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Introduction

In recent decades, Nile tilapia (Oreochromis niloticus) has 
been the most cultured and distributed worldwide, with net 
production exceeding 4.5 million tons in 2020 [1]. Although 
Nile tilapia originated from Africa and belongs to the Cichl-
idae family, it is cultivated worldwide due to its high growth 
rate, enhanced good feed utilization, economical mainte-
nance, and high market demand. The optimum temperature 
range is 25 ± 3 °C for the ideal growth performance of Nile 
tilapia. Also, it can tolerate a wide temperature range of 16 
to 38 °C out of this range, it stops the feed intake, and mor-
tality could be expected [1].

Environmental pollution has attracted global attention in 
the last decades and is becoming a severe and vital chal-
lenge for human society [1, 2]. Heavy metals released in the 
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Abstract
Background  Pollution with heavy metals (HMs) is time- and concentration-dependent. Lead and zinc pollute the aquatic 
environment, causing severe health issues in aquatic animals.
Materials and methods  Nile tilapia, the predominant cultured fish in Egypt, were experimentally exposed to 10% of LC50 of 
lead nitrate (PbNO3) and zinc sulfate (ZnSO4). Samples were collected in three different periods, 4, 6, and 8 weeks, in addi-
tion to a trial to treat the experimental fish infected with Aeromonas hydrophila, with an antibiotic (florfenicol).
Results  Liver enzymes were linearly upsurged in a time-dependent manner in response to HMs exposure. ALT was 92.1 
IU/l and AST was 82.53 IU/l after eight weeks. In the eighth week of the HMs exposure, in the hepatic tissue, the levels of 
glutathione peroxidase (GPx), catalase (CAT), and metallothionein (MT) were increased to 117.8 U/mg prot, 72.2 U/mg prot, 
and 154.5 U/mg prot, respectively. On exposure to HMs, gene expressions of some cytokines were linearly downregulated 
in a time-dependent manner compared to the control. After four weeks of exposure to the HMs, the oxidative burst activ-
ity (OBA) of immune cells was decreased compared to the control 9.33 and 10.3 cells, respectively. Meanwhile, the serum 
bactericidal activity (SBA) significantly declined to 18.5% compared to the control 32.6% after eight weeks of exposure. 
Clinical signs of A. hydrophila infection were exaggerated in polluted fish, with a mortality rate (MR) of 100%. The re-
isolation rate of A. hydrophila was decreased in fish treated with florfenicol regardless of the pollution impacts after eight 
weeks of HMs exposure.
Conclusion  It could be concluded that the immune suppression and oxidative stress resulting from exposure to HMs are time-
dependent. Clinical signs and post-mortem lesions in polluted fish infected with A. hydrophila were prominent. Infected-Nile 
tilapia had weak responses to florfenicol treatment due to HMs exposure.
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aquatic environment through municipal discharges wastes 
of agricultural industrial activity, mining, combustion of 
fossil fuels, and wastewater treatment plants [3], resulting in 
environmental pollution and raising the risk of bioaccumu-
lation in fish tissues, threatening the life of aquatic animal, 
also feeding on aquatic products impacts the human health 
[4]. In Egypt, water polluted with heavy metals became a 
public health issue as domestic, agricultural, and industrial 
is discharged into the aquatic environment, the nature of 
heavy metals is toxic and could accumulate in the flesh of 
the aquatic animals, in turn transferred to the human body 
[5–9]. Heavy metals accumulate in fish organs, inducing 
oxidative stress [10]. The alterations occurred in antioxidant 
enzymes values considered oxidative stress biomarkers in 
fish that were exposed to environmental pollutants [11, 12]. 
Also, the disturbances of gene expression of metallothio-
nein (MT) and heat shock proteins (Hsps) could be used as 
biomarkers for environmental pollutants [13, 14].

Aquatic animals that reared in the lead (Pb) polluted 
areas showed deleterious biochemical and physiological 
status [15], such as growth inhibition [16, 17], downregu-
lating of hematological indices, initiating inflammation 
and apoptosis, and oxidative stress injury [18, 19]. These 
impacts resulted in immune depression via disturbing cyto-
kine gene expressions [17, 18].

Zinc, a heavy metal, is widely distributed in the aquatic 
environment [20], it could persist for long periods in the 
environment and could not be biodegraded [21], causing an 
oxidative status and disturbing acid-base balance, damaging 
the gills of the aquatic animals [22]. Fish exposed to high 
concentrations of Zn causing structural damages adversely 
affect growth, development, and survival [23], accumulat-
ing in gills and leading to death by hypoxia [24, 25].

Fish exposed to sublethal concentrations of Zn showed 
low hatchability and survival rates, along with decreased 
hematological parameters and adverse alteration behav-
iors [26, 27]. In Egypt, Zn is commonly present in ecosys-
tems in which Nile tilapia could be reared (fish farms) and 
caught (open water; Lakes, water canals, and Nile River), 
the concentration ranged between 0.004 and 0.46 mg/L [28], 
whereas Abdel-Baky et al. [29] found Zn concentration of 
7.94 mg/L.

This work gives insight into treating of bacterial infection 
in Nile tilapia during exposure to a mixture of lead nitrate 
(PbNO3) and zinc sulfate (ZnSO4) pollution.

Materials and methods

Investigation sites

Three hundred Nile tilapia were purchased from a private 
freshwater fish farm at village Tolompate 7 in Kafrelsheikh 
governorate, Egypt. The collected fish were tranquilized in 
the fish farm using MS-222 (SyncaineR, Syndel, Canada) at 
a dose of 40 mg/L, and then the fish were transferred live to 
the wet laboratory of the Animal Health Research Institute 
at Kafrelsheikh. The acclimatization process was performed 
according to the recommendations [30–32]. On arrival, fish 
were subjected to an iodine bath (BetadineR active ingre-
dient povidone-iodine, 5%, Nile Company for Pharmaceu-
ticals, Egypt) at a dose of 20 ppm/L before stocking in a 
fiberglass tank 1.5 × 1.5 × 1 m for fourteen days, at the end 
of the Acclimatization period fish restored regular feeding 
behavioral. Two hundred and forty healthy fish were used 
in the experimental investigation. Water samples were 
collected along with the collected fish to detect the levels 
of Pb and Zn. At the end of the experimental period, fish 
were euthanized using MS-222 at a dose of 250 mg/L, and 
fish were kept for ten minutes after ceasing the operculum 
movements [33].

Experimental trial

In experimental exposure in the lab, Two hundred and 
forty Nile tilapia (30 ± 5 g b.w.) were distributed into glass 
aquaria containing 10% LC50 of lead nitrate (PbNO3) [34] 
and zinc sulfate (ZnSO4) [35], 14.33 mg/L and 6.398 mg/L, 
respectively, for 4, 6, and 8 weeks.

Bacterial infection

At the 4, 6, and 8 weeks of stocking in polluted water, 
Nile tilapia were experimentally infected with Aeromonas 
hydrophila 0.3 × 104 CFU, which equals 10% of bacterial 
LD50. Ten Nile tilapia from each group were randomly cho-
sen at 4, 6, and weeks of the HMs exposure and injected via 
intraperitoneal (IP) route with LD50 (2.4 × 105 CFU) of an 
A. hydrophila AHRAS2 pathogenic strain (accession num-
ber MW092007) which was isolated from mass mortality of 
Nile tilapia reared in fish cages, bacteria were identified by 
Sherif and Abuleila [36]. In addition, ten fish from the con-
trol group were injected with pure saline solution (0.65%) 
and were considered negative controls [37]. The infected 
Nile tilapia were observed for two weeks for deaths. The 
mortality rate (MR) was estimated as follows:

MR (%) = (number of fish deaths in a specific period ∕ 
total fish population during that period) × 100.
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Experimental Nile tilapia challenged with A. hydrophila 
and subjected to trials of re-isolation according to the fol-
lowing equation:

Re-isolated (%) = (number of challenged fish harbored 
injected microbe in a specific period ∕ total fish population 
during that period) × 100.

Examination of farm and experimental fish

Following the recommendations of Amlacher [38], the 
experimental Nile tilapia were clinically examined for 
abnormal signs such as exophthalmia, dentated fines, skin 
hemorrhages, and detached scales, in addition to exami-
nation of the internal organs for changes in color, size, 
hemorrhages.

Heavy metals levels

The concentrations of lead (Pb) and zinc (Zn) in the experi-
mental fish were detected in different body tissues. The col-
lected fish were washed with distilled water, put in clean 
plastic bags, and stored frozen until analysis was carried out 
according to procedures recommended by A.O.A.C. [39]. 
Heavy metal analysis was carried out for water, sediment, 
and fish tissues according to APHA [40] using an atomic 
absorption spectrophotometer (Thermo electron corpora-
tions series AA Spectrometer).

Liver enzymes and Metallothionein

Liver enzymes, the experimental fish blood was collected 
from the tail vein and centrifuged to obtain sera, which were 
used to colorimetrically determine aspartate amino transam-
inase (AST) and alanine amino transaminase (ALT) using a 
spectrophotometer according to Reitman and Frankel [41].

Metallothionein (MT) content in hepatic tissues of the 
experimental Nile tilapia was spectrophotometrically mea-
sured following the method described by Derango and Page 
[42].

Cytokines gene expression using quantitative RT-PCR

The impact of water pollution on the expression of immune-
related genes was assessed using RT-PCR. From the hepatic 
tissues, the RNA was extracted with Trizol reagent (iNtRON 
Biotechnology Inc., Korea), and samples were collected 
from three Nile tilapia at 0, 4, 6, and 8 weeks of exposure 
to PbNO3 and ZnSO4 and by using Nanodrop D-1000 spec-
trophotometer (NanoDrop Technologies Inc., USA) the 
obtained RNA was evaluated for its quality and quantity the 
kept at − 80 °C.

The complementary DNA (cDNA) was formed with 
SensiFAST cDNA kits (Bioline, USA) for interleukin 
(IL)-1β, tumor necrosis factor (TNF)-β, transforming growth 
factor (TGF)-β2, insulin-like growth factor (IGF)1, C-type 
lysozyme, and heat shock protein (Hsp)70. Nile tilapia-spe-
cific primers are presented in Table 1; the β-actin gene was 
the housekeeping gene. The data of gene expressions from 
RT-PCR were assessed using Eq. 2−ΔΔCT [43].

Antioxidants enzymes activity

Glutathione peroxidase (GPx) (EC 1.11.1.9) activity in the 
hepatic tissue of the experimental Nile tilapia was calcu-
lated using Mohandas et al. [44] method. The ingredients 
of the reaction mixture were 1.44 ml of 0.05 M PBS (pH 
7.0), 0.1 ml of 1 mM EDTA, 0.1 mM sodium azide, 0.05 ml 
of glutathione reductase (GR; 1U/ml), 0.1 ml of 1 mM glu-
tathione (GSH), 0.1 ml of 2 mM NADPH, 0.01 ml of 0.25 
mM H2O2 and 0.1 ml of 10% PMS in a total volume of 

Gene name Acc. no. (GenBank) Sequence Ampli-
con size, 
bp

Anneal-
ing tem-
perature
°C

IL-1β KF747686.1 5- TCTTCTACAAACGCGACACC − 3
5- TCTGGAGCTGGATGTTGAAG − 3

156 53

TNF-β NM_001279533.1 5-AGGGTGATCTGCGGGAATACT-3
5-GCCCAGGTAAATGGCGTTGT-3

195 57

TGF-β2 NM_001311314 5-GCTCACGATCTTCCGTCTTC-3
5-CACTCCCCCTCTGTTTGTGT-3

150 57

IGF1 XM_003448059 5-TCTTCAAGAGTGCGATGTGC − 3
5-GGCCATAGCCTGTTGGTTTA-3

189 59

C-type 
lysozyme

LC012581.1 5-ATAAATAGCCGCTGGTGGTG-3
5-ACGACATCCGGACAAATAGG-3

207 55

Hsp70 FJ207463.1 5-ACAGACACCGAGAGGCTCAT-3
5-GATCTCCTCGGGGTAGAAGG-3

225 55

β-actin EU887951.1 5-CCACACAGTGCCCATCTACGA-3
5-CCACGCTCTGTCAGGATCTTCA-3

111 59

Table 1  List of the primers set

Note: IL-1β: Interleukin-1 beta; 
TNF-β: tumour necrosis factor 
beta; Hsp70: heat shock protein 
70
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Statistical examination of the obtained values

The pollution impacts on Nile tilapia health were statisti-
cally analyzed by the analysis of variance between different 
periods of exposure using one-way ANOVA and the sig-
nificance of differences between means by using Duncan’s 
Multiple Range at a level of 0.05 [48].

The biosafety procedures used in the experiment

All dead fish and remaining fish after the end of the experi-
ment were burned in the fixed incinerator in the laboratory. 
The biosafety measures followed the pathogen regulation 
directorate for infectious substances (A. hydrophila) [49].

Results

The concentration of heavy metals pb and zn in the 
experimental fish tissues

In Table 2, Nile tilapia were subjected to Pb and Zn pollu-
tion (PbNO3 and ZnSO4 at a concentration of 14.33 mg/L 
and 6.398  mg/L, respectively), and Pb and Zn concentra-
tions were measured in muscles and liver tissues at various 
periods. The control fish had undetectable levels of HMs, as 
did those exposed for four weeks. Detectable levels of Pb 
and Zn were detected after six and eight weeks of exposure, 
respectively, and the levels were associated with the time 
factor. Regardless of time factor, the level of Pb in liver tis-
sues was higher compared to muscle tissues 5.33 and 6.93; 
2.2 and 3.81 µg/g dry w.t., respectively. Meanwhile, Zn lev-
els had the same trend.

Liver enzymes and antioxidants and 
metallothionein

In Table 3, Nile tilapia exposed to a mixture of PbNO3 and 
ZnSO4 showed a significant deviation from normal physi-
ological status. Liver enzymes ALT and AST showed sig-
nificant and linear upsurge with time factor compared to 
the unpolluted group. The highest value was in the eighth 

2  ml. The disappearance of NADPH was spectrophoto-
metrically recorded at 340 nm. Enzyme activity was calcu-
lated as nmol NADP reduced/min/mg protein using a molar 
extinction coefficient of 6.22 × 103/M/cm.

Catalase CAT (EC 1.11.1.6) activity in hepatic tissue of 
the experimental Nile tilapia was measured spectrophoto-
metrically at 240 nm and measured as µmol H2O2 decom-
posed/ mg protein/min according to a method described by 
Lartillot et al. [45].

Immune assay

(a)	 Serum bactericidal activity (SBA).

�The SBA of the experimental Nile tilapia was calculated 
following the methods developed by Kajita et al. [46]. 
Briefly, equal volumes of A. hydrophila bacterial sus-
pension containing 1 × 106 CFU/mL and experimental 
fish serum of about 100 µL were mixed parallel with the 
blank in which sterile phosphate-buffered saline (PBS) 
was used instead of fish serum. The ten-fold serial dilu-
tions were made and incubated at 37 °C/24 h, and then 
bacterial colonies were counted on nutrient agar plates.

(b)	 Neutrophil glass-adhesion.

�Oxidative burst activity (OBA) of the experimental Nile 
tilapia was calculated following the method of Jang et 
al. [47], using nitro blue tetrazolium (NBT) test. In 
96-well, leukocyte suspension (50 µL containing 50 
cells) previously prepared from the blood of the experi-
mental fish was loaded and incubated at 30 °C/1 h, then 
wells were rinsed with PBS and put at room tempera-
ture for one hour. After that, 50 µL of NBT was added 
to each well and fixed by methanol (30%), then left for 
five minutes. The wells were dried by filling with 60 µL 
of 2 mM potassium hydroxide and 70 µL of dimethyl 
sulfoxide. A plate reader performed the measures at 
540 nm.

Table 2  Level of heavy metals in experimental Nile tilapia during the experiment
Items Pb* Zn*
Tissue Muscles Liver Muscles Liver
4 weeks Un-polluted ND ND ND ND

Polluted ND ND ND ND
6 weeks Un-polluted ND ND ND ND

Polluted 2.2 ± 0.2 5.33 ± 0.1 0.13 ± 0.1 4.4 ± 0.3
8weeks Un-polluted ND ND ND ND

Polluted 3.81 ± 0.3 6.93 ± 0.8 1.44 ± 0.4 5.54 ± 0.5
Note: *, µg/g dry body weight; W, week; ND, not detected
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was observed in MT values (Fig. 3) compared to the control 
regardless of the time factor; the highest value was 154.5 U/
mg prot after the eighth week.

Immunity examination

Gene expression of some immune related genes

In Fig. 4, overall gene expression of some immune-related 
genes (IL-1β, TNF-b, TGF-β2, IGF1, C-type lysozyme, and 
Hsp70) indicated that HMs could modulate the immune sta-
tus of Nile tilapia. At the same time, the expressions of IL-
1β, TNF-b, and Hsp70 were linearly declined with time. In 
contrast, C-type lysozyme increased with time and reached 
1.14 fold change compared to the control 1 fold change. 
Whereas, TGF-β2 and IGF1 increased in the four week 
of exposure (1.17 and 1.14 fold change), then they were 
declined until (0.53 and 0.52 fold change) in the eighth week 
compared to the control (1 and 1 fold change), respectively.

Immune status tests

In Table  4, the activity of immune cells was examined 
via OBA test, Nile tilapia exposed to HMs for four weeks 
showed insignificant difference with the control 9.33 and 
10.3 cells, whereas the activity significantly declined after 
4 and 8 weeks of HMs exposure 83.3 and 5.33; 12.3 and 
9.67 cells. No alterations were recorded in the SBA of Nile 
tilapia after 4 and 6 weeks of HMs exposure, whereas after 
the eighth week, a drastic decline was observed to 18.5% 
compared to the control 32.6%.

week, 92.1 and 82.53 IU/l, respectively, which was about 
five times the control, 21.77 IU/l. On HMs exposure, anti-
oxidants GPx (Fig.  1) and CAT (Fig.  2) had a significant 
rise of about 50% over the control after 4 and 6 weeks, 
87.5 and 91.2; 44.1 and 53.77 U/mg prot, while their val-
ues were duplicated after eighth weeks. A ten-fold increase 

Table 3  Liver enzymes in experimental Nile tilapia
Items Alt

IU/l
AST
IU/l

Treatment Un-polluted Polluted Un-polluted Polluted
4 weeks 21.83 A

± 0.93
51.4 C
± 0.71

27.8 A
± 0.61

42.87 C
± 0.77

6 weeks 24.5 A
± 2.5

65.47B
± 0.35

27.47 A
± 0.45

54.47B
± 0.44

8 weeks 21.77 A
± 1.65

92.1 A
± 1.09

30.4 A
± 0.54

81.53 A
± 0.84

Note: UN, undetected. Different letters indicate significant difference 
at P ≤ 0.05 in the same column

Fig. 3  MT level in the hepatic tissue of the experimental Nile tilapia. 
Different letters indicate significant difference at P ≤ 0.05 in time factor

 

Fig. 2  CAT level in the hepatic tissue of the experimental Nile tila-
pia. Different letters indicate significant difference at P ≤ 0.05 in time 
factor

 

Fig. 1  Glutathion peroxidase enzyme (GPx) level in the hepatic tissue 
of the experimental Nile tilapia. Different letters indicate significant 
difference at P ≤ 0.05 in time factor
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whereas for those exposed to HMs pollution, the MR was 
100 after eight weeks of exposure.

In Table 6, after experimental infection with 10% of LD50 
of A. hydrophila, MR% was higher in Nile tilapia exposed 
to HMs compared to the control 40% and 0 at the eighth 
week. Florfenicol treatment could decrease the MR to 10% 
in exposed Nile tilapia after six and eight weeks of HMs 
exposure. After exposure to HMs, the re-isolation of A. 
hydrophila was decreased in florfenicol fish compared to the 
untreated ones 40% and 50%; 100%, respectively.

Mortality rate

In Fig.  5, Nile tilapia was experimentally infected with 
pathogenic A. hydrophila via intraperitoneal injection with 
LD50. The clinical signs were partially off-food, loss of body 
color, slight pop-eye, and hemorrhages on the skin, while 
post-mortem lesions were partially empty intestine and sple-
nomegaly with different sizes. In Table 5, Nile tilapia unex-
posed to HMs pollution had MR ranged between 50% and 
70% after experimental infection with LD50A. hydrophila, 

Fig. 4  Levels of IL-1β, TNF-β, TGF-β2, IGF1, C-type lysozyme and Hsp70 gene expression in relation to the expression of β-actin in liver of Nile 
tilapia. Different letters indicate significant difference at P ≤ 0.05
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enzymes in fish serum Nile tilapia [58] and common carp 
[59]. Accordingly, Firat and Kargin [60] found that the level 
of AST and ALT were increased in the serum of Zn-exposed 
Nile tilapia, indicating hepatic dysfunction.

Heavy metals pollution induces the production of reac-
tive oxygen species (ROS such as superoxide, hydroxyle, 
and peroxides) in animal tissues, causing oxidative damage 
and destroying cell walls and components [61, 62], which 
stimulates antioxidants enzymes SOD, GPx, and CAT to 
counteract the propagated superoxide radicals [63]. In this 
work, hepatic GPx and CAT rose about double the con-
trol in Nile tilapia exposed to PbNO3 and ZnSO4 mixture. 
Similarly, ROS were produced in response to heavy metals 
bioaccumulation in fish bodies, leading to stimulate SOD, 
which catalytically eliminates oxidative stress [51, 64] after 

In Fig. 6, Nile tilapia was experimentally infected with 
10% LD50 of A. hydrophila. Clinical signs were slight hem-
orrhages on the skin, tail dentations, and slight pop-eye. 
Meanwhile, post-mortem lesions were slight splenomegaly 
and full-intestine.

Discussion

Environmental pollution affected fish health, which could 
be monitored by pathological changes in the hepatic tissue 
[50], for example, heavy metals toxicity, which resulted in 
elevated liver enzymes values such as ALT and AST [51, 
52]. In this investigation, long-term exposure of Nile tilapia 
to polluted water (PbNO3 and ZnSO4 mixture) significantly 
resulted in severe physiological alterations such as elevated 
liver enzymes ALT and AST that were about five times as the 
control after eight weeks. In accordance, the liver enzymes 
ALT and AST are very sensitive to any pathological changes 
in the hepatic tissue, so they could be considered the main 
biomarkers of body tissue damage [53–57]. Similarly, 
Pb toxicity could damage hepatic tissue, increasing liver 

Table 4  Immunity tests in experimental Nile tilapia
Items OBA

(stained cells)
SBA
(%)

Pollution Un-polluted Polluted Un-polluted Polluted
4 weeks 10.3Aa

± 0.88
9.33Aa
± 0.3

28.53Ba
± 0.97

28.6Aa
± 1.13

6 weeks 12.3Aa
± 1.2

8.3Bb
± 0.3

29.6ABa
± 0.88

27.4Aa
± 1.3

8 weeks 9.67Aa
± 1.45

5.33Cb
± 0.7

32.6Aa
± 1.01

18.5Bb
± 0.8

Note: W. week; UN, un detected. Different letters indicate signifi-
cant difference at P ≤ 0.05 in the same column, OBA, oxidative burst 
activity; SBA, serum bactericidal activity

Table 5  Mortality rate of experimental fish exposed to polluted water 
A. hydrophila infected LD50.
Items Un-polluted

(%)
Polluted
(%)

Control Infected Control Infected
4 weeks 10 50 10 60
6 weeks 0 60 20 60
8 weeks 0 70 20 100

Table 6  Mortality rate of experimental fish exposed to polluted water 
10% of A. hydrophila infected LD50.
Items Un-polluted Polluted

Control Flor Control Flor
4 weeks: MR%
Re-isolated%

0
20

0
20

0
50

0
40

6 weeks: MR%
Re-isolated%

10
30

10
20

20
100

10
40

8 weeks: MR%
Re-isolated%

0
30

10
20

40
100

10
50

Note: MR, mortality rate; Flor, florfenicol

Fig. 5  Nile tilapia challenged 
with LD50 of A. hydrophila. 1 
external hemorrhage with sinking 
abdomen, 2 loss of skin pigmen-
tation with hemorrhages on blow 
the mouth and fins, 3 external 
hemorrhages on the head, thorax 
and fins. 4, 5, and 6 showed sple-
nomegaly, and eye lesions
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were recorded after exposure to genotoxic compounds as 
HMs [73, 74]. In contrast, Hsps are not only induced by 
heat shock but also by contamination with HMs that trigger 
oxidative stress [70, 75]. In the experimental Nile tilapia, 
the expression of C-type lysozyme was linearly increased 
till the eighth week, whereas TGF-β2 and IGF1 genes were 
increased after four weeks of exposure and then linearly 
declined in the next four weeks. Accordingly, HMs pollu-
tion resulted in tissue injuries in the exposed fish [76, 77]. 
The decline could be due to DNA damage and immune sys-
tem adaptation to long-period exposure.

In this study, there was a drastic decline in the activ-
ity of immune cells OBA and SBA of Nile tilapia reared 
in polluted water (PbNO3 and ZnSO4 mixture). Hence, the 
immune status is evaluated by assessing the serum bacteri-
cidal activity, which could disrupt bacterial cell walls, so it 
could be considered one of the typical methods to assess fish 
immunity [78]. Accordingly, ROS induces oxidative stress 
causing injuries and damage to the membrane of blood cells 
[11, 79]. Besides, fish serum possesses a bactericidal activ-
ity against Gram-positive and Gram-negative bacteria via 
stimulating the complement system to combat the infection 
[78, 80].

Our results indicated the poor health status of stressed 
Nile tilapia, which became vulnerable to bacterial infec-
tion [81–83]. Similarly, aquatic pollutants could impair the 
immune system of fish; low SBA and OBA were observed 
along with downregulation of IL-1β, IL-8, TNF-α, HSP70, 

eight weeks. In accordance, the alterations of antioxidant 
enzymes are considered bioindicators for heavy metals pol-
lution [65]; in case antioxidant enzymes cannot scavenge 
the propagated ROS due to Pb toxicity, cell membranes will 
be damaged despite upregulation of the expression of genes 
related to antioxidant enzymes production [66, 67].

After eight weeks of PbNO3 and ZnSO4 exposure, the 
hepatic MT was significantly increased compared to the 
control, 154.5 and 16.03 U/mg. prot, respectively. In 
accordance, heavy metal pollution induces the production 
of hepatic MT, which could be used as a biomarker, MT 
protects hepatic cells from being damaged by propagated 
ROS, decreasing oxidative stress [68]. Similarly, Zn and Cd 
toxicity could induce higher expression gene of MT in com-
mon carp and zebrafish (Danio rerio) [69] gudgeons (Gobio 
gobio) from Cd-contaminated sites in Flanders, Belgium 
[70]. Similarly, Darwish et al. [71] stated that MT in mam-
malian and non-mammalian tissues could be considered a 
biomarker for environmental pollution with heavy metals 
such as Pb and Cd.

As signaling molecules, cytokines are mediators gener-
ated by the immune cells and are necessary for the host’s 
defensive system [72]. In the exposed Nile tilapia, the gene 
expressions of IL-1β, TNF-b, and Hsp70 were linearly 
declined in response to polluted water (PbNO3 and ZnSO4 
mixture) in the hepatic tissues of Nile tilapia, indicating 
immunosuppression status. In accordance, alterations in the 
gene expressions of cytokines in the hematopoietic tissues 

Fig. 6  Nile tilapia infected with 10% LD50 of A. hydrophila and treated with florfenicol, in 1, 2, and 3 showed external hemorrhage, pop-eye, and 
dentate tail fines. 4, 5, and 6 distended intestine with food, slight splenomegaly
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