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Abstract
Background PD-1 blockade has shown impressive clinical outcomes in colorectal cancers patients with high microsatel-
lite instability (MSI-H). However, the majority of patients with colorectal cancer who present low microsatellite instability 
(MSI-L) or stable microsatellites (MSS) show little response to PD-1 blockade therapy. Here, we have demonstrated that 
Shikonin (SK) could induce cell death of CT26 cells via classically programmed and immunogenic pathways.
Methods and results SK promoted the membrane exposure of calreticulin and upregulated the expression of heat shock 
protein 70 (Hsp70). The upregulation of Hsp70 was dependent on ROS induced by SK and silencing of PKM2 in CT26 
cells reverts ROS upregulation. Besides, SK synergizes with PD-1 blockade in CT26 tumor mice model, with the increase 
of intramural DC cells and  CD8+ T cells. The expression of Hsp70 in tumor tissue was also increased in combinational SK 
plus αPD-1 therapy group.
Conclusions Our study elucidated the potential role of ‘Shikonin-PKM2-ROS-Hsp70’ axis in the promotion of efficacy of 
PD-1 blockade in CRC treatments, providing a potential strategy and targets for improving the efficacy of PD-1 blockade 
in colorectal cancer.
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Introduction

Colorectal cancer (CRC) is the most common digestive 
tract tumor, accounting for approximately 9.7% of all cancer 
patients and approximately 8.5% of tumor-related deaths [1]. 
The standard treatment for metastatic CRC is chemotherapy 
combined with targeted therapy, such as anti-angiogenic 
agents (ramucirumab, bevacizumab or aflibercept) or anti-
EGFR drugs (cetuximab or panitumumab) for patients with 
RAS wild-type [2, 3]. However, in cases where these com-
mon treatments fail, treatment options are limited. In recent 
years, immunotherapy for cancer has made great progress. 
Among these advances, PD-1 blockade has elicited promis-
ing clinical response in a variety of solid tumors, including 
melanoma and non-small cell lung cancer [4, 5]. However, 
only 5% patients with microsatellite instability-high (MSI-
H)/deficient mismatch repair (dMMR) CRC could benefit 
from PD-1 blockade therapy [6, 7]. For the larger subgroup 
of non-MSI-H/dMMR CRC patients, combined regimens 
are strongly needed and might be an ideal strategy to address 
the conundrum [8].
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Damage-associated molecular patterns (DAMPs) are 
endogenous molecules released from damaged or dying 
tumor cells, and they have been shown to activate the innate 
immune system by interacting with innate receptors [9]. 
DAMPs could modulate the tumor immune microenviron-
ment (TIME) and influence tumor growth. Immunogenic cell 
death (ICD), is a form of cell death which activates adaptive 
immunity and induces long-term immune memory [10]. ICD 
could be induced by endoplasmic reticulum (ER) stress and 
reactive oxygen species (ROS) generation, which leads to 
release of DAMPs [11–13].

Shikonin (SK) is the bioactive purplish red naphtho-
quinone extracted from the natural plant Zongfu root [14]. 
Some researchers have found that SK could induce apoptosis 
of colon cancer cells, and regulate invasion and autophagy 
[15, 16]. SK has also been proved to be an inducer of ROS 
in tumor cells, whereby inducing apoptosis and release of 
DAMPs [17]. Lin et al. has found that Shikonin can enhance 
the cellular immunogenicity of tumor vaccines through dif-
ferent DAMPs. Among three DAMPs tested, they found that 
the Hsp70 is the most important component in facilitating 
DC immunity on inhibiting metastasis of mouse tumors and 
prolonging mouse survival [18]. However, the complete 
understanding of the mechanism behind Hsp70 upregula-
tion induced by Shikonin is still under investigation. Chen 
et al. has found that SK could induce ICD of melanoma B16 
cells and enhance function of dendritic cells (DCs) [19]. 
Previous studies have confirmed that SK and BET inhibitor 
JQ1 can synergistically exert anti-tumor effects by reshaping 
the tumor immune microenvironment [20]. However, there 
is limited research available on the effects of combining shi-
konin (SK) and PD-1 blockade for the treatment of CRC. 
Further studies are required to explore the potential benefits 
and mechanisms of this combination therapy. In the pre-
sent study, we investigated the effect of SK combined with 
αPD-1 therapy in CT26 tumor model, which is known to be 
microsatellite stability (MSS). In addition, we investigated 
the synergistic mechanism of combining SK with αPD-1 
by examining the effects on apoptosis, release of DAMPs, 
and changes in the tumor immune environment. Our study 
demonstrated a theoretical basis for SK combined αPD-1, 
providing a potential treatment strategy for CRC who could 
not benefit from PD-1 blockade.

Materials and methods

Chemicals, reagents and antibodies

Shikonin was purchased from Sigma-Aldrich (Cat No. 517-
89-5, St. Louis, MO, USA). Purified anti-mouse PD-1 (clone 
RMP1-14) was purchased from BioXcell (Cat No. BE0146, 
West Lebanon, NH, USA). Fluorescent-labeled anti-mouse 

CD4 antibody (Cat No. 100406), anti-CD8 antibody (Cat 
No. 301014), anti-CD11b antibody (Cat No. 101212), anti-
CD11c antibody (Cat No. 117308) were purchased from 
Biolegend (San Diego, CA, USA). Anti-mouse calreti-
culin antibody (Cat No. ab92516) and anti-mouse Hsp70 
antibody (Cat No. ab181606) were purchased from Abcam 
(Cambridge, UK). 7-AAD Viability Staining Solution was 
purchased from Invitrogen (Cat No. 00-6993, Waltham, MA, 
USA). Acetylcysteine was purchased from MCE (Cat No. 
HY-B0215, NJ, USA). 2,7-Dichlorodihydrofluorescein was 
purchased from APExBIO (Cat No. C3890, Houston, TX, 
USA).

Cell

CT26 cells were obtained from the cell bank of the Chi-
nese Academy of Sciences (Shanghai, China) and cultured 
in RPMI1640 containing 10% FBS at 37 °C and 5%  CO2 
condition.

Mice

20 SPF female BALB/c mice (6–8 weeks old, weight 16–19 
g) were purchased from Beijing Vital River Laboratory Ani-
mal Technology Co., Ltd. All animal experiment has been 
approved by the Ethics Committee of the first affiliated Hos-
pital of Shandong first Medical University. All mice were 
exposed to ambient humidity of 60% and temperature of 
20–26 °C to ensure a 12 h light cycle every day.

In vivo CT26 tumor mouse model

6 ×  105 CT26 cells were subcutaneously inoculated into 
BALB/c mice in the right inguinal region. The tumor vol-
ume was calculated as 0.5 × length ×  width2. Tumor-bearing 
mice were randomized into 4 groups: Group A: IgG (n = 5); 
Group B: IgG + SK (n = 5); Group C: anti-PD-1 mAb (n = 5); 
Group D: anti-PD-1 mAb + SK (n = 5). Mice were given 
drugs when the tumor volume grew to about 62.5  mm3. SK 
was intraperitoneally injected at 3 mg/kg every 2 days for 
a total of seven times [17, 21, 22], and the same volume of 
DMSO was given to group A and group C as control for SK. 
Anti-PD-1 antibody was intraperitoneally injected at 50 µg/
mice on the 5th and 9th day [23, 24], and the same volume of 
IgG was given to group A and group B as control for αPD-1. 
On the 16th day, the mice were sacrificed and the volume of 
tumor was measured.

Apoptosis analysis

CT26 cells seeded in six-well plates (4 ×  105 cells/well) were 
treated with DMSO, SK (5 µM or 10 µM) for 24 h, and 
then cells were harvested, washed twice with ice-cold PBS, 
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stained with Alexa Fluor 488-Annexin V and 7-AAD for 15 
min at room temperature in the dark, and then analyzed by 
using flow cytometry.

ROS generation

CT26 cells were seeded in six-well plates (4 ×  105 cells/well) 
and treated with DMSO, SK (5 µM or 10µM), NAC (10 mM) 
for 24 h. NAC was given 2 h before SK treatments, and cells 
were incubated with 10 µM  H2DCFDA for 40 min in 37℃ 
cell Incubator [25]. ROS expression in cells were analyzed 
by fluorescence microscope.

CRT exposure analysis

CT26 cells seeded in six-well plates (4 ×  105 cells/well) were 
cultured with DMSO, SK (5 µM or 10 µM) for 24 h. The 
treated cells were collected, incubated with Alexa Fluor 488-
anti mouse CRT antibody for 30 min at room temperature in 
the dark, and analyzed by flow cytometer to identify CRT 
exposure.

CRT, HMGB1 and Hsp70 expression analysis

Tumor cell lysate samples were prepared as previously 
described [19]. The protein samples were resolved by SDS-
PAGE using 10 or 15% stepwise gels. The resolved proteins 
were transferred to a PVDF membrane, and the membrane 
was blocked with 5% non-fat dry milk in TBST buffer for 60 
min at room temperature. The membranes were incubated 
with primary antibodies (1:1000 dilutions) overnight at 4 °C, 
and then with HRP-conjugated secondary antibody (1:8000 
dilutions) for 1 h at room temperature and washed with 
TBST buffer. The transferred proteins were visualized with 
an enhanced chemiluminescence (ECL) detection assay kit. 
Quantification of bands was performed using Image J soft-
ware (National Institutes of Health, Bethesda, Md, USA).

Transfection

According to the manufacturers’ protocol, all the small inter-
fering RANs (siRNAs) including siRNA-pyruvate kinase 
M2 and negative control siRNA (si-NC) (GenePharma) were 
transfected into CT26 cells using the Lipofectamine 3000 
Reagent (Invitrogen). The silencing effect was confirmed 
by western blotting.

Statistical analysis

Each experiment was performed on at least three separate 
occasions and the number of independent experiments car-
ried out are stated in figure legends. Statistical analyses 

were performed using SPSS 19.0 (IBM, Armonk, NY, 
USA). Data that conform to the normal distribution are 
presented as the mean ± standard deviation (SD). t test 
was used to determine the statistical significance of differ-
ences between two variables. A one-way analysis of vari-
ance (ANOVA) test was used for statistical comparisons 
between groups (when number of groups are more than 
3). P < 0.05 was considered statistically significant. Prism 
version 6 (GraphPad Software Inc., San Diego, CA, USA) 
was used for graphic presentation.

Results

CT26 cell death was induced by Shikonin 
via classically programmed and immunogenic 
pathways

To evaluate anti-tumor effects of SK on colorectal cancer 
cells, CT26 cells, the murine colorectal carcinoma cell 
line, were treated with SK at different concentrations. 
The apoptosis rate of CT26 cells was detected using flow 
cytometry. Compared with control group (8.36 ± 0.193%), 
the percentage of Annexin  V+ 7-ADD+ cells after SK treat-
ments (5 µM) was increased (12.47 ± 1.097%) (P < 0.001), 
while further been increased to 20.17 ± 0.451% at high 
SK concentration (10 µM, P < 0.0001) (Fig. 1A, B), indi-
cating that SK significantly induced apoptosis of CT26 
cells in a dose-dependent manner. Meanwhile, in order to 
figure out whether SK induces immunogenic cell death 
(ICD), three DAMPs expressions on CT26 cells were 
determined. In terms of CRT cell-surface exposure, we 
found that SK at 5 µM (22.13 ± 0.153%) (P < 0.001) and 
10 µM (23.70 ± 0.265%) (P < 0.001) both effectively 
enhance CRT cell-surface exposure compared with 
DMSO (16.97 ± 1.350%) (Fig. 1C, D). Furthermore, the 
expressions of CRT, HMGB1 and Hsp70 in CT26 cells 
treated with SK were quantified by western blotting. In 
comparison with control group, there was no significant 
expression change of CRT and HMGB1 after SK treat-
ments (Fig. 2A), and the expression of soluble HMGB1 
determined by ELISA was not significantly changed (Data 
not shown). However, SK induced upregulation of Hsp70 
in CT26 cells in a dose-dependent manner (P < 0.05) 
(Fig. 2A, D). The inconsistent results obtained from flow 
cytometry and Western blotting for CRT suggest that SK 
only aids in the movement of CRT from its intracellular 
compartments to the surface of the cell, without actually 
increasing the overall expression of the protein. The above 
results indicated that SK significantly induced cell death 
of CT26 cells via the classically programmed and immu-
nogenic pathway.
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Shikonin‑induced Hsp70 upregulation 
was dependent on increased reactive oxygen 
species

Previous studies have reported that ROS can regulate the 
activity and expression of Hsp70 by activating certain 
oxidative-reduction signaling pathways [26]. To explore 
the potential mechanisms of Hsp70 upregulation on CT26 
cells induced by SK, we investigated whether SK affect ROS 
production in CT26 cells. Our results showed that both SK 
at 5 µM and 10 µM significantly induced ROS generation 
in CT26 cells compared with DMSO control. In order to 
assure the inductive effect of ROS in the increase of Hsp70 
expression, N-acetyl-L-cysteine (NAC), a ROS inhibitor, 
was employed in blocking experiment. As expected, NAC 
significantly inhibited SK-induced ROS accumulation at dif-
ferent concentrations (Fig. 3A). Of note, NAC significantly 
abolished the upregulation of Hsp70 induced by SK in CT26 
cells (Fig. 3B, C), suggesting that the increase of Hsp70 
expression induced by SK was dependent on SK-induced 
ROS in CT26 cells.

Silencing of PKM2 in CT26 cells reverts ROS 
upregulation induced by Shikonin

It has been reported that pyruvate kinase M2 (PKM2), a gly-
colytic enzyme that play a critical role in aerobic glycolysis 

and cell growth, was increased in colorectal cancer, promot-
ing proliferation and migration of colon cancer cells [27, 
28]. Shikonin has been regarded as the effective inhibitor of 
PKM2 [29]. In order to clarify whether SK induced ROS in 
a PKM2-depentent manner, we silenced PKM2 gene expres-
sion in CT26 cells using PKM2-siRNA and determine ROS 
production after SK treatments. Compared with siRNA NC 
control, silencing of PKM2 significantly reduced the pro-
duction of ROS induced by SK (Fig. 4A, B). This result 
indicates that increased ROS was induced by SK in a PKM2-
depentent manner.

Shikonin synergizes with PD‑1 blockade in CT26 
tumor mice model

It has been reported that chemotherapy drugs could improve 
the efficacy of PD-1 blockade in colorectal cancer treatment 
by triggering DAMPs release [30]. Since SK could induce 
DAMPs release, we tested whether there is any synergis-
tic effect in combinational SK and PD-1 blockade therapy. 
For this purpose, CT26-bearing mice were established and 
treated with SK, αPD-1 or SK plus αPD-1. Mice received 
SK and αPD-1 treatments have shown smaller tumors vol-
ume (294.1 ± 231.2mm3) compared to mice receiving αPD-1 
monotherapy (489.2 ± 444.6mm3) (P < 0.0001) or IgG con-
trol group (1048 ±  1016mm3) (P < 0.0001) (Fig. 5), suggest 

Fig. 1  CT26 cell death was 
induced by Shikonin via 
classically programmed and 
immunogenic pathways. CT26 
cells were treated with SK (5 
μM or 10 μM) for 24 h and 
then cell apoptosis was deter-
mined. A Cells were stained 
by Annexin V and 7-AAD 
and were analyzed by flow 
cytometry. B The percentage of 
Annexin V+ and 7-AAD+ cells 
are shown. C CRT cell surface 
expression upon treatment with 
SK were determined by flow 
cytometry. D The percentage 
of CRT+ cells are shown. Data 
are expressed as mean ± SD of 
three independent experiments. 
∗∗∗P＜0.001; ∗∗∗∗P＜0.0001.
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that SK synergizes with PD-1 blockade in CT26 tumor mice 
model.

Combinational Shikonin and PD‑1 blockade 
modified tumor immune‑microenvironment

In order to explore the cellular and molecular mechanism 
underling the synergetic effect of aPD-1 and SK, immune-
microenvironment in solid tumor was evaluated and the 
percentage of DC or T cells was determined by using flow 
cytometry. As shown in Fig. 6, combination of SK and 
αPD-1 treatments significantly increased infiltration of 
intratumoral  CD8+ T cells (SK + αPD-1: 2.52 ± 0.659%, 
αPD-1: 1.600 ± 0.501%) (Fig. 6A, B). Also combinational 
therapy induced a trend of increased the percentages of 
 CD11c+CD11b+ DC cells (4.02 ± 2.112%) when compared 
to αPD-1 monotherapy (2.63 ± 0.538%) (Fig. 6C, D). Immu-
nohistochemistry has been to confirm more intratumoral 
 CD8+ T cells after combination of SK and αPD-1 treatments 
(0.27 ± 0.045) compared with IgG control (0.07 ± 0.051) 
(P < 0.001) or αPD-1 monotherapy (0.14 ± 0.026) (P < 0.05) 
(Fig. 6E, F). In addition, we found that the expression of 
Hsp70 in tumor tissue was significantly increased after 

SK and αPD-1 treatments (32.61 ± 11.260) compared 
with IgG control (7.14 ± 4.772) (P < 0.05) or αPD-1 alone 
(7.98 ± 6.519) (P < 0.05) (Fig. 7A, B). Above all, these 
results indicated SK and αPD-1 treatments modified tumor 
immune-microenvironment with the change of percentage 
of immune cells and expression of Hsp70.

Discussion

In this study, we have found that Shikonin (SK) could syner-
gize with PD-1 blockade in CT26 tumor model, along with 
increased DC cells and  CD8+ T cells. CT26 cell death was 
induced by SK via classically programmed and immuno-
genic pathways. Among all DAMPs, SK specifically induced 
Hsp70 upregulation dependent on increased ROS, whilst 
silencing of PKM2 in CT26 cells reverts ROS upregula-
tion. Our study elucidated the potential role of ‘Shikonin-
PKM2-ROS-Hsp70’ axis in the promotion of efficacy of 
PD-1 blockade in CRC treatments (Fig. 7C).

Immune checkpoints inhibitor, αPD-1, is highly effec-
tive in patients with advanced melanoma, non-small cell 
lung cancer or metastatic renal cell carcinoma [31–33]. 
However, PD-1 blockade has been considered as the inef-
fective therapy in most CRC patients, except for those with 
MSI-H or high mutational burden. Thus, it is necessary to 
improve the efficacy of PD-1 blockade, and combinational 
therapy has been as the popular options. For the first time, 
we found that Shikonin could synergize with PD-1 blockade 
in CT26 tumor model, providing potential therapy regimen 
for patients with MSS CRC.

Our findings those combinational SK and PD-1 blockade 
modified tumor immune-microenvironment were consistent 
with other researchers. Lin et al. have demonstrated Shi-
konin effectively upregulated Hsp70 and CRT expressions, 
but not HMGB1 in 4T1 cells. They also found that CRT and 
Hsp70 mediated a critical role in Shikonin-treated 4T1 cell 
lysates-induced DC cell immunity, with significant  CD4+ 
and  CD8+ T cell proliferation. Besides, Hsp70 is regarded as 
the most critical component in enhancing DC immunity on 
suppressing tumor metastasis [18]. In our study, the upregu-
lation of Hsp70 in tumor tissue was also observed after SK 
and PD-1 blockade treatments. Chen et al. concluded that 
Shikonin could effectively increase the production of spe-
cific DAMPs in B16 cells, including Hsp70, Hsp90, CRT 
and HMGB1. Shikonin-treated B16 cell lysates could induce 
DCs to a higher level of functional and phenotypic matura-
tion, exhibiting high expression of CD86 and MHC class II 
and Th1 cells activation [19]. In our study, we also found 
that the percentage of  CD11+CD11b+ DC and  CD8+ T cells 
have been increased, suggesting that synergistic effect of SK 
with PD-1 blockade in CT26 tumor mice model might due 
to DC activation and cytotoxic  CD8+ T cells infiltration.

Fig. 2  SK induced-ICD makers of CT26. CT26 cells were treated 
with SK (5 µM or 10 µM) for 24 h. A The expression of CRT, 
HMGB1 or Hsp70 in CT26 cells was determined using western blot-
ting. B–D β-actin was used as a loading control and the ratio of tar-
get protein to β-actin was shown. Data are expressed as mean ± SD of 
three independent experiments. ∗P < 0.05
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Using the  Hsp70−/− mouse model, Dodd et al. proved 
that Hsp70 played a key role in tumor recognition by adap-
tive immune system and in facilitating anti-tumor immunity. 
Also,  Hsp70−/− tumors exhibits significant reduction in the 
infiltration of immune cells [34]. In addition, Tsang et al. 
found that the immunogenicity of CT26 cell was mainly 
dependent on the release of Hsp70 [35]. Komarova et al. 
also proved that Hsp70-containing extracellular vesicles 
could cause full-scale antitumor effect in CT-26 cells by 
activating of adaptive immunity [36]. In our experiment, 
we also have observed that SK could significant upregulate 
the expression of Hsp70 in CT26 cells, suggesting Hsp70 

might play a critical role in SK-induced immune activa-
tion, and further enhanced the efficacy of PD-1 blockade 
in CT26 tumor-bearing mouse model. Majority of research 
have demonstrated that ROS production and ER stress both 
produced DAMPs to induce tumor cells death [10–13, 37]. 
In our study, we also found that the expression of Hsp70 was 
induced by increased ROS after SK treatments, indicating 
that ROS was a potential inducer of CT26 cell death upon 
treatment with SK. Besides, we have found that silencing of 
PKM2 in CT26 cells reverts ROS upregulation induced by 
SK, indicating that increased ROS was induced by SK in a 
PKM2-depentent manner.

Fig. 3  Shikonin-induced Hsp70 upregulation was dependent on 
increased reactive oxygen species. CT26 cells were incubated with 
SK (5 µM or 10 µM) or/and NAC (10 mM) for 24 h. In blocking 
experiments, CT26 cells were pretreated with NAC for 2 h and then 
stimulated with SK. A ROS generation in CT26 cells were indicated 
by the green fluorescence of 2′,7′-dichlorofluorescein (DCF) that was 

oxidized from 2′7′-dichlorodihydrofluorescein diacetate  (H2DCFDA) 
by ROS. B, C Western blot analyses for expression of Hsp70 in CT26 
cells treated with SK or/and NAC. β-actin was used as a loading con-
trol. Data are expressed as mean ± SD of three independent experi-
ments. ∗∗∗∗P < 0.0001
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Fig. 4  Silencing of PKM2 in CT26 cells reverts ROS upregulation 
induced by Shikonin. CT26 cells were transfected with a small inter-
ference oligonucleotide against PKM2 (20 µM) for 48 h, and then 
CT26 cells were incubated with SK at 5 µM (A) or 10 µM (B) for 12 

h. The generation of ROS was determined by measuring the intensity 
of green fluorescence of 2′,7′-dichlorofluorescein (DCF). Data are 
from one of three independent experiments

Fig. 5  Shikonin synergizes with 
PD-1 blockade in CT26 tumor 
mice model. (A) Experimen-
tal design for the treatment 
in CT26 tumor-bearing mice. 
6 ×  105 CT26 cells were 
subcutaneously inoculated into 
BALB/c mice in the right ingui-
nal region. Tumor-bearing mice 
were randomized into 4 groups: 
Group A: IgG (n = 5); Group 
B: IgG + SK (n = 5); Group C: 
anti-PD-1 mAb (n = 5); Group 
D: anti-PD-1 mAb + SK (n = 5). 
Mice were given drugs when 
the tumor volume grew to about 
62.5  mm3. SK or DMSO control 
was intraperitoneally injected 
at 3 mg/kg every two days for a 
total of seven times. Anti-PD-1 
antibody or IgG control was 
intraperitoneally injected at 
50 µg/mice on the 5th and 9th 
day. B Growth curves of CT26 
tumors were measured after 
treatment with SK combined 
with αPD-1. Data are expressed 
as mean ± SD. ∗∗∗∗P < 0.0001
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Our research findings those SK improves the effectiveness 
of PD-1 blockade in colorectal cancer are consistent with 
those of Wang et al. [20]. In their study, the authors found 
that SK and BET inhibitor JQ1 which downregulate PD-L1 
expression in tumor cells instead of directly blocking the 
binding between PD-1 and PD-L1 can synergistically inhibit 
tumor growth by activating ICD, repolarizing TAM2 and 
inhibiting glycolysis.

In summary, our study shows that the combination of SK 
and anti-PD-1 mAb is a potential therapeutic strategy for MSS 
colorectal cancer. SK is a promising drug candidate for can-
cer immunotherapy. Until now, SK has not been utilized for 
prevention or clinical therapy due to its similarity with chemo-
therapeutic drugs, which can potentially result in side effects. 
Further research efforts should be directed towards developing 
a carrier that can accurately deliver SK to tumor tissues.

Fig. 6  Combinational Shikonin 
and PD-1 blockade modified 
tumor immune microenviron-
ment. Immune microenvi-
ronment in solid tumor was 
evaluated and the percentage 
of intratumoral T or DC cells 
were determined by using flow 
cytometry. The percentages of 
intratumoral  CD8+ T cells (A, 
B) and  CD11b+  CD11c+ cells 
(C, D) were analyzed by flow 
cytometry after treatments. 
 CD8+ T cell in tumor was 
also evaluated using immu-
nohistochemistry. E, F The 
average optical density (AOD) 
of  CD8+ T cells was shown 
and data are expressed as 
mean ± SD. ∗P < 0.05
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Conclusions

Shikonin and PD-1 blockade produced synergistic antitumor 
effects in CT26 tumor-bearing mouse model by upregulating 

the expression of Hsp70. Our study elucidated the potential 
role of ‘Shikonin-PKM2-ROS-Hsp70’ axis in the promotion 
of efficacy of PD-1 blockade, providing a potential strategy 
and targets for CRC treatments.

Fig. 7  The cellular and molecular mechanism underling the syner-
getic effect of αPD-1 and SK in CT26 tumor mice model. A Hsp70 
expression in tumor was determined using immunohistochemistry. 
B H-score of Hsp70 in tumor was shown and data are expressed as 
mean ± SD of three independent experiments. ∗P < 0.05. C Anti-
tumor mechanism underling the synergetic effect of αPD-1 and SK. 
Shikonin could synergize with PD-1 blockade in CT26 tumor model, 

along with increased  CD8+ T cells and DC cells. CT26 cell death was 
induced by SK via classically programmed and immunogenic path-
ways. Among three DAMPs, SK specifically induced Hsp70 upreg-
ulation dependent on increased ROS, whilst silencing of PKM2 in 
CT26 cells reverts ROS upregulation. Our study elucidated the poten-
tial role of ‘Shikonin-PKM2-ROS-Hsp70’ axis in the promotion of 
efficacy of PD-1 blockade in CRC treatments
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