Skip to main content

Advertisement

Log in

Genome-wide screening of m6A profiling of cutaneous wound healing in diabetic mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Objective

Impaired wound healing in diabetes mellitus (DM) is a major health burden on patients, their families, and society. The present study aimed to systematically profile the m6A modification landscape in cutaneous wounds in a diabetic mouse model.

Approach

Diabetes was induced in mice through a single intraperitoneal injection of streptozotocin (STZ); a single intraperitoneal injection of PBS was made in control mice for comparisons. Both groups then received an 8-mm diameter, full-thickness dorsal body wound with a biopsy punch. Five days after wound surgery, western blot analysis of harvested wound tissues from both groups was used to assess the expression of m6A-related enzymes. Genome-wide profiling of m6A-tagged transcripts was performed through MeRIP-seq and RNA-seq.

Results

ALKBH5, an m6A eraser, was significantly upregulated, while METTL3, METTL14, and WTAP, m6A writers, were markedly downregulated in the diabetic wounds. Additionally, a total of 1335 m6A peaks were differentially expressed in MeRIP-seq and RNA-seq analyses, with 558 upregulated and 777 downregulated peaks. Finally, there was hypomethylated and hypermethylated differentiation at the gene and transcript levels.

Innovation

The present study was the first to reveal the m6A landscape in diabetic wounds in an animal model.

Conclusion

This study, by deeply analyzing the role of m6A modifications in diabetic wound healing, provides new insights and understanding into the molecular mechanisms of diabetic wound healing. Future research could further explore how m6A modifications regulate the wound healing process, thereby offering new potential targets for the treatment of diabetic wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note: (FPKM = [total_exon_fragments/mapped_reads(millions) × exon_length(kB)]).

References

  1. Dai J, Jiang C, Sun Y, Chen H (2020) Autologous platelet-rich plasma treatment for patients with diabetic foot ulcers: a meta-analysis of randomized studies. J Diabetes Complicat 34:3

    Article  Google Scholar 

  2. Everett E, Mathioudakis N (2018) Update on management of diabetic foot ulcers. Ann N Y Acad Sci 1411:153–165

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang W, Yang C, Wang XY, Zhou LY, Lao GJ, Liu D, Wang C, Hu MD, Zeng TT, Yan L, Ren M (2018) MicroRNA-129 and -335 promote diabetic wound healing by inhibiting Sp1-mediated MMP-9 expression. Diabetes 67:1627–1638

    Article  CAS  PubMed  Google Scholar 

  4. Yu J, Wang J, Zhang Y, Chen G, Mao W, Ye Y, Kahkoska AR, Buse JB, Langer R, Gu Z (2020) Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng 4:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Loretelli C, Ben Nasr M, Giatsidis G, Bassi R, Lancerotto L, D’Addio F, Valderrama-Vasquez A, Scherer SS, Salvatore L, Madaghiele M, Abdelsalam A, Ippolito E, Assi E, Usuelli V, El Essawy B, Sannino A, Pietramaggiori G, Zuccotti GV, Orgill DP, Fiorina P (2020) Embryonic stem cell extracts improve wound healing in diabetic mice. Acta Diabetol 57:883–890

    Article  CAS  PubMed  Google Scholar 

  6. Ren J, Yang M, Chen J, Ma S, Wang N (2020) Anti-inflammatory and wound healing potential of kirenol in diabetic rats through the suppression of inflammatory markers and matrix metalloproteinase expressions. Biomed Pharmacother 129:110475

    Article  CAS  PubMed  Google Scholar 

  7. Deng X, Su R, Weng H, Huang H, Li Z, Chen J (2018) RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res 28:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frye M, Jaffrey SR, Pan T, Rechavi G, Suzuki T (2016) RNA modifications: what have we learned and where are we headed? Nat Rev Genet 17:365–372

    Article  CAS  PubMed  Google Scholar 

  9. Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 15:293–306

    Article  CAS  PubMed  Google Scholar 

  10. Geng X, Li Z, Yang Y (2022) Emerging role of epitranscriptomics in diabetes mellitus and its complications. Front Endocrinol 13:907060

    Article  Google Scholar 

  11. Ma M, Hui J, Zhang QY, Zhu Y, He Y, Liu XJ (2018) Long non-coding RNA nuclear-enriched abundant transcript 1 inhibition blunts myocardial ischemia reperfusion injury via autophagic flux arrest and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis 277:113–122

    Article  CAS  PubMed  Google Scholar 

  12. Sun N, Ning B, Hansson KM, Bruce AC, Seaman SA, Zhang C, Rikard M, DeRosa CA, Fraser CL, Wagberg M, Fritsche-Danielson R, Wikstrom J, Chien KR, Lundahl A, Holtta M, Carlsson LG, Peirce SM, Hu S (2018) Modified VEGF-A mRNA induces sustained multifaceted microvascular response and accelerates diabetic wound healing. Sci Rep 8:17509

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu L, Liu X, Dong Z, Li J, Yu Y, Chen X, Ren F, Cui G, Sun R (2019) N6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survival. J Cancer 10:5447–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen WX, Wang HQ, Liu J, Li KX (2022) Interference of KLF9 relieved the development of gestational diabetes mellitus by upregulating DDAH2. Bioengineered 13:395–406

    Article  CAS  PubMed  Google Scholar 

  15. Duan XT, Chen C, Liu XL, Wang TX, Feng SN, Li JW, Li GY (2023) Interference of periostin attenuates pathological changes, proinflammatory markers and renal fibrosis in diabetic kidney injury. Genes Genom 45:1389–1397

    Article  CAS  Google Scholar 

  16. Zhu Y, Wang Y, Jia Y, Xu J, Chai Y (2019) Roxadustat promotes angiogenesis through HIF-1alpha/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen 27:324–334

    Article  PubMed  Google Scholar 

  17. Gan J, Liu C, Li H, Wang S, Wang Z, Kang Z, Huang Z, Zhang J, Wang C, Lv D, Dong L (2019) Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials 219:119340

    Article  CAS  PubMed  Google Scholar 

  18. Chapman MA (2015) Transcriptome sequencing and marker development for four underutilized legumes. Appl Plant Sci. https://doi.org/10.3732/apps.1400111

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meng J, Lu Z, Liu H, Zhang L, Zhang S, Chen Y, Rao MK, Huang Y (2014) A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods 69:274–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu G, Wang LG, He QY (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31:2382–2383

    Article  CAS  PubMed  Google Scholar 

  25. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  27. Yang J, Liu J, Zhao S, Tian F (2020) N(6)-Methyladenosine METTL3 Modulates the Proliferation and Apoptosis of Lens Epithelial Cells in Diabetic Cataract. Mol Ther Nucleic Acids 20:111–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang D, Lin WJ, Ren M, Qiu J, Yang C, Wang X, Li N, Zeng T, Sun K, You L, Yan L, Wang W (2022) m(6)A reader YTHDC1 modulates autophagy by targeting SQSTM1 in diabetic skin. Autophagy 18:1318–1337

    Article  CAS  PubMed  Google Scholar 

  29. Zhou J, Wei T, He Z (2021) ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m(6)A modification to improve wound healing of diabetic foot ulcers. Mol Med (Cambridge, Mass) 27:146

    Article  CAS  Google Scholar 

  30. Lee J, Wu Y, Harada BT, Li Y, Zhao J, He C, Ma Y, Wu X (2021) N(6) -methyladenosine modification of lncRNA Pvt1 governs epidermal stemness. EMBO J 40:e106276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu J, Frazier K, Zhang J, Gan Z, Wang T, Zhong X (2020) Emerging role of m(6) A RNA methylation in nutritional physiology and metabolism. Obes Rev 21:e12942

    Article  CAS  PubMed  Google Scholar 

  32. Yang Y, Hsu PJ, Chen YS, Yang YG (2018) Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 28:616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng S, Xiao W, Ju D, Sun B, Hou N, Liu Q, Wang Y, Zhao H, Gao C, Zhang S, Cao R, Li P, Huang H, Ma Y, Wang Y, Lai W, Ma Z, Zhang W, Huang S, Wang H, Zhang Z, Zhao L, Cai T, Zhao YL, Wang F, Nie Y, Zhi G, Yang YG, Zhang EE, Huang N (2019) Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med 11:eaau7116

    Article  PubMed  Google Scholar 

  34. Yang Y, Shen F, Huang W, Qin S, Huang JT, Sergi C, Yuan BF, Liu SM (2019) Glucose is involved in the dynamic regulation of m6a in patients with type 2 diabetes. J Clin Endocrinol Metab 104:665–673

    Article  PubMed  Google Scholar 

  35. Liu S, Zhuo L, Wang J, Zhang Q, Li Q, Li G, Yan L, Jin T, Pan T, Sui X, Lv Q, Xie T (2020) METTL3 plays multiple functions in biological processes. Am J Cancer Res 10:1631–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li D, Kular L, Vij M, Herter EK, Li X, Wang A, Chu T, Toma MA, Zhang L, Liapi E, Mota A, Blomqvist L, GallaisSerezal I, Rollman O, Wikstrom JD, Bienko M, Berglund D, Stahle M, Sommar P, Jagodic M, Landen NX (2019) Human skin long noncoding RNA WAKMAR1 regulates wound healing by enhancing keratinocyte migration. Proc Natl Acad Sci U S A 116:9443–9452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang J, Yan S, Lu H, Wang S, Xu D (2019) METTL3 attenuates LPS-induced inflammatory response in macrophages via NF-κB signaling pathway. Mediators Inflamm 2019:3120391

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Luo G, Sun J, Men L, Ye H, He C, Ren D (2019) METTL14 is essential for beta-cell survival and insulin secretion. Biochim Biophys Acta Mol Basis Dis 1865:2138–2148

    Article  CAS  PubMed  Google Scholar 

  39. Scholler E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A, Meister G (2018) Interactions, localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. RNA 24:499–512

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cano Sanchez M, Lancel S, Boulanger E, Neviere R (2018) Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants (Basel) 7:98

    Article  PubMed  Google Scholar 

  41. Tong Y, Liu S, Gong R, Zhong L, Duan X, Zhu Y (2019) Ethyl vanillin protects against kidney injury in diabetic nephropathy by inhibiting oxidative stress and apoptosis. Oxid Med Cell Longev 2019:2129350

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zheng Y, Wang X, Ji S, Tian S, Wu H, Luo P, Fang H, Wang L, Wu G, Xiao S, Xia Z (2016) Mepenzolate bromide promotes diabetic wound healing by modulating inflammation and oxidative stress. Am J Transl Res 8:2738–2747

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Didiasova M, Schaefer L, Wygrecka M (2019) When place matters: shuttling of enolase-1 across cellular compartments. Front Cell Dev Biol 7:61

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gordin D, Shah H, Shinjo T, St-Louis R, Qi W, Park K, Paniagua SM, Pober DM, Wu IH, Bahnam V, Brissett MJ, Tinsley LJ, Dreyfuss JM, Pan H, Dong Y, Niewczas MA, Amenta P, Sadowski T, Kannt A, Keenan HA, King GL (2019) Characterization of glycolytic enzymes and pyruvate kinase M2 in type 1 and 2 diabetic nephropathy. Diabetes Care 42:1263–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Obata A, Kimura T, Obata Y, Shimoda M, Kinoshita T, Kohara K, Okauchi S, Hirukawa H, Kamei S, Nakanishi S, Mune T, Kaku K, Kaneto H (2019) Vascular endothelial PDPK1 plays a pivotal role in the maintenance of pancreatic beta cell mass and function in adult male mice. Diabetologia 62:1225–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wex B, Safi RM, Antonios G, Zgheib PZ, Awad DB, Kobeissy FH, Mahfouz RA, El-Sabban MM, Yazbek SN (2018) SLC35B4, an inhibitor of gluconeogenesis, responds to glucose stimulation and downregulates Hsp60 among other proteins in HepG2 liver cell lines. Molecules 23:1350

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li J, Huang Y, Zhao S, Guo Q, Zhou J, Han W, Xu Y (2019) Based on network pharmacology to explore the molecular mechanisms of astragalus membranaceus for treating T2 diabetes mellitus. Ann Transl Med 7:633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu S, Wang D, Huang L, Zhang Y, Luo R, Adah D, Tang Y, Zhao K, Lu B (2019) The complement receptor C5aR2 promotes protein kinase R expression and contributes to NLRP3 inflammasome activation and HMGB1 release from macrophages. J Biol Chem 294:8384–8394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pundir P, MacDonald CA, Kulka M (2015) The novel receptor C5aR2 is required for C5a-mediated human mast cell adhesion, migration, and proinflammatory mediator production. J Immunol 195:2774–2787

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Dai J, Li L, Chen H, Chai Y (2017) NLRP3 inflammasome expression and signaling in human diabetic wounds and in high glucose induced macrophages. J Diabetes Res 2017:5281358

    Article  PubMed  PubMed Central  Google Scholar 

  51. Guo M, Chen Y, Du Y, Dong Y, Guo W, Zhai S, Zhang H, Dong S, Zhang Z, Wang Y, Wang P, Zheng X (2011) The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7:e1001302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hauffe R, Stein V, Chudoba C, Flore T, Rath M, Ritter K, Schell M, Wardelmann K, Deubel S, Kopp JF, Schwarz M, Kappert K, Bluher M, Schwerdtle T, Kipp AP, Kleinridders A (2020) GPx3 dysregulation impacts adipose tissue insulin receptor expression and sensitivity. JCI Insight. https://doi.org/10.1172/jci.insight.136283

    Article  PubMed  PubMed Central  Google Scholar 

  53. Verhaeghe J, van Bree R, Van Herck E (2011) Oxidant balance markers at birth in relation to glycemic and acid-base parameters. Metabolism 60:71–77

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Sponsorship for this study and article processing charges were supported by a Grant from the Shanghai Municipal Health Commission (No. 20204Y0430).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JZD; Investigation, JJS; Methodology, JJS and HC; Writing—original draft, JJS; Writing—review and editing, JZD. All authors have read and approved the manuscript for publication.

Corresponding authors

Correspondence to Hua Chen or Jiezhi Dai.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and consent to participate

Experiments and procedures involving laboratory mice were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University Affiliated Sixth People's Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Chen, H. & Dai, J. Genome-wide screening of m6A profiling of cutaneous wound healing in diabetic mice. Mol Biol Rep 51, 175 (2024). https://doi.org/10.1007/s11033-023-09089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09089-7

Keywords

Navigation