Skip to main content

Advertisement

Log in

Association of ATG10 rs1864183, ATG16L1 rs2241880 and miR-126 with esophageal cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

In India, esophageal cancer (EC) is among the major cause of cancer-related deaths in both sexes. In recent past, autophagy has emerged as one of the crucial process associated with cancer. In the development of EC, the role of autophagy and the precise molecular mechanism involved has yet to be fully understood. Recently, a small number of studies have proposed how variations in autophagy genes affect the growth and development of EC. Micro-RNA’s are also known to play a critical role in the development of EC. Here, we examined the relationship between the risk of EC and two single-nucleotide polymorphisms (SNPs) in the key autophagy genes, ATG10 rs1864183 and ATG16L1 rs2241880. We also analyzed the association of miR-107 and miR-126 with EC as these miRNA’s are associated with autophagy.

Methods and results

A total of 230 EC patients and 230 healthy controls from North-west Indian population were enrolled. ATG10 rs1864183 and ATG16L1 rs2241880 polymorphism were analyzed using TaqMan genotyping assay. Expression levels of miR-107 and miR-126 were analyzed through quantitative PCR using SYBR green chemistry. We found significant association of CT + CC genotype (OR 0.64, p = 0.022) in recessive model for ATG10 rs1864183 polymorphism with decreased EC risk. For ATG16L1 rs2241880 polymorphism significant association for AG genotype (OR 1.48, p = 0.05) and G allele (OR 1.43, p = 0.025) was observed for increased EC risk. Expression levels of miR-126 were also found to be significantly up regulated (p = 0.008).

Conclusion

Our results suggest that ATG10 rs1864183, ATG16L1 rs2241880 and miR-126 may be associated with esophageal carcinogenesis and warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Malhotra GK, Yanala U, Ravipati A, Follet M, Vijayakumar M, Are C (2017) Global trends in Esophageal cancer. J Surg Oncol 115(5):564–579. https://doi.org/10.1002/jso.24592

    Article  PubMed  Google Scholar 

  2. Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873. https://doi.org/10.1101/gad.1599207

    Article  PubMed  CAS  Google Scholar 

  3. Phillips AR, Suttangkakul A, Vierstra RD (2008) The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178(3):1339–1353. https://doi.org/10.1534/genetics.107.086199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19(5):2092–2100. https://doi.org/10.1091/mbc.e07-12-1257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Brest P, Corcelle EA, Cesaro A, Chargui A, Belaïd A, Klionsky DJ, Vouret-Craviari V, Hebuterne X, Hofman P, Mograbi B (2010) Autophagy and Crohn’s Disease: at the crossroads of Infection, inflammation, immunity, and cancer. Curr Mol Med 10(5):486–502. https://doi.org/10.2174/156652410791608252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yun CW, Lee SH (2018) The roles of Autophagy in Cancer. Int J Mol Sci 19(11):3466. https://doi.org/10.3390/ijms19113466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Du W, Xu A, Huang Y, Cao J, Zhu H, Yang B, Shao X, He Q, Ying M (2021) The role of autophagy in targeted therapy for acute Myeloid Leukemia. Autophagy 17(10):2665–2679. https://doi.org/10.1080/15548627.2020.1822628

    Article  PubMed  CAS  Google Scholar 

  8. Tan J, Fu L, Chen H, Guan J, Chen Y, Fang J (2018) Association study of genetic variation in the autophagy lysosome pathway genes and risk of eight kinds of cancers. Int J Cancer 143(1):80–87. https://doi.org/10.1002/ijc.31288

    Article  PubMed  CAS  Google Scholar 

  9. Grimm WA, Messer JS, Murphy SF, Nero T, Lodolce JP, Weber CR, Logsdon MF, Bartulis S, Sylvester BE, Springer A, Dougherty U, Niewold TB, Kupfer SS, Ellis N, Huo D, Bissonnette M, Boone DL (2016) The Thr300Ala variant in ATG16L1 is associated with improved survival in human Colorectal cancer and enhanced production of type I interferon. Gut 65(3):456–464. https://doi.org/10.1136/gutjnl-2014-308735

    Article  PubMed  CAS  Google Scholar 

  10. Schuetz JM, Grundy A, Lee DG, Lai AS, Kobayashi LC, Richardson H, Long J, Zheng W, Aronson KJ, Spinelli JJ, Brooks-Wilson AR (2019) Genetic variants in genes related to inflammation, apoptosis and autophagy in Breast cancer risk. PLoS ONE 14(1):e0209010. https://doi.org/10.1371/journal.pone.0209010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009) Epigenetic therapy upregulates the Tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379(3):726–731. https://doi.org/10.1016/j.bbrc.2008.12.098

    Article  PubMed  CAS  Google Scholar 

  12. Song L, Li D, Gu Y, Wen ZM, Jie J, Zhao D, Peng LP (2016) MicroRNA-126 targeting PIK3R2 inhibits NSCLC A549 Cell Proliferation, Migration, and Invasion by Regulation of PTEN/PI3K/AKT pathway. Clin Lung Cancer 17(5):e65–e75. https://doi.org/10.1016/j.cllc.2016.03.012

    Article  PubMed  CAS  Google Scholar 

  13. Wei L, Chen Z, Cheng N, Li X, Chen J, Wu D, Dong M, Wu X (2020) MicroRNA-126 inhibit viability of Colorectal Cancer cell by repressing mTOR Induced apoptosis and autophagy. OncoTargets and Therapy 13:2459–2468. https://doi.org/10.2147/OTT.S238348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Caporali S, Amaro A, Levati L, Alvino E, Lacal PM, Mastroeni S, Ruffini F, Bonmassar L, Cappellini A, Felli GC, Carè N, Pfeffer A, U., Atri D, S (2019) Mir-126-3p down-regulation contributes to dabrafenib acquired resistance in Melanoma by up-regulating ADAM9 and VEGF-A. J Experimental Clin cancer Research: CR 38(1):272. https://doi.org/10.1186/s13046-019-1238-4

    Article  PubMed Central  CAS  Google Scholar 

  15. Di Martino S, Acierno C, Licito A (2018) Experimental study on the prevention of Liver cancer angiogenesis via miR-126. Promising results for targeted therapy. Eur Rev Med Pharmacol Sci 22(4):853–855. https://doi.org/10.26355/eurrev_201802_14357

    Article  PubMed  Google Scholar 

  16. Sabry D, El-Deek SEM, Maher M, El-Baz MAH, El-Bader HM, Amer E, Hassan EA, Fathy W, El-Deek HEM (2019) Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: impact of HIF-1α-VEGF signaling pathway. Mol Cell Biochem 454(1–2):177–189. https://doi.org/10.1007/s11010-018-3462-1

    Article  PubMed  CAS  Google Scholar 

  17. Li M, Meng X, Li M (2020) MiR-126 promotes esophageal squamous cell carcinoma via inhibition of apoptosis and autophagy. Aging 12(12):12107–12118. https://doi.org/10.18632/aging.103379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang JJ, Wang CY, Hua L, Yao KH, Chen JT, Hu JH (2015) miR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2. Int J Clin Exp Pathol 8(5):5168–5174

    PubMed  PubMed Central  Google Scholar 

  19. Ai H, Zhou W, Wang Z, Qiong G, Chen Z, Deng S (2019) microRNAs-107 inhibited autophagy, proliferation, and migration of Breast cancer cells by targeting HMGB1. J Cell Biochem 120(5):8696–8705. https://doi.org/10.1002/jcb.28157

    Article  PubMed  CAS  Google Scholar 

  20. Sharma P, Saini N, Sharma R (2017) miR-107 functions as a Tumor suppressor in human esophageal squamous cell carcinoma and targets Cdc42. Oncol Rep 37(5):3116–3127. https://doi.org/10.3892/or.2017.5546

    Article  PubMed  CAS  Google Scholar 

  21. Sayed D, Abdellatif M (2011) MicroRNAs in development and Disease. Physiol Rev 91(3):827–887. https://doi.org/10.1152/physrev.00006.2010

    Article  PubMed  CAS  Google Scholar 

  22. Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Signal Transduct Target Therapy 1:15004. https://doi.org/10.1038/sigtrans.2015.4

    Article  Google Scholar 

  23. Bali JS, Sambyal V, Guleria K, Mehrotra S, Singh NR, Uppal MS, Manjari M, Sudan M (2022) RAD51 135G > C polymorphism in Esophageal cancer and meta-analysis in gastrointestinal tract cancers. J Cancer Res Ther 18:S273–S279. https://doi.org/10.4103/jcrt.JCRT_784_20

    Article  PubMed  CAS  Google Scholar 

  24. Luo T, Fu J, Xu A, Su B, Ren Y, Li N, Zhu J, Zhao X, Dai R, Cao J, Wang B, Qin W, Jiang J, Li J, Wu M, Feng G, Chen Y, Wang H (2016) PSMD10/gankyrin induces autophagy to promote Tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy 12(8):1355–1371. https://doi.org/10.1080/15548627.2015.1034405

    Article  PubMed  CAS  Google Scholar 

  25. Liu S, Zhang F, Wang Y, Wang H, Chen X, Hu Y, Chen M, Lan S, Wang C, Cao J, Hu X, Tan F (2018) Characterization of the molecular mechanism of the autophagy-related Atg8-Atg3 protein interaction in Toxoplasma Gondii. J Biol Chem 293(37):14545–14556. https://doi.org/10.1074/jbc.RA118.002614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin cancer Research: Official J Am Association Cancer Res 15(17):5308–5316. https://doi.org/10.1158/1078-0432.CCR-07-5023

    Article  Google Scholar 

  27. Jo YK, Kim SC, Park IJ, Park SJ, Jin DH, Hong SW, Cho DH, Kim JC (2012) Increased expression of ATG10 in Colorectal cancer is associated with lymphovascular invasion and lymph node Metastasis. PLoS ONE 7(12):e52705. https://doi.org/10.1371/journal.pone.0052705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Qin Z, Xue J, He Y, Ma H, Jin G, Chen J, Hu Z, Liu X, Shen H (2013) Potentially functional polymorphisms in ATG10 are associated with risk of Breast cancer in a Chinese population. Gene 527(2):491–495. https://doi.org/10.1016/j.gene.2013.06.067

    Article  PubMed  CAS  Google Scholar 

  29. Xie K, Liang C, Li Q, Yan C, Wang C, Gu Y, Zhu M, Du F, Wang H, Dai J, Liu X, Jin G, Shen H, Ma H, Hu Z (2016) Role of ATG10 expression quantitative trait loci in non-small cell Lung cancer survival. Int J Cancer 139(7):1564–1573. https://doi.org/10.1002/ijc.30205

    Article  PubMed  CAS  Google Scholar 

  30. Shen M, Lin L (2019) Functional variants of autophagy-related genes are associated with the development of hepatocellular carcinoma. Life Sci 235:116675. https://doi.org/10.1016/j.lfs.2019.116675

    Article  PubMed  CAS  Google Scholar 

  31. Bueno-Martínez E, Lara-Almunia M, Rodríguez-Arias C, Otero-Rodríguez A, Garfias-Arjona S, González-Sarmiento R (2022) Polymorphisms in autophagy genes are genetic susceptibility factors in glioblastoma development. BMC Cancer 22(1):146. https://doi.org/10.1186/s12885-022-09214-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Fernández-Mateos J, Seijas-Tamayo R, Klain JCA, Borgoñón MP, Pérez-Ruiz E, Mesía R, Barco D, Coloma E, Dominguez CS, Daroqui AR, Fernández JC, Ruiz E, Cruz-Hernández JJ, González-Sarmiento R (2017) Analysis of autophagy gene polymorphisms in Spanish patients with head and neck squamous cell carcinoma. Sci Rep 7(1):6887. https://doi.org/10.1038/s41598-017-07270-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Murthy A, Li Y, Peng I, Reichelt M, Katakam AK, Noubade R, Roose-Girma M, DeVoss J, Diehl L, Graham RR, van Lookeren Campagne M (2014) A Crohn’s Disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506(7489):456–462. https://doi.org/10.1038/nature13044

    Article  PubMed  CAS  Google Scholar 

  34. Budak Diler S, Aybuga F (2018) Association of Autophagy Gene ATG16L1 polymorphism with human Prostate Cancer and Bladder Cancer in Turkish Population. Asian Pac J cancer Prevention: APJCP 19(9):2625–2630. https://doi.org/10.22034/APJCP.2018.19.9.2625

    Article  Google Scholar 

  35. Burada F, Ciurea ME, Nicoli R, Streata I, Vilcea ID, Rogoveanu I, Ioana M (2016) ATG16L1 T300A polymorphism is correlated with gastric Cancer susceptibility. Pathol Oncol Research: POR 22(2):317–322. https://doi.org/10.1007/s12253-015-0006-9

    Article  PubMed  CAS  Google Scholar 

  36. Nicoli ER, Dumitrescu T, Uscatu CD, Popescu FD, Streaţă I, Serban Şoşoi S, Ivanov P, Dumitrescu A, Bărbălan A, Lungulescu D, Petrescu F, Schenker M, Verdeş D, Săftoiu A (2014) Determination of autophagy gene ATG16L1 polymorphism in human Colorectal cancer. Romanian J Morphology Embryol = Revue Roumaine de Morphologie et embryologie 55(1):57–62

    Google Scholar 

  37. Al-Ali R, Fernandez-Mateos J, Gonzalez-Sarmiento R (2017) Association of autophagy gene polymorphisms with Lung cancer. Gene Rep 7:74–77. https://doi.org/10.1016/j.genrep.2017.02.001

    Article  Google Scholar 

  38. Li QX, Zhou X, Huang TT, Tang Y, Liu B, Peng P, Sun L, Wang YH, Yuan XL (2017) The Thr300Ala variant of ATG16L1 is associated with decreased risk of brain Metastasis in patients with non-small cell Lung cancer. Autophagy 13(6):1053–1063. https://doi.org/10.1080/15548627.2017.1308997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. White KA, Luo L, Thompson TA, Torres S, Hu CA, Thomas NE, Lilyquist J, Anton-Culver H, Gruber SB, From L, Busam KJ, Orlow I, Kanetsky PA, Marrett LD, Gallagher RP, Sacchetto L, Rosso S, Dwyer T, Cust AE, Begg CB, GEM Study Group (2016) Variants in autophagy-related genes and clinical characteristics in Melanoma: a population-based study. Cancer Med 5(11):3336–3345. https://doi.org/10.1002/cam4.929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Reuken PA, Lutz P, Casper M, Al-Herwi E, Stengel S, Spengler U, Stallmach A, Lammert F, Nischalke HD, Bruns T (2019) The ATG16L1 gene variant rs2241880 (p.T300A) is associated with susceptibility to HCC in patients with Cirrhosis. Liver International: Official Journal of the International Association for the Study of the Liver 39(12):2360–2367. https://doi.org/10.1111/liv.14239

    Article  PubMed  CAS  Google Scholar 

  41. Huijbers A, Plantinga TS, Joosten LA, Aben KK, Gudmundsson J, den Heijer M, Kiemeney LA, Netea MG, Hermus AR, Netea-Maier RT (2012) The effect of the ATG16L1 Thr300Ala polymorphism on susceptibility and outcome of patients with epithelial cell-derived thyroid carcinoma. Endocrine-related Cancer 19(3):L15–L18. https://doi.org/10.1530/ERC-11-0302

    Article  PubMed  CAS  Google Scholar 

  42. Filipów S, Łaczmański Ł (2019) Blood circulating miRNAs as Cancer biomarkers for diagnosis and Surgical Treatment Response. Front Genet 10:169. https://doi.org/10.3389/fgene.2019.00169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sharma P, Saraya A, Gupta P, Sharma R (2013) Decreased levels of circulating and tissue miR-107 in human Esophageal cancer. Biomarkers: biochemical indicators of exposure, response, and susceptibility to chemicals. 18(4):322–330. https://doi.org/10.3109/1354750X.2013.781677

  44. Zhang P, Zhang W, Jiang J, Shen Z, Chen S, Yu S, Kang M (2022) MiR-107 inhibits the malignant biological behavior of esophageal squamous cell carcinoma by targeting TPM3. J Gastrointest Oncol 13(4):1541–1555. https://doi.org/10.21037/jgo-22-575

    Article  PubMed  PubMed Central  Google Scholar 

  45. Toxopeus E, Lynam-Lennon N, Biermann K, Dickens G, de Ruiter PE, van Lanschot J, Reynolds JV, Wijnhoven B, O’Sullivan J, van der Laan L (2019) Tumor microRNA-126 controls cell viability and associates with poor survival in patients with esophageal adenocarcinoma. Experimental biology and medicine. (Maywood N J) 244(14):1210–1219. https://doi.org/10.1177/1535370219868671

    Article  CAS  Google Scholar 

  46. Fiala O, Pitule P, Hosek P, Liska V, Sorejs O, Bruha J, Vycital O, Buchler T, Poprach A, Topolcan O, Finek J (2017) The association of miR-126-3p, mir-126-5p and mir-664-3p expression profiles with outcomes of patients with metastatic Colorectal cancer treated with bevacizumab. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 39(7):1010428317709283. https://doi.org/10.1177/1010428317709283

    Article  PubMed  CAS  Google Scholar 

  47. Ouyang J, Song F, Li H, Yang R, Huang H (2020) miR-126 targeting GOLPH3 inhibits the epithelial-mesenchymal transition of gastric cancer BGC-823 cells and reduces cell invasion. Eur J Histochem 64(4):3168. https://doi.org/10.4081/ejh.2020.3168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chen Q, Chen S, Zhao J, Zhou Y, Xu L (2021) MicroRNA-126: a new and promising player in Lung cancer. Oncol Lett 21(1):35. https://doi.org/10.3892/ol.2020.12296

    Article  PubMed  CAS  Google Scholar 

  49. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991. https://doi.org/10.1091/mbc.e08-12-1248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are extremely thankful to all the subjects who participated in the current study. Senior Research Fellowship (ICMR-SRF) from ICMR to Jagmohan Singh Bali is highly acknowledged.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VS, KG and SM conceptualized and designed the experiment. JSB performed the experiments, analyzed the results and prepared the manuscript. PG assisted in experiments and result analysis. MSP and MS did diagnosis, clinical and histopathological classification and helped in acquiring blood samples of esophageal cancer patients. All the authors approved the final draft of the manuscript.

Corresponding author

Correspondence to Vasudha Sambyal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Ethical approval and Consent to participate

The study was approved by the institutional ethics committee of Guru Nanak Dev University, Amritsar, Punjab, India and after informed consent as per tenets of declaration of Helsinki, 5 ml peripheral venous blood sample was collected from each subject.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bali, J.S., Sambyal, V., Mehrotra, S. et al. Association of ATG10 rs1864183, ATG16L1 rs2241880 and miR-126 with esophageal cancer. Mol Biol Rep 51, 231 (2024). https://doi.org/10.1007/s11033-023-09012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09012-0

Keywords

Navigation