1073/pnas.0806196106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14(2):159–169. https://doi.org/10.1016/j.devcel.2008.01.013

    Article  PubMed  CAS  Google Scholar 

  13. Lapatsina L, Brand J, Poole K, Daumke O, Lewin GR (2012) Stomatin-domain proteins. Eur J Cell Biol 91(4):240–245. https://doi.org/10.1016/j.ejcb.2011.01.018

    Article  PubMed  CAS  Google Scholar 

  14. Mitsopoulos P, Chang YH, Wai T, Konig T, Dunn SD, Langer T, Madrenas J (2015) Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol Cell Biol 35(10):1838–1847. https://doi.org/10.1128/MCB.00047-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhang L, Ding F, Cao W, Liu Z, Liu W, Yu Z, Wu Y, Li W, Li Y, Liu Z (2006) Stomatin-like protein 2 is overexpressed in cancer and involved in regulating cell growth and cell adhesion in human esophageal squamous cell carcinoma. Clin Cancer Res 12(5):1639–1646. https://doi.org/10.1158/1078-0432.CCR-05-1858

    Article  PubMed  CAS  Google Scholar 

  16. Hu G, Zhang J, Xu F, Deng H, Zhang W, Kang S, Liang W (2018) Stomatin-like protein 2 inhibits cisplatin-induced apoptosis through MEK/ERK signaling and the mitochondrial apoptosis pathway in cervical cancer cells. Cancer Sci 109(5):1357–1368. https://doi.org/10.1111/cas.13563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen M, Liu L, Sun Q, Lin Z, Zheng J, Chen J, Zhang J (2021) STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol 14(1):16. https://doi.org/10.1186/s13045-020-01029-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lohitesh K, Chowdhury R, Mukherjee S (2018) Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int 18:44. https://doi.org/10.1186/s12935-018-0538-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, Ceccarelli M, Bontempi G, Noushmehr H (2016) TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 44(8):e71. https://doi.org/10.1093/nar/gkv1507

    Article  PubMed  CAS  Google Scholar 

  20. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Walter W, Sanchez-Cabo F, Ricote M (2015) GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31(17):2912–2914. https://doi.org/10.1093/bioinformatics/btv300

    Article  PubMed  CAS  Google Scholar 

  24. Entezar-Almahdi E, Mohammadi-Samani S, Tayebi L, Farjadian F (2020) Recent Advances in Designing 5-Fluorouracil Delivery Systems: A Stepping Stone in the Safe Treatment of Colorectal Cancer. Int J Nanomedicine 15:5445–5458. https://doi.org/10.2147/IJN.S257700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338. https://doi.org/10.1038/nrc1074

    Article  PubMed  CAS  Google Scholar 

  26. Coffman JA (2004) Cell cycle development. Dev Cell 6(3):321–327. https://doi.org/10.1016/s1534-5807(04)00067-x

    Article  PubMed  CAS  Google Scholar 

  27. El-Deiry WS (2016) p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res 76(18):5189–5191. https://doi.org/10.1158/0008-5472.CAN-16-2055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Coqueret O (2002) Linking cyclins to transcriptional control. Gene 299(1–2):35–55. https://doi.org/10.1016/s0378-1119(02)01055-7

    Article  PubMed  CAS  Google Scholar 

  29. Nigg EA (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 17(6):471–480. https://doi.org/10.1002/bies.950170603

    Article  PubMed  CAS  Google Scholar 

  30. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the pathway interaction database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkn65

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, Nixon MJ, Estrada MV, Sanchez V, Sanders ME, Lee T, Gomez H, Lluch A, Perez-Fidalgo JA, Wolf MM, Andrejeva G, Rathmell JC, Fesik SW, Arteaga CL (2017) MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab 26(4):633–647. https://doi.org/10.1016/j.cmet.2017.09.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shats I, Deng M, Davidovich A, Zhang C, Kwon JS, Manandhar D, Gordan R, Yao G, You L (2017) Expression level is a key determinant of E2F1-mediated cell fate. Cell Death Differ 24(4):626–637. https://doi.org/10.1038/cdd.2017.12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Schwartz JD, Beutler AS (2004) Therapy for unresectable hepatocellular carcinoma: review of the randomized clinical trials-II: systemic and local non-embolization-based therapies in unresectable and advanced hepatocellular carcinoma. Anticancer Drugs 15(5):439–452. https://doi.org/10.1097/01.cad.0000131140.12228.bb

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the TCGA database, xiantao and contributors to provide their platforms and their meaningful datasets.

Funding

This work was supported by the Natural Science Foundation of China (82273420, 81972703), Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (2020RC116).

Author information

Authors and Affiliations

Authors

Contributions

CH, YZ, KY and SH designed the study, analyzed the data and prepared the manuscript; YZ and HC analyzed the data; XL and RY performed the in vitro experiment; XL, YZ, QS and CH were involved in editing and supervision. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yu Zhou, Qingfeng Sun, Jubo Zhang or Chong Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Ethical approval was confirmed by the Huashan Hospital Research Ethics Committee.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2023_9104_MOESM1_ESM.tif

Supplementary file1 (TIF 1696 KB)—Expression of mRNA and proteins levels of STOML2 in different cell lines. (A-B) Expression levels of STOML2 in in hepatoblastoma and HCC cells were detected by qPCR and Western blot

11033_2023_9104_MOESM2_ESM.tif

Supplementary file2 (TIF 1442 KB)—Manipulation of STOML2 expression in HCC cells and representative images of Soft agar colony formation assay. (A-D) Overexpression of STOML2 in Huh7 and knockdown in MHCC97H were detected by qRT-PCR (A-B) and Western blot (C-D). (E) Representative photographs were captured to demonstrate the impact of STOML2 overexpression on the colony formation of Huh7 cells. (F) Representative photographs were captured to illustrate the impact ofSTOML2 knockdown on the colony formation of MHCC97H cells

Supplementary file3 (DOCX 16 KB)

Supplementary file4 (DOCX 18 KB)

Supplementary file5 (DOCX 17 KB)

Supplementary file6 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zheng, Y., Yu, K. et al. Stomatin-like protein 2 promotes cell proliferation and survival under 5-Fluorouracil stress in hepatocellular carcinoma. Mol Biol Rep 51, 228 (2024). https://doi.org/10.1007/s11033-023-09104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09104-x

Keywords

Navigation