Skip to main content

Advertisement

Log in

Synergistic effect of a nonsteroidal anti-inflammatory drug in combination with topotecan on small cell lung cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The topoisomerase I inhibitor topotecan (TPT) is used in the treatment of recurrent small cell lung cancer (SCLC). However, the drug has a limited success rate and causes distress to patients due to its side effects, such as hematologic toxicities, including anemia and thrombocytopenia. Due to these pharmacokinetic limitations and undesirable side effects of chemotherapeutic drugs, the development of combination therapies has gained popularity in SCLC. Meclofenamic acid (MA), a nonsteroidal anti-inflammatory drug, has demonstrated anticancer effects on various types of cancers through different mechanisms. This study aims to investigate the potential synergistic effects of MA and TPT on the small cell lung cancer cell line DMS114.

Methods and results

To assess the cytotoxic and apoptotic effects of the combined treatment of MA and TPT, trypan blue exclusion assay, Annexin V, acridine orange/propidium iodide staining, western blot, and cell cycle analysis were conducted. The results demonstrated that the combination of MA and TPT elicited synergistic effects by enhancing toxicity in DMS114 cells (P < 0.01) without causing toxicity in healthy epithelial lung cells MRC5. The strongest synergistic effect was observed when the cells were treated with 60 µM MA and 10 nM TPT for 48 h (CI = 0,751; DRI = 10,871).

Conclusion

This study, for the first time, furnishes compelling evidence that MA and TPT synergistically reduce cellular proliferation and induce apoptosis in SCLC cells. Combinations of these drugs holds promise as a potential therapeutic strategy to improve efficacy and reduce the side effects associated with TPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Govindan R, Page N, Morgensztern D et al (2006) Changing epidemiology of small-cell Lung Cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 24:4539–4544. https://doi.org/10.1200/jco.2005.04.4859

    Article  PubMed  Google Scholar 

  2. Rudin CM, Brambilla E, Faivre-Finn C, Sage J (2021) Small-cell Lung cancer. Nat Rev Dis Primers 7:3. https://doi.org/10.1038/s41572-020-00235-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yanar S, Kasap M, Kanli A et al (2022) Proteomics analysis of meclofenamic acid-treated small cell lung carcinoma cells revealed changes in cellular energy metabolism for cancer cell survival. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.23289

    Article  PubMed  Google Scholar 

  4. Duruisseaux M, Esteller M (2018) Lung cancer epigenetics: from knowledge to applications. Semin Cancer Biol 51:116–128. https://doi.org/10.1016/j.semcancer.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  5. Denninghoff V, Russo A, de Miguel-Pérez D et al (2021) Small cell lung cancer: state of the art of the molecular and genetic landscape and novel perspective. Cancers 13:1723. https://doi.org/10.3390/cancers13071723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qin A, Kalemkerian GP (2018) Treatment options for relapsed small-cell lung cancer: what progress have we made? J Oncol Pract 14:369–370. https://doi.org/10.1200/jop.18.00278

    Article  PubMed  Google Scholar 

  7. von Pawel J, Jotte R, Spigel DR et al (2014) Randomized phase III trial of amrubicin versus topotecan as second-line treatment for patients with small-cell lung cancer. J Clin Oncol 32:4012–4019. https://doi.org/10.1200/jco.2013.54.5392

    Article  Google Scholar 

  8. Eckardt JR, von Pawel J, Pujol J-L et al (2007) Phase III study of oral compared with intravenous topotecan as second-line therapy in small-cell lung cancer. J Clin Oncol 25:2086–2092. https://doi.org/10.1200/jco.2006.08.3998

    Article  CAS  PubMed  Google Scholar 

  9. Smith RE (2006) Trends in recommendations for myelosuppressive chemotherapy for the treatment of solid tumors. J Natl Compr Canc Ne 4:649–658. https://doi.org/10.6004/jnccn.2006.0056

    Article  CAS  Google Scholar 

  10. Horita N, Yamamoto M, Sato T et al (2015) Topotecan for relapsed small-cell lung cancer: systematic review and meta-analysis of 1347 patients. Sci Rep 5:15437. https://doi.org/10.1038/srep15437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mokhtari RB, Homayouni TS, Baluch N et al (2017) Combination therapy in combating cancer. Oncotarget 8:38022–38043. https://doi.org/10.18632/oncotarget.16723

    Article  PubMed Central  Google Scholar 

  12. Waqar SN, Morgensztern D (2017) Treatment advances in small cell lung cancer (SCLC). Pharmacol Therapeut 180:16–23. https://doi.org/10.1016/j.pharmthera.2017.06.002

    Article  CAS  Google Scholar 

  13. Ghanghas P, Jain S, Rana C, Sanyal SN (2016) Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon Cancer. Biomed Pharmacother 78:239–247. https://doi.org/10.1016/j.biopha.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  14. Soriano-Hernandez AD, Madrigal-Pérez D, Galvan-Salazar HR et al (2015) Anti-inflammatory Drugs and uterine Cervical cancer cells: antineoplastic effect of meclofenamic acid. Oncol Lett 10:2574–2578. https://doi.org/10.3892/ol.2015.3580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Delgado-Enciso I, Soriano-Hernández AD, Rodriguez-Hernandez A et al (2015) Histological changes caused by meclofenamic acid in androgen Independent Prostate cancer tumors: evaluation in a mouse model. Int Braz J Urology Off J Braz Soc Urology 41:1002–1007. https://doi.org/10.1590/s1677-5538.ibju.2013.00186

    Article  Google Scholar 

  16. Kovala-Demertzi D, Staninska M, Garcia-Santos I et al (2011) Synthesis, crystal structures and spectroscopy of meclofenamic acid and its metal complexes with manganese(II), copper(II), zinc(II) and cadmium(II). Antiproliferative and superoxide dismutase activity. J Inorg Biochem 105:1187–1195. https://doi.org/10.1016/j.jinorgbio.2011.05.025

    Article  CAS  PubMed  Google Scholar 

  17. Xu Y, Ye S, Zhang N et al (2020) The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in Breast cancer. Cancer Commun 40:484–500. https://doi.org/10.1002/cac2.12075

    Article  Google Scholar 

  18. Chou T, Talalay P (1981) Generalized equations for the analysis of inhibitions of Michaelis-Menten and higher‐Order Kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. Eur J Biochem 115:207–216. https://doi.org/10.1111/j.1432-1033.1981.tb06218.x

    Article  CAS  PubMed  Google Scholar 

  19. Albayrak MGB, Simsek T, Kasap M et al (2022) Tissue proteome analysis revealed an association between cancer, immune system response, and the idiopathic granulomatous mastitis. Med Oncol 39:238. https://doi.org/10.1007/s12032-022-01845-2

    Article  CAS  PubMed  Google Scholar 

  20. Wang S, Zhang S, Zhao Z et al (2017) Connexin 43 enhances paclitaxel cytotoxicity in Colorectal cancer cell lines. Exp Ther Med 14:1212–1218. https://doi.org/10.3892/etm.2017.4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gantar M, Dhandayuthapani S, Rathinavelu A (2012) Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. J Med Food 15:1091–1095. https://doi.org/10.1089/jmf.2012.0123

    Article  CAS  PubMed  Google Scholar 

  22. Khalife R, El-Hayek S, Stephany E-H et al (2014) Antiproliferative and proapoptotic effects of topotecan in combination with thymoquinone on acute myelogenous leukemia. Clin Lymphoma Myeloma Leukemia 14:S46–S55. https://doi.org/10.1016/j.clml.2014.04.014

    Article  Google Scholar 

  23. Badalanloo K, Naji T, Ahmadi R (2022) Cytotoxic and apoptotic effects of celecoxib and topotecan on AGS and HEK 293 cell lines. J Gastrointest Cancer 53:99–104. https://doi.org/10.1007/s12029-020-00434-8

    Article  CAS  PubMed  Google Scholar 

  24. Kim MK, James J, Annunziata CM (2015) Topotecan synergizes with CHEK1 (CHK1) inhibitor to induce apoptosis in ovarian cancer cells. BMC Cancer 15:196. https://doi.org/10.1186/s12885-015-1231-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bruzzese F, Rocco M, Castelli S et al (2009) Synergistic antitumor effect between vorinostat and topotecan in small cell lung cancer cells is mediated by generation of reactive oxygen species and DNA damage-induced apoptosis. Mol Cancer Ther 8:3075–3087. https://doi.org/10.1158/1535-7163.mct-09-0254

    Article  CAS  PubMed  Google Scholar 

  26. Yin Y, Ma L, Cao G et al (2022) FK228 potentiates topotecan activity against small cell Lung cancer cells via induction of SLFN11. Acta Pharmacol Sin 43:2119–2127. https://doi.org/10.1038/s41401-021-00817-y

    Article  CAS  PubMed  Google Scholar 

  27. Williamson T, Bai R-Y, Staedtke V et al (2016) Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget 7:68571–68584. https://doi.org/10.18632/oncotarget.11851

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sun W, Chen G (2016) Impact and mechanism of non-steroidal anti-inflammatory Drugs combined with chemotherapeutic Drugs on human lung cancer-nude mouse transplanted tumors. Oncol Lett 11:4193–4199. https://doi.org/10.3892/ol.2016.4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cui Q, Shi H, Ye P et al (2017) m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma Stem cells. Cell Rep 18:2622–2634. https://doi.org/10.1016/j.celrep.2017.02.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Z, Weng H, Su R et al (2016) FTO plays an oncogenic role in acute myeloid leukemia as a N6-Methyladenosine RNA demethylase. Cancer Cell 31:127–141. https://doi.org/10.1016/j.ccell.2016.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen H, Jia B, Zhang Q, Zhang Y (2022) Meclofenamic acid restores Gefinitib sensitivity by downregulating breast cancer resistance protein and multidrug resistance protein 7 via FTO/m6A-Demethylation/c-Myc in Non-small cell lung cancer. Front Oncol 12:870636. https://doi.org/10.3389/fonc.2022.870636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sekine Y, Nakayama H, Miyazawa Y et al (2018) Simvastatin in combination with meclofenamic acid inhibits the proliferation and migration of human prostate cancer PC-3 cells via an AKR1C3 mechanism. Oncol Lett 15:3167–3172. https://doi.org/10.3892/ol.2017.7721

    Article  CAS  PubMed  Google Scholar 

  33. Wen L, Pan X, Yu Y, Yang B (2020) Down-regulation of FTO promotes proliferation and migration, and protects Bladder cancer cells from cisplatin-induced cytotoxicity. Bmc Urol 20:39. https://doi.org/10.1186/s12894-020-00612-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H, Song Y, He Z et al (2018) Meclofenamic acid reduces reactive oxygen species accumulation and apoptosis, inhibits excessive autophagy, and protects Hair Cell-Like HEI-OC1 cells from Cisplatin-Induced damage. Front Cell Neurosci 12:139. https://doi.org/10.3389/fncel.2018.00139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang TT, Chou TC (2000) Rational approach to the clinical protocol design for drug combinations: a review. Acta Paediatr Taiwanica Taiwan Er Ke Yi Xue Hui Za Zhi 41:294–302

    CAS  Google Scholar 

  36. Kang W, DiPaola RS, Vazquez A (2013) Inference of synergy/antagonism between anticancer Drugs from the pooled analysis of clinical trials. Bmc Med Res Methodol 13:77. https://doi.org/10.1186/1471-2288-13-77

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tsai C-M, Chen J-T, Stewart DJ et al (2011) Antagonism between Gefitinib and Cisplatin in Non-small cell lung cancer cells: why randomized trials failed? J Thorac Oncol 6:559–568. https://doi.org/10.1097/jto.0b013e3182021ff5

    Article  PubMed  Google Scholar 

  38. Yin N, Ma W, Pei J et al (2014) Synergistic and antagonistic drug combinations depend on network topology. PLoS ONE 9:e93960. https://doi.org/10.1371/journal.pone.0093960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bayoumi HM, Alkhatib MH, Al-Seeni MN, Alkhatib MH (2021) Carvacrol effect on topotecan cytotoxicity in various human cancer cells in vitro. Pharmacia 68:353–363. https://doi.org/10.3897/pharmacia.68.e65878

    Article  CAS  Google Scholar 

  40. Varbanov HP, Kuttler F, Banfi D et al (2019) Screening-based approach to discover effective platinum-based chemotherapies for cancers with poor prognosis. PLoS ONE 14:e0211268. https://doi.org/10.1371/journal.pone.0211268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. George J, Lim JS, Jang SJ et al (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524:47–53. https://doi.org/10.1038/nature14664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Kocaeli University Scientific Research Projects Coordination Unit under grant number 2019/035.

Funding

This work was supported by a grant from Kocaeli University (Grant No: 2019/035).

Author information

Authors and Affiliations

Authors

Contributions

SY: Investigation, methodology, writing original draft. AK: Supervision, methodology. MK: Design of the work, reviewing and editing the manuscript. MGBA: Investigation, methodology. GGE: Methodology, interpretation of data. ADO: Investigation, methodology.

Corresponding author

Correspondence to Sevinc Yanar.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

Ethical approval was not required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanar, S., Kanli, A., Kasap, M. et al. Synergistic effect of a nonsteroidal anti-inflammatory drug in combination with topotecan on small cell lung cancer cells. Mol Biol Rep 51, 145 (2024). https://doi.org/10.1007/s11033-023-09055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09055-3

Keywords

Navigation